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Summary

As one of the non-stationary time series model, we consider a first-
order autoregressive model in which the autoregressive coefficient is
assumed to be a function, f,(6), of time ¢. We establish several as-
sumptions on f,(6), not on the terms in the Taylor expansion of log-
likelihood function, and show that the estimators of unknown parameters
involved in f,(6) have strong consistency and asymptotic normality under
these assumptions when sample size tends to infinity.

1.  Introduction

The usual assumptions that are made in the time series analysis
are that the time series are stationary and the structure of the series
can be described by a linear model which has constant coefficients such
as an autoregressive (AR) model. In general, these models deal with
the case when the structure of the series does not change over time.
But, too often, we actually encounter time series whose structure varies
over time.

For this reason, it seems natural to generalize this AR model by
considering the case when the coefficients are themselves slowly mov-
ing through time as the structure of the series changes. In recent
works about such models, Ozaki [6] has investigated an AR model
whose coefficients are functions of an observation X(¢) at time ¢ and
Nicholls and Quinn [5] have introduced a random coefficient autoregres-
sive (RCA) model, in which the coefficients are subject to random per-
turbations. Priestley [7] pointed out that these state-dependent models
can provide not only better fits to the data, but more importantly,
they can reveal interesting behaviour patterns (such as limit cycles)
which can never be captured by classical linear models.
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In this paper we consider an autoregressive time series in which
the coefficients are assumed to be a function of time ¢. Quinn and
Nicholls derived conditions for the stationarity of RCA model and under
these conditions they considered the properties of estimates. But ob-
viously our case is non-stationary. We can see the variance of the
process changes over time and depends on . We show that under
certain conditions the least squares estimators of unknown parameters
are strongly consistent and asymptotically normally distributed.

The model we consider is

(1.1) Xi=f(0)X._,+e.,

where {e,, t=1,2, ---} is a sequence of independent identically dis-
tributed random variables with means zero, variances ¢’ and Fe; exist
for any ¢, and 6 is a pXx1 vector of unknown parameters. f,(6) is
a real valued function defined on a compact set ® which contains the
true value vector 6, as an inner point and is a subset of R?. The
values of 6, and ¢* are unknown, so we have to estimate 6, and %
We assume the following conditions ;
(1) There is a constant a (>0) such that
Jj-1
Tl 72.40)} sa

t
2}
j=1li=0
for any te T={1,2,---} and 0 €86.

(2) The derivatives f/,(0)="040)  rn 6)=L540) ang fr1.(0)=
26, 36,20,

_Ofd0) (, 3, k=1,2, ---, p) exist and are bounded for any te T and
30,00,00,,

feb.
(8) For each 6 (#6,), there exists a set A (cT), which may de-
pend on #, and a positive ¢, such that

| fi(0)— f.(6)|=e,,  for any tec A

and

lim inf #(Ax) 50
im in N >

N-—oo

where #(A,) denotes the number of elements in A,=AN{1,2, ---, N}.
(4) There exists a limit of N-* 33 {fi(60)— f(O)}*E X2...
t=2
(5) We suppose that for ¢, j=1,2, .---, p,

N
}\}_Ig N-! E FL0)fL(0) E X},
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exists, and if we denote it by a, ;(#) the matrix A(6)=[a; ,(0)] is non-
singular.

The proof of the strong consistency requires the condition (1), (3),
(4), and the condition that f/.(0) exists and is bounded for any te T
and 6 € 6. To establish the asymptotic normality the remainder condi-
tions are added.

The X, of (1.1) can be expressed in terms of ¢, and a given initial
value X, as

X=11£0%+Z [T 0o,

Hereafter, we define ]1[ fi(0)=1 whenever j<i. We assume X, is in-
k=1

dependent of e, and satisfies E X{<oco. Moreover we assume E X;=0,
which entails no loss of generality. Thus we have

EX=1[f(O)EX,
=0

and

(1.2) var X,=11 £10) Var X+ 3 {1 7240} o*.
i=1 =0\i=0
We call {X,} stable if Var X, is bounded. Then {X,}, which is gen-
erated by (1.1) and satisfies assumption (1), is stable.
We suppose that observations {X,, X,, ---, Xy} are generated by

the model (1.1). The least squares estimator éN of 6, minimizes
N
QN(0)=N_1 E (}(z“‘fz(g))(:—l)2
N
=N"! > {0 — (O} X, +e]

with respect to 8. The estimator 6% of o is Qu(6y).

