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Summary

An urn contains balls of s different colors. The problem of the
reinforcement of a specified color and random depletion of balls has been
considered by Bernard (1977, Bull. Math. Biol., 39, 463-470) and Shenton
(1981, Bull. Math. Biol., 43, 327-340), (1983, Bull. Math. Biol., 45, 1-9).
Here we consider a special relation between a reinforcement and de-
pletion, leading to a hypergeometric distribution.

1. Introduction

An urn contains balls of two colors, red (¢) and white (v); at the
first stage (or cycle) r red balls and w white balls are added, and a
random mixture of r4w balls is removed. The process is repeated
through m cycles. What is the distribution of red and white balls?
Bernard [1] studied this model paying particular attention to means
and variances when radioiodine is injected into animals. If the rein-
forcement of red balls in the urn at each cycle is large it seems likely
that the variance of red balls at a subsequent stage will be large (small)
if the number randomly removed at each stage is large (small).

The model has been generalized (Shenton, [4], [5]) so that balls of
s colors can be considered. At each cycle each color receives a rein-
forcement (possibly zero) and any number of balls can be randomly re-
moved (corresponding to a depletion). This includes the case when the
depletion equals the reinforcement. Reinforcements for different cycles
need not be equal. The sum of depletions can not exceed the number
of balls available at any stage.
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The factorial moment generating function (fmgf) in the general
case involves the multivariate finite difference calculus and depends on
ms+m-+s parameters when there are m cycles. It is, except in trivial
cases, impossible to develop the formulas mathematically, although low
order factorial moments can be constructed; for example, the mean
value of the number of balls of a specified color involves m terms, each
of which has a product structure, altogether entailing m(m+1)/2 coeffi-
cients.

Our objective here then is to describe a model for balls of two
colors for which the exact probability generating function (pgf) for one
color can be found in closed form. The pgf is of hypergeometric form.
This special model is derived from the general case by setting up a
dependency between the reinforcements and depletions, one of which
is assumed to be functionally defined. A certain property of contiguity
is essential.

We are studying an application concerning the uptake of radio-
iodine by human subjects at different ages. Here the reinforcements
and depletions over as many as 10950 cycles (30 years at 1 cycle a day)
are of the order of 10“, so that special care is needed in any computer
implementation. As far as the distributions of the number of balls of
a particular color are concerned there is special interest in the situa-
tion at the biological half-life of an element.

2. General theory for the three color urn

We turn to a brief description of the formulas for a three color
urn scheme. It will be a slightly more detailed account than that given
in Shenton [5] in the appendix. It is a simple matter to deduce the
general formula for the mgf from that given for three colors.

For our purpose it is sufficient to consider a three color urn model
with the following scheme, for j=1,2,--.,m (m=1).

Balls
Colors Red White Blue
Initial numbers g ) B (6+w+8=T)
Cycle Increments Depletion Totals
J 74 wy b, d; Ty=r;+w;+b;,—d,
fmgf label ay a: (m=1)

Notations: (a) Cumulative sums (=1, 2,---)

ri=o+rit-co4r,, wisotwt- 4w, bF=f+b+---by,
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df=d+dy+---+d;, T}=Ty+T,+---+T;; and
(r¥=o, wf¥=o, bf=8, df=0, T*=Ty=0+w+p).

(b) Total number of balls in the urn at the completion of the j-th
cycle (i.e. df balls have been removed)

TJ*= é ('rk+wk+bk'—dk) .

(¢) ;. is the Kronecker delta function (3,,=1, 3,,=0, j#k).
(d) z=P=x@—1)---(x—7+1).

