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Summary

Information criteria for two-sided uniform ¢-equivalence, which is
a newly introduced strong approximate equivalence of probability dis-
tributions, are proposed. The criteria resort to some modified K-L in-
formations defined on suitable approximate main domains and are pre-
sented in the form of systems with double inequalities. They present
systematic implements to handle many statistical approximation prob-
lems and are useful to evaluate related approximation errors quantita-
tively. Criteria for asymptotic cases are also derived from the presented
inequalities. As applications, necessary and sufficient conditions and
error evaluations are given for approximate and/or asymptotic equiva-
lences of the probability distributions on sampling with and without
replacement from a finite population and on quasi-extreme order statis-
tics from a continuous distribution.

1. Introduction

Let X and Y be random variables defined on a measurable space
(R, B), where R is any abstract space and B stands for a o-field of
subsets of R. Denote the corresponding probability distributions of X
and Y by PZ¥ and P?, respectively. Suppose that we are interested in
some measurable set A ( € B) where it is convenient or natural for us
to consider approximation problems between the probability distribu-
tions. On the set A, let f*>0 and g*>0 be the respective Radon-
Nikodym derivatives of P* and P* with respect to a o-finite measure
¢ defined on the space (R, B). Then, for any measurable set E in the
sub-g-field of B generated by the set A

PX(E)=SE f*dy  and PY(E)=SEg*dp.

Key words: Modified information criteria, K-L information, uniform ¢-equivalence, sam-
pling from finite population, quasi-extreme order statistics.
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In this paper when we use the character A we always consider the
situation that X and Y are absolutely continuous with respect to g
over some broad region containing the set A as its subset. Thus the
set A is not necessarily identical with the whole space R. Further X
and Y may or may not be dominated by p outside A. In practical
situations the set A may be called an approximate main domain or a
domain of our interest in which a domain of attraction exists for an
underlying approximation problem.

In the same set-up as above the following type approximate equiv-
alence of X and Y is of interest: Let ¢ be a small postive non-nega-
tive number and let 4*=4*(X, Y; A) be a certain measure of discrepancy
defined on A between the two probability distributions. The random
variables X and Y are said to be wuniformly ¢-equivalent with respect
to 3* in the sense of type (B), and the equivalent notion is denoted as

(1.1) XLy, (B,

if the following conditions are satisfied: (i) d*(X, Y; A)<e and (ii) there
exists a non-negative function ¢(u; 6*) of u (>0) such that

1.2) DX, Y; B)=EU%IP"(E)—P”(E)I§¢(E; %),

where ¢(u; 3*)—0 as u—0. To the above ¢-equivalence Matsunawa [5]
gave some criteria based on K-L information and on related measures
of discrepancy restricted over the measurable subset A in B, as d*.
However, the results were not necessarily satisfactory, because those
were derived from some double inequalities based on a modified affinity
and so the lower and upper bounds of D(X;Y; B) did not have the
same order of magnitude. In this paper several improved lower and
upper bounds of almost the same order of magnitude are given in the
following section without resorting to the affinity. Those bounds have
another important characteristic which contains explicity the informa-
tion about the approximate main domain for the relevant approximation
problems. Therefore, they lead us to a two-sided uniform ¢-equivalence
which is an improvement of (1.1). By the bounds the approximation
errors between sampling with and without replacement from a finite
population are investigated in the same section. Asymptotic theory of
two sequences of random variables is discussed in Section 3 where some
modified information criteria are given for the uniform asymptotic equiv-
alence of the sequences in the sense of type (B),. As applications a
few new results on asymptotic distributions of quasi-extreme order sta-
tistics are given.
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2. Criteria for two-sided (B), @-equivalence

Let us begin to define a two-sided ¢-equivalence between two prob-
ability distributions P¥ and PY:

DEFINITION 2.1. Let ¢ be a non-negative small number. The ran-
dom variables X and Y are said to be two-sided uniformly ¢-equivalent
with respect to d* im the sense of type (B), and denoted as

2.1) X~Y  [(B); ¢ 9],

if the following two conditions are satisfied: (i) There exist functions
n(w) and 7(u) such that »(e)<9*(X, Y; A)<7%(¢), where n(w)<7(u) for all
u20. (i) There exist non-negative functions ¢(u; %) and (u; 0*) of u
defined on =0 such that

(2.2) 0=4(x(e); S D(X, ¥; B)=F(i(e); 0%) ,
where ¢(u; 3*)—0 and $(u; *)—0, as u—0.