In establishing asymptotic properties of estimators, Q,(6) is often
expanded in a third order Taylor series about 6, and the properties
are shown under assumption that each term of Taylor series converges
almost surely or in probability (see for example Klimko and Nelson [4]).
The purpose of this paper can be considered to derive some conditions
on f,(0) for the convergence of the terms and to prove that the esti-
mators have good asymptotic properties under these conditions.
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2. The strong consistency of the estimators @, and &%
To prove the main Theorems 1 and 2 we need the following lemmas.

LEMMA 1. Under the conditon (1),

N
N 33 {(f46)— FUO} Xi-e,
converges almost surely to zero as N — oo.

PRrROOF. Let g,(0)=f.(6,)— fi(6) for convenience. Then there exists
a constant @, (>0) such that

N 2 »
E (N_l Z.;l gt(a)Xt—lez) =N"? t% ¢(0) E X2 ,0*
<N,

for any te T and 6€6. In this paper, the expectation is taken with
respect to the distribution indexed by 6, € @. This lemma can be proved
by making use of the same argument as in the Proof of Theorem X
6.2 of Doob [3].

LEMMA 2. We assume the conditions (1) and (4). Then
@.1) a(0)=lim N 51 g¥6) X2,
—co t=2

exists almost surely. If we assume the condition (3) furthermore then
q(0) is uniquely minimized at 0=0,.

Proor. If we show Var (N -1 ﬁ gf(ﬁ)XL) =0(N™), it can be proved
that

lim (N_1 31 g0 X — N3 g¥0) E X) =0
—00 t=2 t=2

with probability 1. This result also follows from the proof of Theorem
X 6.2 of Doob [3]. We therefore consider the following variance.

(22) Var(N 2 gOXL)
i=2
N-1 N—1t-1 i-1
=N_2[2 tZ.:: (911 E Xt2)2+4 tgz 12=1 9t 1011 ;l;l;ff_j(E Xt2—i)2
N-1
+ Z_ll gty Cum X, X, X., X,)

N-1t-1
+2 E E 9t +19141-: Cum (X, X,, X,_,, Xt—i)] .
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It is easily seen the first and second terms of (2.2) is O(N™!). As we
have already assumed, {e,} are i.i.d. random variables and independent
of X,. Then, we have

2.3) [|Cum (X, X,, X,, X))|
= }Cum [g C]:]i f,_¢(0)>e,_,, :go <j:1ifz-¢(0)>et—1 )
ji: T f,_¢(0)>e,_,, g (jj:ft_i(ﬂ))e:-f] ‘
+ ‘Cum [jji Sei Xy, :T—j)ft—iXo: Eft—iXo’ i[j’ft—iXO:l
=:E:) <fﬁ° ft‘_,(0)>|Cum @ogp iy € €0 )]
+ilif:_,(0)]Cum (Xo, Xy Xy X0)|
<L

-1

for a suitable constant L (>0). According to Theorem 2.3.1 of Bril-
linger [1], (2.3) holds. We have the last inequality by using the as-
sumptions (1), Ee{<oco and E X/<oo. Iterating equation (1.1) t—¢'—1
times, we obtain

t—t'—1/4-1 t—t'—1
Xt= g <T[;fz—t>et—j+ ;D; ft—tXt'

1=

for t>t'. Hence similarly we have

t—-1
2 Cum (X, X, X,y X))

t—1/i-1
=12'=1<;[;l; ft2-1>|Cum (X Xootr Xooiy Xi20)|
=<L.

Thus the other terms of (2.2) is O(N™), too. From (2.1) q(6) becomes
zero when =6, Next suppose ¢(f) is to be minimized at §+6,. Then
since

N
}jg}o N 2 {fi1(80) — fr41(0)}2 X7 =0
almost surely, we have

. #(Ay) 1 sy
lim 55 $(Ay) cgNe’X‘—O

almost surely. However, we assumed

lim inf #(Ay) 0
m N >

N-—oo

and we have
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lim inf S X?z2lim 5} @F 0Kt
Nooo N) t€dy  Now #( N) ted

almost surely. Hence we have a contradiction and ¢(4) is uniquely
minimized at 6=6,.

