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Summary

Bounds for the convergence uniformly over all Borel sets of the
largest order statistic as well as of the joint distribution of extremes
are established which reveal in which way these rates are determined
by the distance of the underlying density from the density of the cor-
responding generalized Pareto distribution.

The results are highlighted by several examples among which there
is a bound for the rate at which the joint distribution of the % largest
order statistics from a normal distribution converges uniformly to its
limit.

1. Introduction

Let P be a probability measure on the real line with distribution
function (=df) F and denote by P" the n-fold independent product of
P. Moreover, Z,.,: R*— R denotes the i-th order statistic for the sam-
ple size n and P"x g the distribution induced by P" and a measurable
function g.

If the distribution P*x(a;(Z,..—b,)) tends to some nondegenerate
limit G (in the sense of weak convergence) for some choice of constants
a,>0, b,, ne N, then we know from Gnedenko [5] that this limit G
must be one of the following types with ¢>0

G,.(x):=exp (—27%), x>0;
(1.1) Gy o(2):=exp (—(—2)), @=0;
Gy(x):=exp (—e™), TER.

Moreover, Gnedenko [5] gave necessary and sufficient conditions for
P to belong to the domain of attraction (=9(G)) of each of the above
limits.

Key words and phrases: Generalized Pareto distribution, uniform distance, joint distribu-
tion of extremes, normal extremes.
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While the rate of convergence (uniformly over all Borel-sets) of
central order statistics to a normal distribution is of order O(»~'?) which
is well-known (see Reiss [16] and, for results on asymptotic expansions,
Reiss [17]), the situation changes completely for extreme order statistics.

Here the rate of convergence of sup |F™(ax+b,)—G(x)| to zero may

be of order O(1/log (n)) in the normal case (see Hall [6]) as well as of
order O(n™") in the exponential case (see Hall and Wellner [7]). There-
fore, results on the rate of (weak) convergence have only been spo-
radic and a unifying approach was given only by Cohen [1] for the case
G; and by Smith [22] for the case G,. A nonuniform bound for the
rate of (weak) convergence is given by Theorem 2.10.1 of Galambos [4].
These results were mainly derived by the concept of regularly vary-
ing functions, and although this approach has proved quite successful
we will choose a different way to obtain bounds for the uniform con-
vergence of extremes. We will explain this way in the following.
Taylor-expansion of log (1+x) immediately yields

(1.2) FYa,x+b,) — G() , zeR,
& [1-F(a2+b,)]/[1—(1+log (G@)")] ;5 1,
zeG'0,1).
Now, denote by W, a generalized Pareto distribution (=gPd), i.e.
W, (x)=1—x"", =1, >0,
(1.3) W, (2)=1—(—2)", ze[—1,0], «>0,
Wy(x)=1—exp (—2) , x=0,
then,
1+log (G (@)™ =W, (n/x)=: Wi,m(®), z207,
(1.4) 1+log (Gu (@) =Wy (v 2)=: Wyom(®), —n/=2=0,
1+log (G(x)"")=Wi(z +log (n))=: Wym(®), x=—log(n).
Therefore, by (1.2) and (1.4) we have
(1.5) F™ax+b,)— G(x), reR,

nenN

&= [1-Faz+b)/1-W, @] 51, 2G'0,1).

neN

This result states that a probability measure lies in the domain of
attraction of an extreme value distribution if and only if it can be
approximated in an appropriate way by a shifted gPd.

The importance of the gPd’s was first observed by Pickands [15]
who showed that, roughly speaking, F ¢ 9(G) if and only if the condi-
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tional distribution [F(u+¥)— F(u)]/[L—F(u)] is approximately given by
an appropriately shifted gPd if u is large. We remark that this result
can also easily be motivated by (1.5).

Now, suppose that F' has a derivative f near the right endpoint
of its support. Then, if [1—F(a,x+b,)l/[1—Weu(x)]—1, € G0, 1),

neN

a suitable version of the mean value theorem implies for any xz,y €
G0,1), z<y,

[F(anx + bn) - F(a’ny + bn)]/[W(n)(x) - W(n)(y)]
=0, f (@0, +b)WiN0) —z 1,  O.€(x,9),

neN

and hence, one might expect that if f satisfies certain regularity con-
ditions we have

(1.6) na,f(@x+b,)w(x) — 1, xeG0,1),
where with

1.7 9(x):=G'(x) , xeG™Y0,1),

and

1.8) w(z):=[log (G())])' =9(x)/G(x) , 2€¢G7'(0,1),

n~'w(z) is for x € W;;(0, 1) the Lebesgue density of the shifted gPd W,
i.e.

(1.9) Wenr(®) 1 =" w@)=Wiy(®) » e Wa(0,1).
In particular, with >0
Wy, () =ax~*P x>0,
(1.10) W, (x)=a(—2)", <0,

wy(x)=exp (—x), reR.

Consequently, the condition na,f(a.v+b,)/w(x) ;1 implies that the
density of F(a,z-+b,) can be approximated by w, as follows

1.11) @ f (0% +b,) = Weny(%) [+ ha(2)]

where h,(r) — 0, £€G™(0,1). Thus, we are led to an expression of

the closeness of F(a,x+b,) and W, in terms of their densities which
is basic for a general statistical theory (see, for expample, the book
by Pfanzagl [14]).

Example 1.12. Consider the standard normal distribution N ;, with
df® and density ¢. Choose the norming constants b, as the solution
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of the equation

(1.13) b,=np(b,)

and a,=1/b,. Then,

(1.14) bz'p(bz 2 +b,) =exp (— (v +log (n))) exp (—b;%%/2)
=Ws,(®) [1+ A (%)] ,

where (see [3], p. 374)
(1.15) h.(w)=exp (—b;%*/2) —1=0(z/log (n) .

Notice that O(1/log (n)) is the exact rate at which N, * (b(Z,..—
b,)) tends (weakly) to G, (see Hall [6]). Therefore, representation (1.11)
and the preceding example give rise to the idea that the rate at which
h, tends to zero determines also the rate at which the distribution of
Z,.. under F'"(a,x+b,) tends to G. This conjecture will be made rigor-
ous in the next section.

Moreover, representation (1.11) immediately yields the following
consequence. Assume that F*(a,x+b,) — G(x), = € R, and that (1.11)

holds. Then,

(1.16) dF*a,x+b,)/de=F""Yax+b,)na,.f(ax+b,) — G@)w(z)
=g(x) , xeG0,1),

and consequently, by Scheffé’s Lemma we get

(1.17) sup |P*{a;(Z,..—b,) € B}—G(B)| - 0 ,

Be3
where B denotes the Borel-s-algebra on R; i.e. condition (1.6) entails
uniform convergence of the largest order statistic which is therefore
the type of convergence which we will have to study.

We remark that on the other hand the convergence na,f(a,x+b,)/
w(@) — 1, £€G7Y(0, 1), does not necessarily entail Fr(a,x+b,) — G(x),
x € R. Put, for example, F’=W;,, a,=n"' and b,=—n""%. Then, for
©<0, na, f(a.x+b,)=1=w,(x) if n is large, but n(1—F(a,x+b,)=—=
+n1/2.

While in [3] we proved that (1.6) holds under fairly general von
Mises type conditions on F, we will establish in the present paper
bounds for the rates of uniform convergence of the largest order sta-
tistic as well as for the joint distribution of extremes which will in
particular reveal the influence of the remainder term h, in the repre-
sentation a,f(@,x+b,)=wu(x)[1+h,(x)] (see formula (1.11)) on the rate
of uniform convergence of extreme order statistics.

Imposing further conditions on F, we can specify this influence of
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h, to be the upper bound <S h?,dG)l/2 and <S h,’.d(g‘.kl Gm>)m in the multi-

variate case, where G(,/R denotes the i-th marginal distribution of
G®|R* which is the (weak) limit of P™x ((@;'(Zn-ir1.n—bn))i=1) (see [24]
and [25]).

In particular we have that

(1.18)  gw(®):=g(@)[—log (GE)I*/(k—1)!, x€G7'(0,1),

is the Lebesgue density of the probability measure G, with df
(1.19) Gu(x) : =G(x) ,:};:1) [—log (G(x)))¥i!, ®eG'(0,1),
where G € {Gy, G;, Gy} and G/R* has Lebesgue density

(1:20) O =g TL @), m>a> >,

where g € {91, 92, g5}

Results on the rate of uniform convergence of extremes were de-
rived, as far as we know, only in several earlier mentioned articles by
Reiss [18], [19] and, together with Kohne, [11], where bounds for the
uniform distance for the special cases of the uniform and the exponen-
tial distribution were established. In particular in formula (4.4) in Reiss
[19] he indicates how the probability transformation theorem can be
applied to derive rates of uniform convergence of extremes for general
distributions which will be basic also for our results.

2. Main results

At first we state some auxiliary results.

LEMMA 2.1. Let P, P, be probability measures on a measurable space
(X, A) which are dominated by a o-finite measure p. Denote by f, and
f: the respective p-densities of P, and P,. Then the following inequality
holds, where M:={f;>0}.
1/2
sup |P(A)—PiA)|s {1— Py exp (| log (fufad PPN DI
PrROOF. From [19] we know (see also Section 2 in [13]) that

sup |P(A)-PiA)s (1| (ifydp) |

={1—({ crymar) "
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= [1—(], Gtroear,) 1"
= [t—paany(|, (Aarynapypon) |
< 1Pty exo § log (fifadPipon H)

by Jensen’s inequality. For a further investigation of the uniform
distance and the Kullback-Leibler mean information we refer to Ikeda
[8] (see also Ikeda [9] for further results).

The next auxiliary result which is basic, is suggested by a result
by Ikeda and Matsunawa [10]. It follows from Theorem 2.6 and Theo-
rem 3.2 by Reiss [19].

LEMMA 2.2. There exists a universal comstant C>0 such that for
any ne N and ke {1,---,n}

sup |Q{(n(Z,-i410—1))k=1 € BY —GSAB)|=Ck/n ,
Be B
where Q denotes the uniform distribution on (0, 1).

We now turn to the first main result of this chapter. First we
consider the case of the largest order statistic. Throughout the rest
of this section we assume that F' is absolutely continuous with density
f, by C we denote the universal constant occuring in Lemma 2.2 and
by E the standard exponential distribution, i.e. we put E=W,.

THEOREM 2.3. Let Ge {Gy, Gy, Gy} and a,>0, b, e R, ne N. Then
the following bound holds

Sup | P*{az"(Zn:n—b,) € B} —G(B)|
€
=(C+2)/n+ {1—G(M,)? exp (— B,/G(M,))}”

where

24) B,= S na, f(a,x+b,)w(x)—1—log {na,f(a.x+b,)w(x)}G(dx)

My,

+SM 1+log (G@)Gds)  if Ge (G, Gy},

(2.5) B,= SM na,f(a,x4b,)w(x)—1—log {na,f(a.x+b,)/w(x)}G(dx)
+SM 1+log (G(z)+n(1—F(,)Gdz)  if G=G,

and
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(2.6) M,={xecR: f(a,x+b,)>0}.

If G(M,)=1, the above result takes the following simpler form which
1s immediate from integration by parts and the inequality 1—exp ()=
—z, v €R.

COROLLARY 2.7. Let G € {G, Gy, G5}, a,>0and b,e R, ne N. Then,
if G(M,)=1 we have the bound

SU | P*(0:(Z,,—b) € B}~ G(B)<(C+2)n+ By’

€

where

2.8) BFS N0, f (@5 +b,)[w(%) —1—10g {81, f (@ by) ()} G(de)
if Ge{Gy, Gy}

and

29) B,= S 10, f (@, +b,)/w(x)—1—log {na,f(axc+b,) w(x)} G(dr)
+n(1-F(@,) if G=G,.
Before we discuss these results we prove Theorem 2.3.

PROOF. The probability transformation theorem implies P"x Z,.,=
Q" x (F~(Z,,)) where F~'(t):=inf{x € R: F(z)=t}, te(0,1], (inf¢:=o00)
denotes the generalized inverse of F. Thus, by Lemma 2.2

(2.10) gu%an{a;l(Zn:n_bn) € B} —E{a;'(F-'1—n"'r,)—b,) € B}|<C/n
€
where ﬁ"‘(:c):=F“(x)1(o,l,(x) and m(x)=2z, x € R.
Furthermore, for any B e @B with E=W,

(2.11) |E{a;'(F-'1—n"'r)—b,) € B}
—E{a;(F~'1—n"'7)—b,) € B, 0<m,<n}|<exp(—n) .

Moreover, the measure p/3, defined by
(2.12) #(B):=E{a;'(F'(1—n"'r)—b,) € B, 0<n,<n}
has the following Lebesgue density for x ¢ R
(2.13) h(z):=exp {—n(1—F(a,x+b,))}na,f(a,x+b,) .

Hence, #:=p/(1—exp(—mn)) is a probability measure on the real
line with density ﬁ:=h/(1—exp(—n)) and thus, by Lemma 2.1,

(2.14) Sup |#(B)—G(B)|
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M,

=(1-6ny exp || 102 (io)icican)})”

(1-6at): exp 11, 1oz (hig)~log (1—exp (~mpaG/G(L)}| |
< (1—G(M,,)2 exp {SM —n(l— F(a,5+b,))+log (na,f(a,a+b,))

—log (G@(=)G(d)/GAL) )

Furthermore, by Fubini’s theorem
@15) | 1-Faatb)edn={ | fe)yeaa)
=, o, faytbyiyGn)
=a, " r@y+v) | o)y, @)ady .

In the case G, the last term on the right-hand side above is less
than or equal to

@16)  a| f@y+bIGWMY=a,|, F@y+b)w@)Gdy) .

In the case G, it is bounded above by

@17  a| feytb)Gdy=a. |, fay+b)wwGid)

whereas in the case G, we get the estimate

@18) @ f@uy+b)w)Gdn)+a, | F@y+b)GMy
=a. |, flay+b)how)Gdy)+ M) A—F(G.)
=\, af@y+b)he)+1—-FE)G)

Now Theorem 2.3 follows from (2.10), (2.11), (2.14)-(2.18) and the
fact that sup |@E(B)— p(B)|<exp (—n).
Bea

Remarks 2.19. If Fe 9(G,) then o(F)=F"1)<oco and hence, b,
will usually be chosen equal to w(F'). Thus, by doing so, the term
1—-F(b,) in (2.9) vanishes yielding the same bound as (2.8).

Moreover, if F' satisfies one of the von Mises type conditions stated
in [3], the results of that paper imply M,— G0, 1), and hence,

(2.20) SM 1+log (G(x))G(dx) — 1+ S log (G(x))g9(x)dx=0

neN
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which is immediate from integration by parts.
Furthermore, from the inequality x—1—log (x)=2x—1+log (z™ )<
2—142'—1=(x—1)}/x, £>0, we obtain

(2.21) SK N f (% +by)w(x) —1—log {na.f(a.x+b,)w(x)} G(dz)
= SN {na.f(anx+by)/w(x) —1F/{na.f(@.x+b.)/w(x)} G(dz)

but the first bound proves to be more practicable in some cases.

Moreover, one can show that the preceding bounds are still valid
if instead of the uniform distance the Hellinger distance is considered
(see [20]).

Example 2.22. Let P=Ny,;. Then, with b,, ne N, chosen as in
(1.13)

sup Ilv(g,l) {bn(Zn:n—bn) € B} _GS(B)I
Be 3B

<O(n~)+{|_nbie(bi'-+b,) exp (2)—1~log (b 'g(b;'z-+b,)
- exp (@)} Gid)]

=0(n™)+ {SR exp (—b;%*/z)—1+b;2x2/2G3(dx)} v

) 1/2

—O(m~Y)+ {S exp (—0b5'2*/2)b; 2*/3G (da)|
=0(n"'+b;")=0(1/log (n))
which is the optimal rate (see [2], p. 374 and [6]).

We conclude the discussion of Theorem 2.3 by remarking that it
can be shown by examples that neither the term n(1—F'(b,)) in formula

(2.5) nor the term SM 1+log (G(x))G(dx) in (2.4) and (2.5) can be dispens-

ed with. They may nbe regarded as measures of the differences of the
supports of F'(a,x+b,) and G.

Now, one might hope that those techniques which led to Theorem
2.3 can also be applied to obtain similar results on the rate of conver-
gence of the k-th extreme or of the joint distribution of the k largest
order statistics. This will be done in the following.

However, we will only investigate the joint distribution of equally
standardized extremes which yields of course a bound for the rate of
convergence of the distribution of the k-th largest order statistic. But,
in view of Theorem 3.2 in Reiss [19], one might suppose that these
rates are close to each other anyway.
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The following auxiliary result is a multivariate analogue to Theo-
rem 2.3.

LEMMA 2.23. For any neN, ke {l,---,n} and a,>0, b, e R we
have

sup |P*{(a;'(Zn-t41:a—bn))i=1 € B} —G¥(B)|
Be $*

<(C+2)k/n+ <1—G""(M,E’°))2 exp {SM;

, —(1—F(a,z.+b,))
+31 log <naf (@, +b)w()

—log (G(x))GPEIGOM®)] )

where M® = {x eR*: > >x,, TkT f(a,,x¢+b,,)>0} and G € {G,, G,, Gs}.
i=1

PrROOF. We utilize again those ideas which led to Theorem 2.3.
2.2 implies with F~'(x)=F"'(x)1e,(x), = € R,

@20)  sup |PH(0HZs-csin—b)s € B)
—E"{(a;‘(ﬁ"‘(l—n“ é n',) —b))i ¢ BI )gczc/n ,

where again E denotes the standard exponential distribution and =z,(x)
=g, for x=(x,---,2,) € R, i=1,---, n. Furthermore,

B{(on(F(1-nn 2ym) b)) <5

—E"{<a;‘<F“(1—n“é}ln,)—b,, > ¢B, 0<1r1<j§}_17rj<n}‘

k
i=1

(2.25) sup
Be 3*

<exp(—mn) ki nfil .
i=0
This follows easily from the fact that E* (— 153 n,)=G,,1,<k,.
=1
Moreover, the measure p*/3*, defined by
(2.26) ym(B):=Ek{(a;l<F-l<1—n~1jz':n,>—b,,)>: ¢ B, 0<7Z'1<?k‘_,77.‘,<n
=1 =1 =1

has Lebesgue density for x ¢ R*

(2.27) h®(x):=exp { —n(1—F(a,x.+b,))} ;[:]; na,f(ax;+b,)

. 1(ye R":y,>-~->1/,,)(x) .
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Hence, Lemma 2.1 yields

sup |x*(B)—G*(B)|
Be @*

1/2

=(1-6P@y exp [, log (W1g*)6>/GP M) )

= <1—G<k’(M,$"))2 exp { S p» — M1 —F(a,w;+b,))

+ 31 10g (10, f(@,,-+b)) —log (FPNG2(E0/GO M) )

which together with (1.20) yields the assertion.
In the case that G®(M,*)=1, Lemma 2.23 reduces to the following
result which fits completely with Corollary 2.7 by putting k=1.

COROLLARY 2.28. Assume that G®*(M®)=1 where G € {G,, Gy, Gs}.
Then we have for any ne N and ke {1,---,n}, a,>0, b, €R

BSU_I% | P*{(@7"(Zn-t+1:0—bn))ics € B} —G¥(B)|<(C+2)k/n+(BP)?
€ k
where

@20)  BP:={ [na.f(aw+b)/wa)—1-log {na.f(a,o+b)w@)}]

Soo@ds  if Ge(Gy G
and
@80)  BY:={ ma.f(am+b)/w@) —1-log (na.f(a,o-+b)w@)}]

S go@dz+n(l—FG)  if G=G,.

Remarks 2.31. As mentioned in Remark 2.19, the term 1—F(b,)
in formula (2.30) will usually be equal to zero yielding the same bound

B® for any of the three cases Gy, Gs, G.

Furthermore, we see that again the rate at which na,f(a,x+b,)/
w(x) tends to one is crucial for the rate of convergence at which even
the joint distribution of extremes tends to G*. Roughly speaking,

this rate is of order 0<{S [na, f(a,,a:+b,,)/w(m)—1]2é gm(x)dx} uz).

PROOF OF COROLLARY 2.28. The equality G* xr,=Gy, 1=<i=k,
together with integration by parts yields (see formula (1.19)).

|y 1~ Fl@:1-+b)G(d)
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=S 1— F (a2 +b,)Ge(dz)
=a, | f@a+b)Gw@)s
=a, | £la,2+5)G(@) 'S [~log (GE@)]/ilds .
Thus, if G € {Gy, Gy}
1—exp (|, —n(1—F(@a+b))+ 3} log (nanf @+ b)uw)y
—log (G(@)G*(dx)]
< ma.f@a+b)0() - 119@) 5 [~ log (Gt
—log (na.f(@a+b)w(®)>9() 3 [—log (G(&))ildx
+{ 9(2) 5 1~10g (Gt +10g (Gla))gan(ads
Now, Sg(x)'g [—log (G(x))]‘/i!dx:lg S do(@)dz=Fk (see formula (1.18))

and, by integration by parts, Slog (G(x))gu(x)dx= —S [9(x)/G(2)]G > (x)dx

=—S§‘,g(,,(x)dx=—k (see formula (1.19)). Thus, Lemma 2.23 yields
i=1

the first part of Corollary 2.28, i.e. formula (2.29).
If G=G; then

SW 1— F(a,@:+b,)Gs"(dx)
=a, | Fl@a+8)6@) 5 [~log (Gi@)]/ilda
+a, S: flax+b)dx .

Since a, Sm f(ax+b,)dx=1—F(b,), the assertion of Corollary 2.28 is
0

now completed by arguments which are analogue to the preceding ones.

By means of Corollary 2.28 the following results can easily be de-
rived. First we deal with the standard Cauchy distribution C.

Ezxample 2.32. We have uniformly for any ne N and ke {l,---, n}
sup |C™{((n/N)Z,-111.)5=: € BY —GAB)|=O(k**n) .
Be B

Proor. We have
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B®= Sw {log (1 +a*n~*x D +[14+a'n"27 ' —1}G, ; on(2)2~d
0
=nr'n7? ki}l Sm x**? exp (—x)dx/i! =n*n? kz_‘: (t+1)(2+2).
i=0 JO t=0
Thus, the assertion is now immediate from Corollary 2.28.

According to the long history of the investigation of extremes from
a normal population, our next example may be regarded as a main
result.

Example 2.33. For the normal distribution we have with b, chosen
as in (1.13)

sup llv(g,x) {((bn(Z —irtin—bn))io1 € B} _ng)(B)I
Be B

=0< {é} S w‘gs,(,)(x)dx} 1/z> / log (n)

=0(k"* log® (k+1)/log (n)) .

Proor. We have in analogy to the proof of Example 2.22
BO<biy8 | a4 31 g ole)do=b78 | #/6s.o(@) exp (—2)ds -

Moreover, since 0< G, <1,
S 2'Gs, (%) exp (—x)dx < So_w 2*'Gs, () exp (—x)dx+4! .
Now, integration by parts and substitution y=—log () yields
So_m 2'Gy, (%) exp (—x)dx
=["_exp (—2) (406 ola) + 29, o)}
=< So_m exp (—x)x'gy o (®)de = S:o log* () exp (—x)x*dx/(k—1)!
<Lklog*(k+1), L being a generic constant .

The assertion is now immediate from Corollary 2.28.

Imposing further conditions on F we will study in the following
by means of Lemma 2.23 the influence of & in the representation f=
W[l+h] on the rate at which the joint distribution of the k largest
order statistics under P* reaches its limit in more detail.

Therefore, define for ¢>—1 and L=0 a neighborhood U, (W) of
I}V(n) by
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(2.34) U, . (We):={P: P has Lebesgue density f=wu[l+],
where c<h<L}.

Notice that we can suppose h=0 on {w,=0}.
Now, by means of Lemma 2.23 we can prove the following result.

THEOREM 2.35. For any ¢>—1 and L=0 there exist positive con-
stants D,, D, such that for any KcU, (W) and ke {1,---,n}, ne N,
the following bound holds.

sup sup |P"{(Z,-ii1.n)i=1 € B} —G®(B)|
Pe K Be B*

=Dk/n+ D, gup {g hz(m)(é Gm) ( dm)} 12

{w(n)>0}
where G € {Gy, Gy, G5} s the (weak) limit of W, n € N.

Putting h=0 in the preceding result we obtain the following con-
sequence for gPd’s, thus getting back Lemma 2.2.

COROLLARY 2.36. There exists a constant D>0 such that for any
shifted gPd W, with corresponding limiting distribution G

sup |Way{(Za-is10)i-1 € B} —G®(B)|< Dk/n .
Be B*

Example 2.837. For the usual Pareto distribution W,, we get uni-
formly for all >0

Sup ”47{:,, {(n_l/nZn—t+lm)?=l € B} —Gg‘i(B)léDk/’n .
Be$*

Exzample 2.38. In the case of the standard exponential distribution
we obtain

sup |E™{(Z,-i11..—log (n))i-, € B} —G{(B)|< Dk/n .
Be B®

PrOOF OF THEOREM 2.35. Choose P e U, (Wy). Then,

(2.39) 1-GP(MP)=1-G®{x € (GT(0, 1))*: weuw(®:)>0}
- 1 —G(k) {w € G_I(O, 1) : W(n)(x) > 0}

—exp (—n) ;0 w3l =O(kY )
which is trivial. Moreover, denoting the df of P by F we have

@40) |, 1-Fa)eo@x)=|  1-F@)Guwds)

O]

S(w( 0 F( WG w(®)dy —Gu {we,y <0} .
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Furthermore, integration by parts yields
(2.41) | o 10E (G@)G(dx)
= o 108 (GG d)

k
] by gw(x)da

k-1
=mnexp (—n) 120 nifil— S‘w o
= (y>0) iz

where g, g, denote the densities of G and G,.
Finally, we can estimate by means of (2.39) for i=1,.--,k

242) |, 108 {/(e)/we(@)} G*(dx)
= Sw) log {14 (2,)} G*(dx)
=[_, Jog {(L+h(e) Geo(de) — Sww)c log {1+ h(x)} G*(dx)
= S(w(n)>o) log {1+A(2)}Ge(dz)—D exp (—n) kz:) il

since log (1+A)<log (1+ L), where D denotes a generic constant.

Now, putting together (2.39)-(2.42) we obtain from Lemma 2.23
the following bound for P e U, ,(W..)

S, | P™{(Zn-i+1:0)i=1 € B} —G®(B)|
s[1-erareyexn (| —nf@)Guww)+ 3 log (1+hw)
- 9@)dy— Dk exp (=) 5w/t > (G | " +(C+ 2kt
=[1-e»aeyexp (|

— Dk exp (—n) "z nf/u> /G""(M,S"))} ] " (C+2)kn

(W(n)>0)

_,, (08 {1-+R@)} —h(¥) 3 9o (w)dy

W(n)

< [I—G""(M,S’”)2 exp {—<D S( ] k(y) > go(y)dy
w(ny>0 i=

+Dhkexp (—m) 3] n"/i!> /G""(M,E">)}:|U2+(C+ 2)k/n

k k
since nGu,=2) goo/(W W)= goy/Wer, if Wiy >0. Hence, the assertion is
i=1 i=1

immediate from (2.39) and elementary computations.
The preceding considerations can be specified as follows. Define
for ¢>—1 and L=0 a neighborhood V, (W) of a gPd W by
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(2.43) V.. (W):={P: P has Lebesgue density f=wy[1+A],
where ¢c<h<L},

where again w,, denotes the density of W=W,. The following result
is now immediate from Theorem 2.35.

PROPOSITION 2.44. For any c¢>—1, L=0 there exist posilive con-
stants D, and D, such that for any KcCV, (W)

(2.45) Sup ;ggkIP"{(n“’“Zn_mm)LleB}—Gﬁf‘Z(B)I

= k 1/2
<D/k/n+ D, sup {S L h(n‘/"x)2<2 G:,a,u))(df”)}
PeK \Jn7l= =1
if W:m,a ’
(2.46) sup sup |P*{(n"*Z,_.,..)i-, € B} —G$UAB)|
Pe K Be B¢
0 k 1/2
<Din+D, sup (' hena(36,00)(@0)]
PeK \J-nl/= i=1
iwf W=W,.,

(2.47)  sup sup |P*{(Z,-is1.a—log (n))io, € B} —G{(B)|
Pe K Be &*

n

0

13 1/2
< Dik/n+D, sup {S h(x +log (n))2<2 Gs,(t))(dx)}
PeK —log(n) i=1
of W=W;.

Consequently, imposing further growth-conditions on k, we are led
to the following result.

COROLLARY 2.48. For any c¢>—1 and 8, Ly, L,>0 there exist posi-
tive constants D, and D, such that the following holds.

(2.49) Put Vg s (Weo:i={PeV., (W) [h(z)|SLa) .

Then, sup sup |P*{(n™""Z,—is1.0)i-1 € B} —G{UB)|
Pe¢ Vc,Ll.a.Lg(Wl. «) Be BF
< Dk/n+ Dy(k/n)k'* .
(2.50) Put VC,LI,,,LZ(Wz,,,):: {PeV., (W,.): |h(x)| S L, |} .
Then, sup sup |PM{(nY"Z,_i11.2)5-1 € B} —GSA(B)|
PE I/c,Lbﬂ.Lz(m, a) B € Qk
< Dik/n+ Dy(k[n)k"* .
@51) Put  Vespan(Wo):={Pe Vs (W): [Ma)|S Ly exp (—ox)} .
Then, up sup |P*{(Z,_i.1..—log (n))i-, € B} —G{°(B)|

S
PeV, 1,3 1,(Ws) Be B*
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< Dik/n+Dy(k/nyk" .

Notice that the upper bound in the preceding result tends to zero
as n increases iff

(2.52) k= k(n)=o(n#/®+v)

and examples show that this condition is sharp. Moreover, (2.50) yields
essentially the result on uniform convergence of extremes by Weiss [23].

Proor oF COROLLARY 2.48. We have with D denoting a generic
constant

o k

1/2
e h(n'*x)? E gl,,,(,)(x)dx}

ey

sup {
PE Vc, L, s, Lz(Wl. a)

<Dn™? {

n

M=
8

o

i 12
x "gx,a,m(x)dx}

o
l
-

oo

4+ exp (—w)da)(i— 1)!} "

.
Il
-

Il
S
M=

=)

M=
~

I

-

where F(t):=S: x*~'exp (—x)dxz, t>0, denotes the Gamma-function.

23+ i)/r(i)} v

.
Il
-

In an analoguous way one shows that this bound is also valid in
the other cases. Finally, observe that

izk; [(23+i)/T(G)<D 3 < D+
=1 i=1

which completes the proof.
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