Remark 2.1. The last inequality of (2.2) is formally equivalent to
(1.1). However, for concrete examples treated in this paper, ¢’s of
(2.2) are constructed more accurately and conveniently than ¢’s given
in Matsunawa [5]. The above definition can be extended by consider-
ing the bounds 0* and 6* such that 5(e)<d*<o*<I*<%(e). We will
say the corresponding equivalence a two-sided uniform g¢-equivalence
with respect to (3*, %), which will be considered later in Corollary 2.1.

Now, as *=0*(X, Y; A) let us consider the following modified quan-
tities of the K-L information number :

23) X, Y; A)=|  f*In(Flg")dp
(2.4) 1Y, X; A= ¢*in (0¥,
(25) XX, Y; A)=| f*lIn f¥lg*ldp
26) IXY, X; A)={ g*Iing¥/f*Idu

and consider the corresponding variation as
@.7) VAX, Y; A= |1F*—g*ldp

If the set A is taken to be the whole space R, we shall delete all
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asterisks from the above quantities.
We can state the following fundamental inequalities whose proofs
will be postponed until some preparatory lemmas are established.

THEOREM 2.1. Let A be an approximate main domain. Then the
following inequalities hold :

(2.8) D(X,Y; B)zV*[2+|P*(A)—P*(A)|2 (20),
(2.9) D(X, Y; B)SV*2+1—{P*(A)+P*(A)}/2,
where

—-I*X,Y; A), —I*Y, X; A),

2l(a*)-INX, Y; AY)—(P*(A)—P*(4)) ,
—2a7)-IXX, Y; A")+(P*(A)—P*(4)) ,
V*=max{ —2(b*)-I*¥, X; A*)—(P*(A)—P*(4)) ,

2Ub7)-I*Y, X; A)+(P*(A)—P*(4)) ,

Ua) - IXX,Y; A), Ub)-IXNY, X; A),

Q@) %X, Y; A),  UO)II*Y, X; )]

2u(ct)-IXX, Y; A*)—(P*(A)—P*(4)) ,
—2u(c) - I*X, Y; A")+(P*(A)—P*(4)),
—2u(d*)-IXY, X; A*)—(P*(A)—P*(4)),

2u(d™)-I¥Y, X; A7) +(PX(A)—P*(A), [’

w(e)| XX, Y; A)|, u@)|I*Y, X; )|,

[u(e)- LX(X, Y; A), w(d)X(Y, X; A)]

At={z; f¥(@)29%@®), v c A}, A =A-A",
a=inf(¢*/f*),  o*=inf(¢*/f*),  a~=inf(¢*//*),
b=inf(f*/g*),  b*=inf(f*/g*), b =inf(f¥/g"),

o=sup (g*/f*), c+=SEP @*/f*, ¢ =sup (g*/f*)

V*=min{

d=s1:p (f*/g*),  d*=sup(f *g%),  d7=sup (f*/g%),
and for t>0

10tl/3(1 + t”s)(l +t34 tz/a)
2.10 = ’
( ) l( ) 3+ 68t1/3+98t2/a+68t+3t‘/3
2.11 )= (L4814 £8 - £2/3)(1 4 8E"/2 + %) .
( ) u( ) 11 _|__ 38t!/3+ 11t2/3

Remark 2.2. In the above theorem the quantities a, a*, ¢~ and
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so on are tacitly assumed to exist finitely, otherwise the bounds (2.8)
and (2.9) have no practical meaning. The second terms in those bounds
can be regarded as error estimations on the probability measures es-
caped from the approximate main domain A. The lower and upper
bounds are almost the same order of magnitude in V*, which results
from the estimation due to the inequalities in the following lemma.

