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Summary

For the testing problem concerning the coefficients of the multi-
variate linear functional relationship model, the distribution of a statistic
previously proposed by A. P. Basu depends on the unknown covariance
matrix V of errors, so limiting its applicability. This article proposes
new test statistics with sampling distributions which are independent
of the unknown parameters for the cases where V is either unknown
or known only up to a proportionality factor. The exact distributions
of the test statistics are also discussed.

1. Introduction

The problem of inference concerning the coefficients of a single
linear relation among several unobserved “true“ variables, when the
observed vectors are contaminated with errors or fluctuations has a
long history. The early writers on this functional model, notably Adcock
[2], Kummel [10], Pearson [13] and van Uven [19] were mainly con-
cerned with the derivation of least squares estimators. Modern statis-
tical methods were used for the first time by Wald [22]. Particular
aspect of this problem has been studied by Creasy [5] assuming the
ratio of error variances to be known a priori; by Geary [6] using pro-
duct-cumulants and by Theil [17] resorting to nonparametric methods.

In experimental work, it is usually possible to replicate the obser-
vations. Data coming from replicated experiments can be analyzed
without much difficulty, because we can easily obtain from them an
estimator of the covariance matrix of the experimental errors which
can be assumed to have a known distribution. The case in which rep-
licated observations are available was considered by Tukey [18], who
showed how estimators of the linear relation could be easily derived
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from a variance component analysis.

Villegas showed in [20] that an estimator previously proposed by
Acton [1] was the maximum likelihood estimator and derived in [21] a
test based on the F-distribution for testing the hypothesis that an un-
known linear relation between the expected values of the components
of the observation vectors is a given linear relation.

Following Villegas’ approach, Basu [4] proposed a test statistic for
the parameters of k linear relations. This model is now referred to as
the multivariate linear functional relationship (MLFR) model.

Unfortunately the applicability of that statistic is limited since, as
is pointed out in the next section, its distribution depends on V, the
covariance matrix of errors associated with the vectors of observations.

New test statistics for the MLFR model are proposed in Sections
3 and 4 for the cases where V is either unknown or known only up to
a proportionality factor. The exact distributions of these test statistics
are also discussed.

Recently, the MLFR model and other errors-in-variables models have
been analyzed in Keller and Wansbeck [9] where their connections to
several multivariate statistical techniques were pointed out.

The MLFR model can be defined as follows. Let
1.1) M={g|a+Bg=0}.

pPX1 kX1 kxXp
This set contains all the vectors g which are solutions of the non-homo-
geneous system of k linear equations in p variables specified by a and
B. We assume that k<p and that B is of full rank k.

Let g,,--+, g, be r points belonging to the (p—Fk)-dimensional set
M and let

(1'2) xij=gi+eij ’ j=1)"'7niv

be m, replicated measurements that are available for each of the g.’s
4=1,---,r, where

(1.3) e; ~ N 0,V), V>0,

that is, the e;,’s are independently and identically distributed random
vectors, each having a p-variate normal distribution with mean vector
zero and positive definite covariance matrix V. The MLFR model is
specified by (1.1), (1.2) and (1.3) and is a special case of a more gen-
eral model for whose parameters the maximum likelihood estimators
were derived in Healy [7].

2. An account of Basu’'s main result

In this section, we explain why a test statistic proposed in Basu
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[4] for the structural coefficients of the MLFR model cannot be used
for testing the null hypothesis:

2.1) H,: a=a,, B=B, where ¥V is unknown.
Let

(2.2) W=BSB,

where

S=3 3 (v~ ) (xy— %) /(n—7) ,

’n:n1+ cee +nr
and
(2.3) §¢=12; Xi;/n;
and let
(2.4) d2=(ay+ BiE) (B\B) av+ Bi&) , i=1,---,7,

where d; represents the distance between X; and the set
M,={g: a,+B,g=0}
with respect to the Euclidean metric
{(*:—9)'(x.—g)}".

This last result is proved in Basu [4] where the following statistic
is proposed to test H, defined in (2.1):

(2.5) R=(n—r)d*/|W|*
where |W| denotes the determinant of W defined in (2.2) and
&= nd?
i=1

where d! is defined in (2.4).

The distribution of |W| is that of the product of k& independent
chi-square variables times a constant (see Anderson [3], p. 171):

k
|W|~|BIoVBo| ;D; xz—v—t+l

where y2_,_;,; denotes a chi-square variable with n—r—4+1 degrees of

freedom.
At this point, we will give a systematic derivation of the distri-
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bution of d since some of the results are needed in Section 4.
It is seen from (1.2) and (2.3) that

X% Ndgo Vin),  i=1-e,r.
Hence, under H,,
(2.6) a+Bi%, '~ N0, B.VBn), i=1,---,7,

and since B,VB, is symmetric and positive definite, there exists a non-
singular matrix K=(B,VB,) " such that

2.7 K'BiVB,K=1.
Now, letting
Z,=nK'(a)+B'¥x) , i=1,--, 7,
it is seen from (2.6) that
Z,~ NGO, D, i=1,---,7r,
and from (2.4) that
nd;=Z/K\(B;B)"'K'"'Z,, i=1,---,7r.