From Shenton ([5], Appendix) the bivariate factorial moment gen-
erating function (fmgf) for the number of red balls (N[™) and white
balls (N5™) at the end of the m-th cycle, is

( 1 ) Fm(alv aZ)'—“cmL(El! EZv ) Em: oy, aZ) ﬁ x.(/dj) ’
j=1

where L(-) is a function of the finite difference incremental operators
E;, E;,-- -, namely

(2) L(')=jTM_T (01 +Ep Ep_y - - By)7n(ay+ By gy - - - By)esta,

and z;=bF—d}, after the application of the operator. (The operator
E. only operates on the component in the product in (1) with subscript
k. In the univariate case Ef(x)=f(x+1)=(1+4)f(x), and contrary to
usage in the calculus it is conventional to use differences of numbers;
for example, 470° (for positive integers r, s) refers to the differences
of zero. In the multivariate case 4:74;f(x, y) is unambiguous, but when
numbers only are involved we resort to a notation 474;0:0% in which
each operator is completed before the subscripts are removed.) The
constant ¢, in (1) is given by

(3) 1en=(T*+d) (T +dy) % - -(T*+d,)%m .
Take the simple case (Shenton [5], p. 8) arranged as follows;

=8 w=2 p=1

7'1=2 ’w1=0 b1=1 d1=1
’rz=1 ’w2=0 bz=2 d2=1

With «;, @, as parameters corresponding to red and white balls respec-
tively,

Fy(ay, ay) =cy(a; + Ey) (a, + EE ) (0, + E,E )20 (4 — 1)5°
where ¢,E,(E,E,)(E;E,)*2,3,=1, or ¢,=1/99. For the probability generat-
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ing function (pgf) define t,=1+a;, t;=1+a;. Then the pgf is
(208 + 1263, + 61582 -+ 2285, + 3263¢2+ 25¢4£2)/99

where the first two terms, for example, correspond to configurations
(6,0, 4), and (6, 1, 3) respectively.

From (1) the first and second order factorial moments of say the
number N/™ of red balls at the end of the m-th cycle are

(4) E(N[m]) Z (,rj+aajl) T[ <T*+d >

and

(5) E(]\]T[mJ(Nrcm]__]_))=i(rr,—i-aaﬂ)(’r,+m3,l 1)T[<1+f1 )-1

>_l+2 P (”'j'f‘aajl)(’rk‘l‘oakl)

< 1sk<jsm
(o ) () ()
U< 7)1 () ()
respectively.

Also, for the expectation of a cross product, we have

(6)  EWNINE)= 3 (r+od,)(w,+ad,) [T (1+ @)

T*
bt M AT

Tr—1) e\ ' Tx
d -1
d >—1 k—1< d )—l
14— % 14 %
X< tpor) IL\1rps

m -1
+ 3 (r;4ad;)(w;twdy) [T <1+ d, >
1Sj=ks=m .

d -1
x(1+pig)
Variances and covariances follow from (4), (5) and (6) through the
known transformation formulae.

In the general case the structure of the pgf for a single color
makes mathematical simplification almost impossible. However the fac-
torial moments can be converted to central moments and a four-moment
approximating distribution can be fitted; the two main possibilities here
are the Pearson system of distributions, and Johnson’s translational sys-
tem (Johnson and Kotz [2]). In both cases percentage points are readily
approximated or evaluated exactly.
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3. A two-color urn model

The urn initially has ¢ red balls and w white balls. At the j-th
cycle, only the white balls receive an increment w, (the number of red
balls is not increased) and d, balls are randomly removed. Then from
(4) the factorial moments of the number of red balls (see note on this
choice of color in Appendix A) at the m-th cycle are given by:

(7) w=T1 0= 2) fi <1+d,/<a+w+é_,‘l (w,,—dk)))“ .

If the reinforcement at each cycle equals the depletion, and is in-
dependent of the cycle, (w,=w, j=1, 2,---, m), the factorial moments
of the number of red balls at the m-th cycle are given by

" _r—l w -m
(8) p=T] (o= D(1+——2—) .

From (8) we are able to find (for r=1) (a) how many cycles are
needed to reach the half-life of the initial number of red balls and (b)
how many cycles are needed to almost completely deplete the mean
number of red balls in the urn. In particular, we have for (a), sett-
ing a=w/(c+wv), 0/2=0(1+a)™, so that the half-life cycle number is
approximately In 2/In (1+e), and depends only on a.

For (b), approximate complete depletion will occur when

(9) <1 or m>Ing/ln(1+a).

The above remarks can find applications in problems concerning the up-
take of radioiodine by humans—here the red ball numbers can be large.
So in the present simple model, suppose that the urn contain 10" red
balls initially. Then Table 1 gives illustrations of the cycles needed to
reach half-life and complete depletion of the red balls for varying «a
and w. (w=0). The results are approximations only, being based on
the mean number of red balls.

It will be seen that if the white ball reinforcement exceed the
number of red balls (« large), then half-life scarcely exists; on the
other hand if the number of red balls exceeds the white ball reinforce-
ment (a small) then the half-life is increased and occurs after many
cycles.
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Table 1. Half-life and depletion of red balls

a cycles for half-life cycles for pfnl<1 w
100000 <1 3 1020
10000 <1 4 10t
1000 <1 5 1018
100 <1 8 1017
10 <1 15 10te
1 1 50 1015
0.1 8 363 101
0.01 70 3472 1018

An idea of the distribution of the red balls (mean, variance, skewness,
and kurtosis) is given in Table 2.

Table 2. Distribution of number of red balls in urn at each cycle

a cycle m 2 vB1 B
10,000 2 9.998.108 9.998-.108 0 3.00
3 9.997.102 9.997-102 0.03 3.00

1,000 2 9.98.108 9.98-108 0 3.00
3 9.97.10% 9.97-10% 0.001 3.00

4 9.96.102 9.96-102 0.032 3.00

100 2 9.8.101 9.8.10%° 0 3.00
3 9.7-108 9.7.108 0 3.00

4 9.6-108 9.6.108 0 3.00

5 9.5.10¢ 9.5.10¢ 0 3.00

6 9.4.102 9.4.102 0.03 3.00

7 9.3 9.3 0.33 3.11

10 2 8.3.1012 8.1.1012 0 3.00
4 6.8.101° 6.8-101° 0 3.00

6 5.6.108 5.6-108 0 3.00

8 4.7.108 4.7-108 0 3.00

10 3.9.10¢ 3.9.104 0.005 3.00

12 3.2.10% 3.2.102 0.056 3.00

14 2.6 2.6 0.616 3.38

1 5 3.13.10 2.78-1018 0 3.00
10 9.77.101* 9.71.101 0 3.00

15 3.05.101° 3.05-.101° 0 3.00

20 9.54-108 9.54.108 0 3.00

25 2.98.107 2.98.107 0 3.00

30 9.31.10° 9.31-10% 0.001 3.00

35 2.91.10¢ 2.91.10¢ 0.006 3.00

40 9.09-102 9.09.102 0.033 3.00

45 2.84.10 2.84:10 0.188 3.04

49 1.78 1.78 0.750 3.56

0.1 7 5.13.101 8.23.1018 0 7.04
8 4.67.101 9.06-1013 0 3.05

50 8.52.1012 8.12.1012 0 3.04

100 7.26-101° 7.25-1010 0 3.00

150 6.18-108 6.18-108 0 3.00

200 5.27.108 5.27-108 0 3.00

250 4.49.104 4.49.10* 0.005 3.00

300 3.82.102 3.82-102 0.051 3.00

350 3.26 3.26 0.554 3.31

362 1.04 1.04 0.982 3.96

Thus if the white ball reinforcement is large there is a rapid reduction
in the red ball mean, whereas the decrease in red balls is greatly re-
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tained when black and white reinforcements are small compared to the
initial number of red balls. Notice that the actual distribution of red
ball is in general nearly normal with mean practically equal to the
variance.

The case where the reinforcements exceed the depletions and in-
crease with the cycle, is an open problem.

4. A contiguity case

4.1 General considerations

Consider the urn scheme of Section 3. There is contiguity in the
operand (x{*’ z{*’...x¢m) (see Appendix B) if

wj=dj-l+dj (j=27 39"'! m) ’

in which case the fmgf for red balls after m cycles reduces to

(1) Fu@)=taa+EnBar - Eyo+w)® [T (o+w+ 3 d,) "
=2

k=2

where E, operates on w+w,, E; on o+w,+d,+d;+---+d,, j=2,3,---,
m. For the probability generating function (pgf) we have

><d1+«z2+---+am>

(11) Pot)=ca(t+ A)’<w+wl+ j\ﬁ d,

where

@y +dgtesetdy)

cl= <a+a)+'wl+j§_2 d,>

It will be seen that the distribution of red balls in this 2-color contig-
uous urn model depends only on the three parameters

d$=d1+d2+"'+dmy M=a)+w1—d1, H,,,=M+d,’§+a,
so that the pgf becomes
(12) P, (t)=1/HE») (t+ 4y (M+dk) =,

a three parameter (d¥, M, H,) hypergeometric distribution. If R™ is
the random variable, then

(13) Pr (R™=2)= < ; >d:(a—x)(M+d;'kl)(d’f,,+x-a)/H1gd’,“,,)
(x=0,0—1,---, max (0, c—d})).

Notice that the total reinforcement in the m cycles is w,+d,+2(d;+
ds+---+d,_,)+d, which is approximately twice the total depletion d*
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provided w, is not large. Notice also that the probability of zero red
balls at the m-th cycle is zero unless the total depletion (a determinate
value) is at least equal to the initial number of red balls.

The pgf in (12) for a hypergeometric distribution seems to have
been overlooked. Moments, up to the fourth central, are given in
Kendall and Stuart [3].

4.2 Numerical illustration

Let there be 100 red balls initially, and no white balls. For the
depletion assume a linear monotonic increasing form d;=j. Then for
contiguity, the white ball reinforcements must be

w,=25—1, (1=2,3,--)
with w, arbitrary; take it to be 2. Then the pgf after m cycles is
Po()=ca(t+4)"(K,+1)*,  (m=1,2,-..),
where
K,=m(m+1)/2, ' =(Kn+101)%m

Moment parameters (Table 3), using expressions in the Appendix B,
demonstrate the decrease in the mean number of red balls as the cycles
increase and the near-normal form of the distribution, especially at m
=14 which is close to the half-life of the initial number of red balls.

Tabe 3. Moment parameters for the distribution of red balls
(contiguous case)

Cycle Mean Stagda}rd Skewness Kurtosis
(m) deviation - B2
5 87.1 1.25 0.436 3.014
13 52.6 3.47 0.006 2.989
14 49.0 3.59 0.000 2.990
25 23.7 3.72 0.075 2.986
35 13.8 3.21 0.164 3.000
40 11.0 2.95 0.207 3.014
50 7.34 2.51 0.291 3.052
100 1.96 1.37 0.673 3.415

(When m=5, the red balls lie between 100 and 85; similarly
when m =13, the red balls lie between 100 and 9. For m=14
the range is 0 to 100.)

Suppose the depletions for this case are doubled, so that d,=2j
and the reinforcements are w,=4j—2, the initial number being the
same. Then the total reinforcement after m cycle is 2m? and total
depletion m*+m. Thus the flushing-out process is stronger and after
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14 cycles, the four moment parameters are 32.3, 3.85, 0.033, and 2.987;
the general form of the distribution has changed little but the mean
is significantly reduced. Similarly if the depletions are lighter (d,=1,
w,=2) then after 14 cycles, the moment parameters are 87.8, 1.19,
0.480, and 3.037. This suggests that in general, as is intuitively clear,
the stronger the flushing-out the more emphatic the decrease in the
mean number of red balls.

5. Concluding remarks

The hypergeometric model described here serves as an approxima-
tion to the 2-color urn model especially when reinforcements of white
balls are about double the random depletions. It has the advantage
that complicated expressions involving sums of products which appear
in the general case for factorial moments, leading to serious loss of
accuracy when converted to central moments, are avoided.

In the practical application, there is interest in the distribution of
red balls at half-life, that is when the mean is reduced to ¢/2 approxi-
mately. With the contiguous model this occurs when the total deple-
tion at a cycle equals M4+o=w+w,—d,+0¢. From the appendix this
corresponds to p=1/2 and zero skewness; we assume that the deple-
tions are positive integers, and that there is a positive integer solution
to the equation d¥=M+os. We find for the variance at the half-life

= (/4 [(2M+0)/@M+20—1)] ,
or approximately ¢/8 as ¢—oco. Similarly the asymptotic kurtosis is

B:=3[1+(7/6—M)/o+(25/6 —16 M/3+2M?)/o*
+(25/2—25 M+ 46 M3 —4M?)/a%] (6— ).
This expression suggests that the half-life distribution of red balls is

nearly normal N(e/2, ¢/8), provided M is fixed and the initial number
is large.
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Appendix A
The 2-color case of Section 3

Because of the linear relation N/™+N[™=T* between the num-
bers of red and white balls at the m-th cycle one would consider the
fmgf for the color whose reinforcements are of smallest density to
avoid complicated expressions. Compare for example the form of the
fmgf when white balls are considered, namely

F,(0, B):c:,n(j]@l'_l B+E,E;_;-- -Ej)"’f+“‘"/1>x§d1)m§d2)- o e gim)
) (x,=0—d},, j=1,2,---,m)
to that for red balls, namely
Fu(a, 0)=cn(@+EpEp_i+ - B y@yi®»- - -y (y,=wi—dfy).

Appendix B
A hypergeometric-type model and contiguous factorials

The parameters x,, @, -+, %, (see for example, expressions in Ap-
pendix A) that are operated upon by the incremental operator E,, E,,
..., E, are usually non-negative increasing integers. A single factorial
such as

x(x)_:m(x_l)...(x—-s-*—l) (x, S=1, 2)"')

has contiguity because all integers between x and x—s+1 (inclusive)
appear once and once only. Similarly a product of such factors, say

o(x, d)=a{x. . . xlm

where 0< 2, <2, < « - - <%n, Will be called contiguous if it is reducible;
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i.e.
o(x, d)=x '™ <d;; =3 di) .

For example
TP (@, + do) 4P (% + dy + dy) 0 = (2, + dy+ dy) (v, + dy +-dy— 1) - - - (4, — dy +1)

all elements being positive integers.
Now consider the homogeneous incremental operator

E(@, @5y, xm):Exx Ezz' --E

Clearly
[E(ml, Lgye e, xm)]ha;gdl)xgdz). o+ 80m)
= (2, + )9 (2, + h)(d,) oo (Bt R)Om = (2, + h)(d’,“n) .
Thus under the homogeneous operator E(x,, x,,- - -, ¥,,) a contiguous fac-

torial remains contiguous. The corresponding difference operator 4 in
the multivariate case has similar properties to the advancing operator
4 in the univariate case provided we operate on contiguous factorials.
Thus

ah(xlr Loy ey wm)= [E(xlv Lgy** mm)_l]hxgdl)xgda)' ¢ 'x%m)
u h
=33 (~1/( ) B lateoateo- i)
j=
=A"w,$;’3§>=(d,’£:)"”w,§f’5~"‘) .

As for moments of the hypergeometric distribution the first three
are derived easily enough using the algebraic language “ REDUCE”.
The fourth had to be rearranged from a development based on the
moment generating function. For example if X=R™ then

Elexp (X— p)]=(1/H{™) (e*+ de~7y (M+d3)“®
=(1/HE») (B e+ E! de~?y HE™
where
p=(M+o)[(M+o+dY), q=1-p.
The operational component expands in the form
(+aE (¢—pd)+e* E7 (P + 02+ E7H (¢ —P*4)/81+ - - -]

This approach requires the development of an algebra based on ele-
ments such as

(Bt [(q—pdy (@ +P Y@ —p ) TLHED .

r,8,t,--- being non-negative integers.