LEMMA 2.1. For any t>0,
(2.12) I®)|Int|=|t—1|=u@)|In t],

where (t) and u(t) are the functions defined respectively by (2.10) and
(2.11) and both of them are monotone increasing in t. The equality
signs in (2.12) hold if and only if t=1.

PrOOF. Instead of (2.12) we shall show the inequality

(2.13) 30y(y+1)° |
3y*+68y*+98y*+ 68y +3

3(y+1)(*+8y+1)
<l|ly—1|< 1 , 0),
sly-1|= 1157+ 38y 1+ 11 [In y| (¥>0)

Iny|

from which we can get desired inequality (2.12) by transforming y=¢.
Using the following well-known expansion

_1 1+x xt xt, af
=_—1 LAy [ AN AN S P 1
T Ry +3+5+7+ (z|<1)

and putting z=(y—1)/(y+1) (¥>0) and 2=1/(22+1) (z>0 or 2< —1) we
have

2.14) S=_Y*t1 Iny=(z+1/2) In (1+1/2)=1+ 3] 1{@i+1)(2+1)") .

2(y-1)
Then,
1 1 1 1
2.18)  S<1+ 322117 | BEzt1) {H Gty @ty
=1+[5{(22+1)—1} +3]/[15(2e+1)*{(22+1)*—1}]
=1+4*%5—2x%/{156(1—x?%} ,
hence

Iny ._2 {1+ (1/—1)2(3y’+14y+3)}=3y‘+68y”+98y2+68y+3
y—1 y+1 60y(y+1)* 30y(y+1)*

from which we obtain the L.H.S. inequality in (2.13).
To the contrary
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1 1 1
216)  S>1+ 3(2z+1) {H BB+l | BRIy +}
— 1 . 1 _ 5’
=1+ 3(2e+1)¢  1-1/((5/3)(2e+1)) 1+ 3(5—3a%
Therefore,
Iny 2 5(y—1) _ LY
y—1 > y+1 [H 3{5(y+1)*—3(y—1)%} ] 1+ 3(5—3x?)

from which we obtain the R.H.S. inequality in (2.13).
The monotonous property of I(f) and u(t) are easily proved by dif-
ferentiating them. Thus, the proof of the lemma is accomplished.

Remark 2.3. The inequalities (2.15) and (2.16) are quite accurate,
but they can be further refined by taking the exact leading terms of
the series in (2.14). So, we can improve the inequalities (2.12) with
our required accuracy. The transformation y=t"* (¢>0) makes it pos-
gible to adopt fairly wide intervals around neighbourhood of t=1 as
approximate main domains where we are particularly interested in dis-
cussing meaningful approximations between f* and g*. For comparisons
we shall show numerical results to the quantity @=|u—1|. In the fol-
lowing numerical examples 7, means that the figure ‘4’ successibly ap-
pears k times. For u=0.95, Q=0.05, 0.049,,18<Q<0.050,:33 by (2.13)
and 0.049,,88<<Q<0.050,,45 by (2.12). For u=1.05, @=0.05, 0.049,,39<
Q<0.05,25 by (2.13) and 0.049,17<Q<0.050,34 by (2.12). For w=0.05,
Q@=0.95, 0.781<Q<1.024 by (2.13) and 0.949<@<0.951 by (2.12). For
=10, @=9, 8.47<Q<9.23 by (2.13) and 8.9985<Q<9.0,6 by (2.12).

LEMMA 2.2. Let A be any measurable set in B, then it holds that

(2.17) DX, Y; B)zVXX, Y; A)/2+|P*(A)—P*(4)|2,
and
(2.18) DX, Y; B)SVXX,Y; A)[2+1—(P*(A)+P*(4))/2.