Since (B;B,)~! is symmetric and positive definite, so is K '(B,B,) 'K’
and hence there exists an orthogonal matrix U such that

(2.8) UK (B/B)'K' 'U=M=diag (my, -+, my) ,
where m;>0, 1=1,---, k. The m,s are therefore the eigenvalﬁes of
(2.9) (BiVB,)"(B;B,)" {(B:VBy)"} .

Now let

(ftnly"'y fik)l-——'fi——'—U’Z,, 1;:1,...,/;-’

then
f.' = N0, I)
and
k
ndi;=FMf,= E mjftj
where

ind

fu~N@©,1), i=1l,--e,7; j=1,---, k.

Hence,
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2.10) ndi jﬁ mpl), i=1,.--, 7,
and
r k

where y}(r) denotes a chi-square variate with » degrees of freedom,
the m,’s are defined in (2.9) and all the chi-squares in (2.10) and (2.11)
are independently distributed.

So clearly, when V is unknown, we are unable to test H, with R
defined in (2.5) since its distribution is not free of ¥V and therefore the
tail probabilities cannot be computed. In the next section, we propose
an alternate statistic to test H,.

3. Alternate test statistics for the case where V is unknown

In this section, we derive two new statistics to test the hypothesis
H, given in (2.1).
Let

t;=n!"B(a,+ Bix,) ,
where
B,=(B/B,)"* and B=B,.
Then, in view of (2.6),
&~ N0, V¥, i=1,---,7,
where under the null hypothesis
V*=B\B;VB,B, .
Let

-— r

t=>¢/r and S*=§ &—1)(E—1)

then for >k, we propose the test statistic
Q=r(t'(SM7t) ,
where
Q ~ {k/(r—R)}Fe,_s
that is, the distribution of @ under H, is that of a constant times an
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F-variable with k and (r—k) degrees of freedom, (see Anderson [3], p.
107).
Now, since

£=B3 (@t BiE)}Yr=Bu [} ni/r]
where

w*=ay+ {Bs 5 (%) / 3 W} ,
=1

i=1

it is seen from (2.4) that

Z'i(i‘, n}”/'r) = (BB u*

i=1

represents the square of the Euclidean distance between M, and a
weighted average of the Xx,’s.
We may also consider the following statistic to test H,:

Q.=n(@S*~'¢) ~ (k/(n—k))Fyn_s ,
where
n=2 N 5:,-% g‘.lculn; S:‘:é jz (c,;—©)(c,—5) ,
and

ciszl(a0+B(I)xij) ~ N0, V¥*).

Moreover, since
e= z jz Bi(a,+ Bix.;)/n=By(a,+ B}%)

where

r

F=N S xym,  Ce=(a+Bi%)(BiB) (a+BiX)
=1 j=1

represents the square of the Euclidean distance between M, and the
arithmetic mean of the x;,’s according to (2.4).

4. A test statistic for the case where V is known only up to
a proportionality factor

In this section, we consider the null hypothesis :

H?: a=a,, B=B, and V is proportional to V,,
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that is, V=2*¥,, where a,, B, and V; are known.
Letting

vK=K,=(B)V,B,)™"*,

we can rewrite (2.7) as

K/BV,B.K,=1
and (2.8) as

vU' K Y(BiB)'K! ""Uv=M=v"M*=1*diag (m},- - -, m¥) ,
where
vm¥F=m, , 1=1,---, k.
The m}’s are therefore the eigenvalues of
(BVoBy) (B By) " {(B:V, B}

and (2.11) becomes

r k
=3 nd} ~* pX miir) .
i=1 =1
We propose the following statistic to test H{:
Rr=d¥?*,
where
r 7
(4.1) ¥=3 3 {00y =XV (e, — B} {pln—1)} .
Let us prove that ?9* is an unbiased estimator of v®. Let
P=V"=V;i"lv;  y,;=Pxy;
ng
17¢=12=1 Yiln s Yii;=Wij- - s ytjp)l 5
and

U=Werr+ Yi)' where yz.z=jZ]=1 Yiji/Ni

291

then cov (y.;)=1I and therefore the y,,’s, {=1,---, p, are all independ-

ent with variance equal to unity. It follows that
jz]=1 Wepn—Yud)’ ~ An-1 -

Thus (4.1) becomes
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3
.

¥#=0" 3} 51 {(g,— ) W — B} (p(n—1)}

1

-
.
Il
-

g

= W=y’ {p(n—7)} ,

M=

.
)

=1

s

~
Il

-

and

o3 N {p—n)}
that is,

,i*)Z ~ 'sz;(n_,)/ {p(n—r)}
since all the chi-squares are independent. Hence
E@)=1".