Consequently, it is proved that Q,(6) converges almost surely to
q(0)+o* as N— oo by Lemmas 1 and 2. We are now to prove the
strong consistency of estimators.

THEOREM 1. Let 0y and &% be the least squares estimators of 0,

and o°. Under the conditions (1)-(4), by and &% are strongly consistent
estimators of 0, and o°.

PrOOF. Let 6,={6,, ©=1,2, ---} be a countable dense set of 8,
and we put

2, ={0; lim Qu(6)=¢(0.)+ '},

Q.= {w th‘E(X" Xf):()},

N—ooo
. N
Q,:{w;th“Ze#aZ},
N—oo t=1
and
2:={o;e|<oo}.
We proved that Pr(£2,), Pr(2.,) and Pr(£2,) are 1 respectively in Lem-

mas 1 and 2. Furthermore Ee¢, <o, t=1,2, ---, imply Pr(ﬁ .Q,):l.
t=1
Thus if we put

I'= 0202 nmn(n 52)

05

we have
Pr(IN=1.

Hereafter we consider for a fixed sample weI'. First we need to
show that {Qy(0)} uniformly converges to q(6)+¢* on @ for any fixed
wel'. That is, we need to show that for any subsequence {Qy(0)}
of {Qy(0)} there exists a subsequence {Qy.(6)} of {Qy(6)} such that
th Qy (0)=q(0)+¢® uniformly on . The proof consists of two stages.

For any continuous function ¢(0) on 6, ¢(0) € {Qy(0)}, we define ||¢(6)]|
=§ug)l¢v(0)|. First it is shown that {Qy(6)} is relative compact to the
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topology induced by this norm. Then any subsequence {Qy.(6)} of {Q(6)}
contains a uniformly convergent subsequence {Q,.(0)} of {Qy(6)} and
let Q(6) be a uniform limit point of {Q,.(6)}. Next we show that Q(6)
is always equal to q(0)+¢® for any 6¢c&. By following Ascoli-Arzela
theorem, if {Qy(6)} is equicontinuous on 6 and uniformly bounded,
then {Q(0)} is relative compact. In our case it is easily seen that
{Qx(6)} is uniformly bounded for any 6 €@ and all N. Thus we need
only to show {Q,(0)} is equicontinuous on 6. Since Qy(0) is differenti-
able on 6, it holds that

0Qx(63)/06,
Qn(0.)—Qn(0,)=(0.—6,)" :
9Qn(07)/20,

where for all ¢, ||0i—6,||<||0.—6;||. The transpose of vector # is de-
noted by 67. Here sup sup |0Q,(6)/08] is finite, since
N 2

Sup [0Q,(0)/20|=sup [2N ! ) (X~ £ X ) FLOX.|
=sup 2N 33 (0 + 0O X ) FLOX. |

N MX
é Z |etXt—1[+'_ 2 Ath—x
=2 N i=2

IA
R z|=

for suitable positive constants M and M’. Hence for every e (>0),
there exists a number 8 (>0), depending only on ¢, such that |6,—6,|
<9 implies |Q(0.)—Qx(0;)|<e for all 6,, 6,€6 and all N. Now we

shall show that Q(6)=q(6)+0¢* for any 6e8. We see from Lemma 2
that

a(0)=lim N~ 33 gi(0) E X2,

—00 t=2

for any 6 € 8. By the same argument, {N - ﬁ} 9'(0) E XZ’_I} is uniformly
t=2

bounded and equicontinuous on @, and, hence, {N -t ﬁ gf(O)EXE_l} con-
t=2

verges uniformly to ¢(d) as N— oco. Thus ¢(f) is continuous on 6.
Q(6) coincides with ¢(f)+o® in the countable dense set 6,. Because
q(6)+4* and Q() are continuous, they coincide for any # of the para-
meter space 6. Finally we prove that é,, converges to 6, as N — oo.
Now, suppose that éN does not converge to 6,. Since 6 is a compact

set, there exists a convergent subsequence {éN,} of {éN} and 6* (#6,)
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such that lim 6,.=6*. Since ¢(f) is continuous and Q,(6) converges

N'—c0
uniformly to q(6)+¢?, Qy(fy) converges to q(6*)+¢* as N'— oo. How-
ever since f,. is the least squares estimator, we have

A N’
QN'(oN’)éQN’(00)=% E ef .

It follows by letting N’ — oo that
q(0%)+d*<a’.

Hence q(6*) is zero. Since 6, uniquely attains the minimum value of

q(6), we have 6*=@,. This contradiction implies that éN converges
almost surely to 6,, Now

=N X~ O X}
=Qu(0x)

and Qy(é,v) uniformly converges almost surely to ¢(6,)+d*=0* as N— oo.
This completes the proof.

3. Asymptotic distribution of the estimators

In this section we shall show that the least squares estimators are
asymptotically normally distributed.

THEOREM 2. Let the conditions (1)-(5) hold. Then N'Y*f,—6,) has
an asymptotically normal distribution with mean zero and covariance
matriz 1/4-A~Y(6,)d* defined by assumption (5).

Proor. First we note

0Qu(0y) _ 0Qu(0y) ., [ 9Qu(0x.0) |15 _
06, 06, +[ 00,067 ](0” 6u)

where ||§y.:—0,]|<||y—0,|| for all i=1,2, ---, p. Similar to the Lemma
2 we find that

N
Ilvl_.lg Nt Ef{,;(t?o)f/,i(ﬂo)xf—l

exists almost surely for 4,5=1,2,---, p. Now, it can be proved by us-

ing the same method as one in the proof of Theorem 1 that {3°Qy(6y..)/

00067} converges to lim {0'Qx(6,)/00907}=J(6,) almost surely, since 8,
N—oo

is strongly consistent estimator of 6,. The (¢, j) element of matrix
J(0,) is
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1lv1_1.2 N E {0100 X, X, — fLA00) f] (00) X1 — £ 00) i /(00) X7}
-
= —}{1_1.2 N-! E S 1(09) 1 (00) X7

by Lemma 1. Thus we have J(6,)=—A(f,). For this reason, we can

see VN (6y—0,) and A™(0,)¥ N 2Q(6,)/00 have the same asymptotic dis-
tribution. Next, note that for any constant vector g such that 8 is
pX1 we have

(X — fO) X, )BT F/(00) X, -,

M=

—BT0Qy(6,)/00 =

t

. X, 18" F/(60)

M=

[

t

M=
o

Z[ro 2o Z[wo

-
[
[

if we put F{(0))=(f/(6s), « -, fl:(6,)) and {,=eX, ,87F/(6,). Define U,
N

=>4 and let ¥, be the o-field generated by {X, e, t<N}. Then

we find {Uy, ¥y, N=1,2, ---} is a martingale. Let

Vi=31E ({g.-)
= ﬁ; X2 (B F/(6,))
and
Si=E Vi=¢* ﬁ‘, E X7,(8"F/(6,) -
If we can show
(i) visSy =1
and
() > ECI(CIZeS0)/S; — 0

as N— oo for any >0, where I(-) being the indicator function, then
N

we can obtain the fact that Sy'>) ¢, converges in distribution to N(0, 1)
t=2

by the martingale central limit Theorem 2 of Brown [2]. The condi-
tion (i) is obviously held by Lemma 2, so we need only to consider
condition (ii) which is called Lindeberg condition.

First, we note E ({})=(8"F/(6,))' E X}, Ee! is bounded for any te¢ T
and 0 € 6. Now
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ECI(CIzeS)=|  CdF()
tI=¢N

gS _& 4

[Cpl2eSy (ESN)2

= ("331»/')2 B

and hence
N
SVE GH(CIZ SISt S e SIEC — 0
t=2 N t=2

by letting N— oo as required. Hence Sy! XN} {, converges in distribu-
t=2
tion to N(0,1). That is, —N'2873Q,(8,)/00=2N-"231¢, is asymptoti-
t=2

cally distributed as normal with mean zero and covariance 1 lim N-1S3.
N—co

Hence N'20Qy(6,)/96 converges in distribution to N(0, 1/4-A(6,)¢*). This
completes the proof of the Theorem 2.

4. Remarks

For the stability of time series and obtaining good asymptotic
properties of the estimators, a number of conditions for the function
f{6) were required. Now we shall show an example. Let f,(6)=
6, sin (et+6,). Thus, from (1.1), we consider the following process

(4.1) X,=0,sin (at+0,)X,_,+e,

where o« is a known constant, 6, and 6, are unknown parameters such
that 6, € 8,=[¢, 1—¢] and 6, ¢ 6,=[0, 2r—¢] for ¢>0. Here if we take
a=nr/2 for convenience, then the period of f,(6) is 4. It is not hard
to see that this example satisfies the conditions (1)~(3). Since the

period of sin® (-Z—t-}—ﬁz) is 2, we consider the subsequences {E X2} and

{E X2} of {E X?}. Then we obtain

(4.2) E X,zm=az<k+mkﬁ‘ sint (%Hag) Var X,

k+2t—1

+ }] 0% T[ sm2(2 (k—i—2t——i)+672>a2

For a fixed k, k=1, 2, we can see E X7, converges to a finite value
as t— oo, since the 2nd term on the right of (4.2) is a monotone in-
creasing sequence and bounded for any t € T and (4,, 6,) € 8, X6,. Hence
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N
N3 E X? converges to 1/2 52;‘, V., where V, denotes the limit point of
t=1 k=1

{E X?,,;}. Using this result, it can easily be shown that the condition
(4) holds. This means the estimators have strong consistency. Next
in order to check the condition (5), we prove firstly A(f) exists. We
have

sin? (_g_th), %1- sin (rt+26;)
N
A()=lim N-'> EX?,
e = % sin (zt+260,), 6 cos? (%t+ 02>

sin’ (£k+ 02>, Ot gin (wk+20,)
1 2 2 2
=22 4 Vi
- ?‘ sin (tk+26,), 67 cos® <—72r-k+ 02>

Moreover the matrix A(6) is nonsingular, because the determinant of
A(9) is

%ivm{z sin? (—%—71'4—202) +cos (7r+402)+3} >0.

Hence this example satisfies the conditions for establishing central
limit theorem as well as strong consistency.

To prove strong consistency, Klimko and Nelson [4] have assumed
in their theorem 2.1 three conditions, of which two conditions are
concerned with 2nd partial derivatives of Q,(6), whereas we have re-
quired only first partial derivatives. And it is not easy to examine
their condition (i):

(i) lim sup (| Tx(6*);,|/N3)< o a.e. 1<p, j<p
N—ooo §—oo

where Ty(6*),,= 0Q(6%) _ 2*Qn(0,) and ||0*—6,||<||6—6,]|. Furthermore,
00,00, 096,00,

they considered local minimum solutions of 0Q.(#)/00,=0, 1=1,2, ---, p,
while under our conditions the solutions are to be the grobal minimum
in the parameter space.

Some simulations are performed with this example. Figure 1
shows the time series of length 250 generated by the model (4.1) from
the sequence {e,} of normally and independently distributed random
variables with zero means and variances 1, where 6,=0.5 and 6,=2.0.

For values of 6, 6, and % and for each sample size N, the experiment
was replicated 100 times. These results are summarized in Table 1,
in which lines (a) gives the average of the parameter estimates, lines
(b) the sample standard deviations of the corresponding estimates for
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3.0

2.0

o LA

T

Figure 1. X,=0.5sin (%t+2.0)XH+e¢

Table 1. Simulation results for true values

0:=0.5, :=2.0 and ¢?=1.0

Sample size 6, b, o2

50 (a) 0.5674 1.9308 0.9485

(b) 0.2007 0.4354 0.1811

100 (a) 0.5411 1.9365 0.9892

(b) 0.1334 0.2869 0.1345

200 (a) 0.5196 1.9413 0.9976

(b) 0.0917 0.1830 0.1020

500 (a) 0.4977 2.0019 1.0041

(b) 0.0574 0.1618 0.0678

the 100 replications. As the sample size becomes larger, the average
of the estimates are closer to their true value in accordance with

statistical theory.

We can easily construct other examples of f,(§) ensuring strong
consistency, if we choose functions from either the family of function
#.(8) which converges to ¢(f) as ¢ — co where |[¢(0)|<1l—e for £¢>0 and
#(0) is a one-to-one function on 6, or the family of periodic function

whose amplitude is less than one in absolute value.
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