Proor. Consider a decomposition of R such that

R*={E; PXE)=P"(E), E<B} (<R)

and

R-={E; P*(E)<P*(E), E< B} (=R—-RY).
Then,
(2.19) D(X,Y; B)=P*(R*)—P*(R")

=P¥*(R")—P*(R")
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=PX(A+ U (R+_A+))_PY(A+ U (R+_A+))
=(P*(A*)—P*(A*)+(P*(R*— A*)—P¥(R*—A"))
2| , (¢ —gan
B T
=V*X, Y; A)2+(P*(A)—P*(A))/2 .
Similarly, it follows that
D(X,Y; B)zV*X, Y; A)/2+(P¥(A)—P*(4))/2 .

Therefore, we get the inequality (2.17).
On the other hand, from (2.19)

D(X,Y; B)=VXX, Y; A)[2—(P*(A)—P¥(A))/2
+ {(P*(4)—P*(4))+(P*(R*— A*)—P*(R*— A"))} .

The terms in the curly brackets can be estimated as follows:

{ }=P*(A*)+P*(A")—P¥*(A")—P*(4")
+P*(R*)—P*(A*)—P¥(R*)+P*(A")
=(P*(R*)+P*(A7))—(P*(R*)+P*(A7))
—PX(R*UA")—P¥*(R*U A")
<PXR*UR")—P*(A*UA")
=PX(R)—P¥(4)=1—P*(4) .

Thus, the inequality (2.18) immediately follows and the proof of the
lemma is completed.

Now, let us try to give the lower and upper bounds of the quantity
V*X,Y; A). We can prove the following

LEMMA 2.3. It holds that
(2.20) V*SVXX, Y; A)<V*,
where V* and V* are the quantities in (2.8) and (2.9), respectively,
PROOF.
VXY H= 1/ —gtlapz =, (Fr—gdp=={ 01—
g—SAf*ln(f*/g*)dy (v Int=1—1/t for ¢>0).

Namely,
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(2.21) V*=—IXX,Y; A).
Similarly, we have the dual inequality :
(2.22) V*z—I%Y, X; A) .
Since

ve={ (-9t —(rr—gnidp
=2 (F*—odp- |, (F*—g"dp
=2{ | a—g*Idp— (T4 P7(4)

z2{ | AUGH N In (2198~ (PH(A)—P¥(4)
(* Lemma 2.1)
(2.23) _2_2l(a+).I*(X’ Y; A+)_(PX(A)—PY(A)) .

Similarly,
ve={ -9 +(rr—gdu
|- @7+, (F*—g¥ap
=2| _ @ *—Ddu-+(PXA)~P*(4)
22| _ U in @414+ (P4~ PY(4)
(2.24) > —2l(a")-IXX, Y; A”)+(P*(A)—P*(4)) .
We have also
ve=2|  ¢*(f*g*~Ddu—(PX(4)—P*(A)
z2{ | oUF19% In (Fg%)dn—(PHA)—PY(4)
(2.25) —_2(b*)-T*Y, X; A")—(P*(A)—P*(4)) ,
and
vi=2| _g*1—frg")du-+(PXA)-PTA)
22| _gUf*1g% In ¥ *)dp+ (PH(A)—PT(4)
(2.26) 22Ub7)-IX(Y, X; A)+(P*(A)—P*(4)) .
Further,
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V*= S F1—g*/f*|duz S S Ug*[fH)In (f*/g*)|dg
2i(a)- § FHIn (f*/gM)ldu=Ua)-IXX, Y; A)
ez @], I (| = U X, Y ),

and similarly
(2.28) V*=U(b)- LX(Y, X; A)=Ub)| I*Y, X; A)| .

Thus, we have proved the L.H.S. inequality in (2.20). Analogously,
the R.H.S. inequality (2.20) can be proved by showing the correspond-
ing inequalities in parallel with (2.23)-(2.28), which is easy and will be
ommitted.

PrROOF OF THEOREM 2.1. The theorem is now straight-forwardly
obtained by Lemma 2.2 and Lemma 2.3.

Now, we shall proceed to consider the two-sided ¢-equivalence of
probability distributions. Let us begin with a practically interesting
case. Let ¢ be any given non-negative number and consider the set

(2.29) B.={z;|In f*(z)/g*(x)|<((e), x € ACR},

where {(¢)—0 as ¢—0 and A is an approximate main domain for X
and Y. Assume that

(2.30) min (P*(B,), P*(B.))=1—-¢&(e) ,

here ¢(¢) is a non-negative and monotone decreasing function of ¢ as ¢
decreases. Then there exist decreasing functions &,(¢), &x(e) and &(¢)
such that 0=<¢,(e)<é6x(e)<E4(e)<&(e)<1 and that

(2.31) max (P*(A), PY(A))=21—¢,(e)=1—¢&y(e)=min (P*(A), P¥(A))
21—¢y(e)zmin (P*(B,), P*(B.))
=1—-4(e) .
It should be noted that the functions &, &, & and &, are determined
according to the set A and B, for individual problems. Further, we

have the following inequality by scrutinizing the proof of Lemma 2.2
in Matsunawa [5].

(2.32) min (P*(B.), P¥(B.))=max (P*(A), PY(A))—TIS) VXX, Y; 4),

where c(¢)=min ({(¢), 1).
This inequality and (2.17) yield
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min (P*(B,), P¥(B.))
>max (P*(4), PY(A))—G—%D(X, Y; B)

+- L |pr(4)—PT(4)|

c(¢)
(2.33) = (1+_c(17)> max (P*(4), PY(A))—C—(IJ min (P*(4), P*(4))
2
—2_D(X,Y;B).
) ( )
Hence,

. 0(5) 1 X Y
D(X, Y; Bz [(1+?(.€7> max (P*(4), P¥(4))

_ﬁ min (PX(4), P¥(4))—min (P*(B), P*(B.)]

(2.34) ;ﬁ(ze—)(63(5)—61(5))+%($z(e)—51(e))§0 (" (2.31)).
On the other hand, since

%
vax v As| 1rr-grdps | SEC dp

B,

In ﬁ_
g*

<max (P*(A), P*(A))—min (P*(B.), P*(B.))
+¢(e)-max (P*(4), P*(4))
sé(e)+L(e)

we have from (2.18), (2.30) and (2.31)
DX, Y; B)SVXX, Y; A)2+1—(P*(A)+P*(4))/2
(2.35) S L)+ lEO+Ee) -

Thus, we have proved the following two-sided ¢-equivalence for X and Y

THEOREM 2.2. If the condition (2.30) is satisfied, then
(2.36) X~Y (B¢ 81,
with

@.37)  ¢=g(u(e); V*)=@(ea(e)—e,(s»+%(ez(e)—el(e» ,

(2.38) F=3Gi(e); V*)=%E(e)+%((e)+fs(s) :
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where () Zc(e) (€s(e)—§1()), 7(e)=§(e)+L(e) and c(e)=min (((e), 1). &(e),
¢(e) (1=1, 2, 8) and {(¢) are the functions in (2.31) and (2.29), respec-
tively.

Remark 2.4. In practical situations concrete forms for 5(¢) and

7(¢) are not necessarily needed, though these functions are conceptually
significant in the definition and the qualitative development of under-
lying ¢-equivalence theory. In fact, the most important point of the
¢-equivalence is to find sharp lower and upper bounds to D(X,Y; B),
and we can very often realize it without giving the forms of the func-
tions in advance.

From Theorem 2.1, Theorem 2.2 and Remark 2.1 we can state the
following extended result:

COROLLARY 2.1. If there exist two decreasing functions »(c) and
7.(e) such that

(2.39) (0=) q(e)SV*(SV*S) V*=7ue) 5 () —0 as e—0,

are satisfied, then under the condition (2.30) X and Y are two-sided ¢-
equivalent with respect to (V*, V*) with

2.37) p=¢(ne); V*)Zn(e)[2+(§:e)—&i(e))/2 ,

(2.38) F=3ue); V¥)STu(e)/2+E4(e)

where £(¢) (1=1,2, 8) are the same functions as those in Theorem 2.2,
V* and V* are the bounds of the quantity V¥(X,Y; A) given in the
preceding theorem.

A partial inverse of Theorem 2.2 holds as follows:

THEOREM 2.3. If for amy positive number ¢ there exist functions
z(e) and 7(e) such that

(0=)z(e)SD(X, Y; B)<7(e);  7(e)—0 as e—0,
then there exists a measurable set A in B such that
(2.40) min (P*(A), P*(A))=1—z(¢)
and that
(241)  (0=) 2z(e)—EX(e))SVHX, Y; A)=27(e) +£1(e) —E8(e) »

where £¥() (1=1, 2, 3) are non-negative functions such that £¥(e)<E&F(e)
SéF(e)=z(e).
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PrOOF. From the assumption of the theorem it is obvious that
we can take some measurable set A € B and there exist non-negative
functions £¥(e) (1=1, 2, 3) such that &f(e)<&f(e)<¢&f(e)<z(¢) and that

max (P*(A), P*(A))=1—£&¥(e)=1—£¥(e)
Zmin (P*(4), P¥(A))21—¢&¥(e)=1—z(e) .

Then, from (2.18)
VXX, Y; A)22D(X, Y; B)—2{1—min (P*(4), P*(4))}
=2{z(e)—£¥()} 20,

which shows the L.H.S. inequality of (2.41).
On the other hand, from (2.17) and (2.40).

VXX, Y; A)=2D(X, Y; B)—|P*(A)—P*(A)|
<27(e)— {max (P*(A), P¥(A))—min (P*(4), P*(A)}
=27(e)— {(1—§X(e)) — (1 —&F(e))}
=27(e)+&¥(e)—E¥(e)

which proves the R.H.S. inequality of (2.41).

Application 1. Now, as an example of the two-sided ¢-equivalence
we shall consider the difference between sampling with and without
replacement from a finite population. Let 2y={¥, 27,---, ¥} be a set
of N distinct elements, and let XJ,=(X?, X¥,--., X) be a random
variable to a random sampling without replacement of size n with prob-
ability

P(X{y=%w)=1/N, (=py(xw), say),

where 2, € DY,, D%, being the set of all non-repeated m-permutations
out of 2y and N,=N(n—1)---(N—n+1). On the other hand, let Y&,
=, YY,---,YY) be a random variable corresponding to a random
sampling with replacement of size n with probability

P(Y&=Yw)=1/N" (=av(Yw), say),
where y., € Ef,, the set of all repeated n-permutations out of 2,. The

restricted K-L information over DY, is given by

(X Yao; D :cmeDé’,.)pN( @) 9w(%ew)

(2.42) =In N*/N,=—In E (1—i/N) .

Since P*™(DY,)=1 and PY&(DY)=N,/N*=1—n(n—1)/(2N), then
putting A=A+*=D¢f, in Theorem 2.1 we have
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(243) V*/2+(1—N,/N")/2SD(XE, Y& B)SV*2+Q1—N,/NV/2 .

Now, as V* and V* let us adopt 2l(a*)I*(X, Y; A*)—(P*(A)—P*(4))
and 2u(c)I*X,Y; A*)—(P*(A)—P¥*(A)), respectively. Then, since a*
=N,/N*=c*, from (2.42) and (2.43) we get
(2.44) UN,/N™)In (N"IN,)=D(X3), Y3 B)<u(N,/N*) In (N*/N,) ,

where I(-) and u(-) are the functions defined by (2.10) and (2.11), re-
spectively. In view of Lemma 2.1 and the numerical examples the
lower and upper bounds in (2.44) are very close except for the cases

where the quantity N,,/N"="T_[1 (1—1/N) take considerably small values
i=1

near to zero.
For N>n=2 rather rough evaluations than (2.44) can be given as

(2.45) D(XZ, Y2 B)gl«l_%)"'l).[n(’;b;rl) +1g;572(?v——37);)]’

(2.46) D(XZ, Ygx);B)gu(<1__1_>"'2>.[n(n—1) L

N 2N 6N*
_ n{N(n—1)—n} ]
AN (N—mn) '

In view of the above inequalities we can state the following two-sided
uniform ¢-equivalence with respect to I*(X,Y; A): Let e=ey=n?/N,
n=n(N), for each N. Then min(P*(A), P*(A))=P*(A)=1—n(n—1)/
2N=1—¢/2 and
(2.47) XH~Ye (B¢ ¢,
where

p=9(1(e); I*)=U(L—Ve[N)™ ) 5(e) ,

F=d(n(e); I*)=u((1—1/N)"™)-7(e) ,

_efy__1 e(2ve —3/¥N)

2e)= <1 VNe )+ 12/N(1—1//Ne) ’
—_&(y__1 eve  e{(1—1/¥Ne)—1/N}
)= <1 /Ne >+ VN AN —+=]N)

and I(-) and u(-) are the functions defined by (2.10) and (2.11), respec-
tively. Clearly, 7(¢), 7(¢), ¢ and ¢ decreases to zero, as ¢—0.

Concerning the above topic Freedman [1] gave the following exact
result

(2.48) D(X&, Yéys B)=1—N,/N*,
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from which he also gave the simple bounds
(2.49) 1—exp (—n(n—1)/N)< D(XE, Y&, ; B)<n(n—1)/2N .

Therefore, making use of the inequalities, we can get the different
forms of the two-sided ¢-equivalence. Further, from the above results
we can easily see that

@.50) XN~YY, (B): (N—o) iff nN—0, as N—oo,

which is the result obtained through a different approach in Ikeda and
Matsunawa [2] without notice of Freedman’s above contribution.

3. Criteria for the type (B), uniform asymptotic equivalence

In the last part of the previous section we referred to an asymp-
totic result (2.50) on sampling distributions from a finite population.
For more broad class of asymptotic problems some modified information
criteria given below are practically useful. Let {X,} (s=1,2,---) and
{Y.} (s=1,2,--.) be two sequences of random variables defined on the
sequence of abstract spaces (R, B,) (s=1,2,---). Corresponding to (1.1),
the two sequences are said to be asymptotic equivalent in the sence
of type (B),, if

3.1) D(X,, Y,; B«)=§ug | P*«(E)—P*(E)|—0, (s—o0),
and, according to Ikeda and Matsunawa [2], is symbolically denoted by
(3.2) AX‘“’Y: ’ (B)d, (s_’oo) .

Let, as previous sections, both distributions P*:(E) and PY¥s(E) be
absolutely continuous with respect to a o-finite measure g, over a non-
empty sub-s-field of B, generated by a domain of our interest A, (€ B,),
and let f*(>0) and g*(>0) be the respective Radon-Nikodym deriv-
atives of P¥s and PY¥s on the set A,, for each s. In what follows we
also assume that related supremums and infimums corresponding to the
quantities a, b, ¢, d and so on in Theorem 2.1 exist with finite values.
Under these set-up we have the following theorem whose proof can be
easily accomplished along the line of the proofs of Theorem 2.2 and
Theorem 2.3. Thus, it will be omitted here.

THEOREM 3.1. The asymptotic equivalence (3.2) holds if and only
wf the following conditions are satisfied: There exists a sequence of meas-
wrable subsets {B,(CA, € B,)} (s=1,2,---) such that

(3.3) PI:(B:)—)l , (8—’ oo)
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and that simultaneously each one of the following conditions holds:

(3.4) I*X,, Y,; BH)—>0, (s—x),
(3‘5) Ia*(Xu K; B,)-’O ’ (S-—)OO) ’
(3-6) I*X,, Y,; B)—0, (83— ).

Remark 3.1. The above theorem is a reinforcement of Theorem
3.1 in Matsunawa [5]. As the set B, in the ‘only if’ part we may
take, for instance, the corresponding set to (2.29) of the form

B,={z; |In f*(x)/g¥(x)|=(.(c.), ® € A,CR},

where ¢, (s=1,2,--:) is an any given sequence of the non-negative
numbers such that ¢,—0 as s—oo, and where (,(s,) is a decreasing
function such that {,(-)—0 as ¢,—0 with s—oo.

Application 2. