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Summary

The null and nonnull distributions of the likelihood ratio statistics
for testing the homogeneity of & given populations, each associated with
a nonregular density depending on two truncation parameters, are in-
vestigated. This generalizes to the two-parameter case the work of
Hogg (1956, Ann. Math. Statist., 27, 529-532), Barr (1966, J. Amer.
Statist. Assoc., 61, 856-864) and Khatri and Jaiswal (1969, Aust. J.
Statist., 11, 79-84; 1969, 1971, Ann. Inst. Statist. Math., 21, 127-136;
23, 199-210).

1. Introduction

Let (¢, d) be a given (finite or infinite) interval, h(x) a positive in-
tegrable function over every closed interval contained in (¢, d), and 6
={(0, 8;): c<0,<0,<d}. Let f(x: 6,,80,), (6,, 6,) €O, be a two-param-
eter density defined as

h(x)/g(6,, 65) 0 =x=0,
(1.1) Sf(z: 6y, 0z)=‘1

elsewhere ,

where g(6,, 6;)= S:’ h(t)dt.

Let k populatlions be given with f(x: 6, 6) as the parent density
associated with the 4-th population, 1=1,---,%k. Let X, and Y; be the
minima and maxima, respectively, of a random sample of size n,(=2)
drawn from f(z: 6i, 6, i=1,---, k, and assume that the k samples are
independent. Based on these data and the likelihood ratio test (LRT),
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we test for the homogeneity of the k populations, as given by the fol-
lowing hypotheses:

H,: (6, 6=(63, 63  for every i=1,---,k,
where (6}, 63) € 6 is specified

K, : (6;, 65)+(6Y, 67) for some i1=1,---, k.
and

H,: (6%, 0))=(6,, 6,) for every i=1,---, k,
where (6, 6,) is unspecified

K,: (6, 0)+(6, 6))  for some ¢ and j, i#jJ, 4, j=1,---, k.

Hogg [5] analyzed the one-parameter problem for testing the homo-
geneity of the k populations. For the case in which the 6#{’s are known
to be equal to a given constant, Hogg showed that —2 times the log-
arithm of the LRT statistic has x*2k) as its null distribution if the
common value of the #{s is specified (under the null hypothesis), and
y(2k—2) otherwise. Barr [2] and Khatri and Jaiswal ([6]-[8]) derived
the nonnull distribution of the LRT statistics.

For the two-parameter problem, let 4, be the LRT statistic for H;
vs K,, and set l,=—21log 4;,, ©=1,2. In contrast to the one-parameter
results obtained by Hogg [5], it is shown in Section 2 that chi-square
fails to be the exact null distribution of the I,’s. Nevertheless it serves
as a limiting distribution since as m;—oo, t=1,---, k, the limiting null
distributions of I, and [, are y*4k) and yx’(4k—4), respectively. The ex-
act nonnull distribution of I, is discussed in Section 3. The correspond-
ing distribution of I, is quite difficult to derive (even for the two and
three population case). Accordingly, it will not be treated here and is
left as an open question.

2. The limiting null distributions of the LRT statistics

To simplify the presentation of the results we first present a
lemma. In what follows we use ¢q(-) and fo(-) to denote the charac-
teristic and density functions, of a r.v. Q.

LEMMA 2.1. Let X and Y be the minima and maxima, respectively,
of a random sample of size n drawn from (1.1), and define W =g(X,
Y)/g(6,,Y), W,=g(X, Y)/g(0,, 0), R=g(0,, X)/g(6:, 0:) and S=g(6,,Y)/

9(0,, 6;). Then, i) —2log Wi™'~y*(2), i) —2log W2 Z,+(n)(n—1))Z,
where Z, and Z, are i.i.d. r.v.’s with a common ¥*(2) distribution, and
iii) the distribution of (R, S) is free of (0, 6s).
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ProOF. By transforming from (X,Y) to (W, W;), we obtain
S wwy, w)=n(n—1)w;fw for 0<w,<w;<1. The marginal densities
of W, and W, yield (i) and (ii). (iii) is obtained by transforming from
(X,Y) to (R, S). One obtains that f s(r, s)=n(n—1)(s—r)"* for 0<r
<8<1, which is the desired result.