We will now show that d* and #* are independently distributed.
Let

w,; =V, i=1,---,r; j=1,---,n; Wi =W, ) Wigp) s

W, =Wi.qy*++ Wy.p) where w,.,= (Wi + - - - +win )My, 1=1,--4,p,
and

s?l=:2:1 (W —w.)* .
Then
d'=3 nav+ Bi%)'(BiB) @+ Bi%)
=3} navt BiVi D) (BiB) (au+ BiVi D)
is a function of the w,,’s which are all independent, and
=31 31 (W~ @, — B} {pn—r)} =3 3] stpn—1))

is a function of the s%’s which are all independent. Since each s} is

independent of w;.,, we can conclude that 9? is distributed independently
of d*. So

Re=a#* ~ d¥/z

where

k
@* ~ pln—1) 3 (MO}, 2~ Lo
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and all the chi-squares are independent.

The exact distribution of R? can be obtained by considering the
respective distributions of d* and z and then by making the appropri-
ate transformation.

Three representations of the density of a linear combination of chi-
squares can be found in Mathai and Pillai [11]. One is given in terms
of finite sums, another in terms of a confluent hypergeometric function
of several variables and a third one in terms of zonal polynomials. The
convolution formula yields another representation which is discussed in
Robbins [15]. The density of d* may also be derived from its moment
generating function:

M,,.(t):j]i(l-— pt)"",  where u,=2p(n—rym}

on expanding the latter as an infinite power series in (1—¢)~!. Writing
(I-pt)=p,0-8)1A—c,1-8)7), where ¢;=(g;,—1)/p,,
we have, if |¢,|<1, that is, if p(n—7r)m}>1/4, j=1,---,k,

A—pp)y"t=p;" ,;Y:"o {(r[2), J» MYep(L—t)-cstr,

where (a)uj=(a+vj—1)(a+vj—2)---(a) and (a),=1, so

o

M,.(t)= {,]jl m—ml pae .2}0 (7[2),,- - - (r[2), e+ - -
et Iy (CULER )

where
k
y -—jz}ﬂ v
which on inversion gives, for d*>0,
(4.2) F@%) =3 ke~ (d%) Y (v + rk[2)
v=0
where

k
k= 3 (1)) ) ene el o))

This representation has also been derived by Provost [14] using the
technique of the inverse Mellin transform. If the condition p(n—r)m¥
>1/4 is not satisfied for j=1,.-.-.,k, we use the following technique.
We multiply both d* and z by B where B is a positive number such
that Bp(n—r)m}¥>1/4 for all 5. This allows us to use (4.2) to express
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the density of B d* in a computable form. Then Bz would be distri-
buted as a gamma variate with parameters p(n—7)/2 and 2-B, and the
exact density of R? would be obtained with a transformation of vari-
ables.

The representation of the density of d* derived in this section can
be written in the following form:

WA= 53 B, d* e

where 6;,>0, j=1, 2, 3.
Let

(4.3) g=d*/z,

where q represents the test statistic R?. The density of d* is given
in (4.2) and the density of z is

u(z) — {z(p(n—r)/2)—le—z/2} / {2p(n—1)/21"(p(n_,r)/2} .

Since d* and z are independently distributed the joint density of d*
and z is t(d*, z2)=h(d*)u(z).
Now let

4.4) y=d*.

The equations (4.3) and (4.4) define a one-to-one transformation which
maps the set {(d*, 2); 0=<d*<oo, 0=<2< o} onto the set {(g,¥); 0=<¢g<
0, 0Sy<}. Clearly d*=y and z=y/q, and the Jacobian of the trans-
formation is y/¢®. Thus the joint density of y and ¢ is

v(¥, 9) =/, yl9) =l y)u(y/q)
and the probability density function of ¢ is

w@=|" v, dy .

The parts containing ¥ and ¢ coming from »(y, q) are of the fol-
lowing form :

(Wlg)y'vie vy [g)re=" v ™!
that is
y0n+te—v(021;+(2q)“1)q-—(s+1)
where e=p(n—r)/2, 0,,>0 and 6;,>0.
Hence the integration over y yields

(02;-{'(2q)_1)_(01i+‘+l)r(0“+€+1)q-‘—1



SOME TEST STATISTICS FOR THE STRUCTURAL COEFFICIENTS 295

=T (01+ € +1)2%*¥igh(2q0y,+ 1)~ ut+?
= K,i(2q05,) i~} (2q0y + 1)~ Crit1+o |

where K, is a constant.

Therefore the distribution of R? is expressible as a linear combina-
tion of the distributions of beta type-2 random variables. Moreover,
in computational work, we can use the tables of the beta distribution :

Lu@)={T(r+8)(TNI @)} | wH1—wy~du

for 0<x<1, together with the identity
B, (x)=1, (x/(1+=))

where B, ,(x) denotes the distribution function of a beta type-2 variable
with parameters r» and s whose probability density function is

B(@)= {T'(r+8)[(T(r)['(8)}a (1 +a)r*o .

An appoximation of the distribution of R? can be obtained by ap-
proximating the distribution of d*. Various approximations are avail-
able for the distribution of a linear combination of chi-square random
variables, see for instance Oman and Zacks [12], Jensen and Solomon [8]
for a Gaussian approximation, or Solomon and Stephens [16] where the
distribution is to be fitted by Aw?”, where » has the y} distribution and
the constants A, s and D are found by matching moments.
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