We now consider the LRT’s for H,vs K;, 1=1, 2. Using the mono-
tonicity properties of g(-, -), we can express 4, and 4, as

k
1) 4 JIRUCER O/ CE B<X,<Y, <0, j=1,--+,k
. 1: =

0, elsewhere,

where {4,=0} is a null event under H,, and
k
(2.2) Az=;ﬁ=l {9(X;, Y))lg(X*, Y*)),

where X*=min X, and Y*=max Y;. The limiting null distributions of
15isk 1515k

I, and I, are given by the following theorem.

THEOREM 2.1. Let n,—oo for j=1,---,k, then a) L, y¥4k) under
H, and b) 3¢ (4k—4) under H,

k
PROOF. Assume that H, holds. 4, can be written as 4,=T] »,,
j=1

where v;={9(X,, Y,)/9(6}, 6}, j=1,---, k. Because of the independ-
ence of the k samples, application of Lemma 2.1 (ii) yields for every ¢

bu(t)= jﬁ & —s10g, (1) = (L —20t) ;ﬁ (1—2itn,f(n, — 1)) — (1 —24t)

as m;— oo,

j=1,---, k, and this implies a).

Now assume that H, holds. We show that the distribution of 4,
is free of (0, 6;), and that 4, is independent of (X*, Y*). We then use
Lemma 2.1 (ii) to complete the proof. Define R;=g(6,, X,)/g(6:, 6:), S;
=g(0,, Y,)/9(0s, 65), 5=1,---, k, R*=min R;, and S¥=max S,. Then re-

1s/sk 1s/sk .
writing (2.2) in terms of these quantities, we obtain 4,=T[ {(S,—E,)/
Jj=1

(S*—R*)). By Lemma 2.1 (iii), the distribution of (R;, S;) is free of
(6, 8,) for all j=1,---, k. Since independence of the k samples implies
independence of the (R, S,)’s, it follows that the distribution of the
random vector (R,, S;, j=1,---,k) is free of (4, 6;) and hence the dis-
tribution of 4, is also free of (6,, 4,).

Under H,, (X*, Y*) is complete and sufficient for (6, 6;). This, the
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fact that the distribution of 4, is free of (6,, 4;), and Basu’s Theorem
(Basu [3], Theorem 2) imply that 4, is independent of (X*, Y*).

Finally, rewrite 4, in (2.2) as A2=1ﬁ_1 §,;/6*, where &,={9(X;, Y,)/

9(0y, 0))Y4, 5=1,---, k and &*={g(X*, Y*)/9(6,, 6,)}", N=jé n;. Since 4,
=1
is independent of (X*, Y*), the r.v.’s —2log 4, and —2log &* are in-
dependent, so that we have for every ¢, </;_“c,g,,2(t)¢_210g5.(t)=j]'k[ & -s108¢,(t)-
=1
Application of Lemma 2.1(ii) for the r.v.’s —2log&* and —2log ¢,,
j=1, .-, k, yields
P -910g 4,(8) = (1 —24)~*(1 -2t N/(N—1)) ff (1—2utn,/(n,—1))7" .

Letting n;— o0, j=1,..., k, we obtain b).

Remark. If the 6’s and the 6i’s are considered as the structural
and incidental parameters, respectively, one may be interested in testing

H;: 0i=6° for every ¢=1,.--, k, where 6? is specified
Ky: 0i#6° for some t=1,---, k.

For testing these hypotheses one can use the LRT as well as the
conditional likelihood ratio test (CLRT). The CLRT, which is based on
the conditional likelihood of the structural parameters, is defined in a
manner analogous to the ordinary LRT. Such a conditional test was
introduced by Andersen [1], who derived its asymptotic behaviour for
a certain regular model.

Let 4; and 4; be the LRT and CLRT statistics, respectively, for
testing Hy vs K;. These statistics have the forms

k

4 T o(X;, Y))/g(83, Y, B<X,<Y,;, 4=1,---,k
3= B

0, elsewhere ,
and

k

A }:l; {g(Xj’ Yj)/g(029 Yj)}ﬂf—l ’ 02<X/<ij .7=1; ft 0y k
3— -

0, elsewhere .

If ,=—2log 4; and l5=—2log 4, then under H,, la—%xz@k) as n;—
o, j=1,--+,k, whereas l{~y*2k). The derivation of these results is
omitted since it is similar to that of Hogg [5] for the one-parameter
case.
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3. The nonnull distribution of I,

Here, we derive the nonnull distribution of I, for the k& population
case. Calculations of standard nature are omitted for the sake of brevity.
We shall find P(4,<2) for all values of the parameters and from
this compute the power function of the test. Define the events B;=
[°<X,<Y,<6}, B, the complement of B, j=1,---,k, and the index-
ing sets K={1,---,k}, Ai={je K: 0{<6}, A,;={je K: 0]<60;<0,<63},
={je K: 0{<0<0;<0]}, A={jecK: 61<0/<0{<63}, A;={jeK: 0=
0]{<63< 63}, and A,={j e K: 6;<6i}.
If 1<0, then P(4,<2)=0, while if 2120,

(3.1) P(4,=3)=P(4,=£1, B, occurs for at least one j=1,---,k)
+(P(4,=2, B, occurs for all j=1,---,k).
Let ¢, and ¢; denote the first and second terms, respectively, on the
right hand side of (3 1). Since the occurance of ,U B, implies 4, =0
2, we have 01=P< U B,> 1—1] T[ P(B,), where P(B,)=0 for j ¢ A,

i=1J;€4;

=1, 6, P(B,)={g(6%, 032)/g(0%2, 6)}*, js € Ay, P(B,)=1{9(63, 63)/9(6]s, 6{2)}™s,
jre Ay P(B,)=1, jic Ay and P(B,)=1{g(0f 63)/o(6ts 0{)}ss, ds€As. If

A UA;=¢ then U A=K and ﬂ Bt—ﬂ N B,, and hence we have

=2 jiEAi

1 , If A1UA6¢¢

(3.2) 0= .
Tl 1=T0 T P(B,),  if AUA=9¢.
i=2 fiea;
Let
- 90 Y5,) 1™ 9K, Y5) 1™
D,=-2log {f, €4, [ a(6%, 612 ] 1364, [ 9(63, 63) ]
% I [ g(X,‘, Y;) ] [ 9(X,,, Y,) :|"!5}
fie4y 4,000 1 seasl g(ohs, 69) ’

and d,=—2log (4b;), where

0 0 n, 0 0 n
b= [ g(6s3, 63) ]/2 [ g(63, 69 ] |: 9(63, 63) :|"5
' /;D;a 9(62, 613) /.Te[i. g(61s, 619) 1;1;1:45 g(61s, 63)
Then, we have

0, if AUA#S

33) o=
P(D,gd1

5 5
00 BT T P(B,), if AUA=s.

i=3 j;ed, i=2 jed;
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Derivation of the distribution of (X,,Y,) conditional on B, for j;
€A, 1=2,---,5, and application of Lemma 2.1 (ii) show that the dis—
tribution of D, conditional on n n B,i equals the distribution of 2

i=27
(Zy;+(n;/(n;—1))Z,,), where the Z,, s and the Zy,’s are i.i.d. r.v.’s havmg
a common x*(2) distribution. Letting Gy.,,..., denote the distribution
of the latter summation, combining (8.2) with (3.3), and noting that
d,<0 is equivalent to A1=b!, we obtain for 1=>0

1, if A,UAs#¢ or A,UA=¢ and 1=b;*
. 4G} 1, [LT 1%
(3-4) P(Alél):'{ 0 Ja€ 4y g(0lz, 022)

g(64, 63) :| 3 [ g(ﬂ{b, 83) jl”js
X . ——— ’
I rr o AN )

if AjUAs=¢ and A<b".

If a€(0,1) is the significance level, then H, is rejected if the given
sample value of A4, is less than A,, the critical value determined by 1—

2log2
“:S " d Grny-m(®). The power function of the corresponding LRT
0

is obtained by replacing in (8.4), 2 by A,. The technical difficulty con-
nected with the derivation of the power function lies with the fact
that no simple expression exists for Gin,,...n,—the distribution of a
linear combination of chi-square variates. However, in some special
cases it can be given a simpler form. For example, in the case n,=
<+ =n,=n, we have for =0

. [S yk—l-iey/ﬂn)dy]dw ,
0
which can be evaluated by use of Gradshtein and Ryzhik ([4], p. 92
(2.321)). Hence for k=2, 3, we obtain, respectively,
Gy, ()= (1/2)e " {me’*™[ — (n— 1)t +2n(2n — 3)]
—(n—1)(t+4n+2)+2¢"%} ,
and
G n,n,n(t)=(1/8)e~ " {met/ ™[ — (n— 1)t +4n(n—1)(8n—4)t
—8n*(6n*—156m+10)]+(n—1)*[t*+4(8n+1)t
+8(6n’+3n+1)]+8e%} .
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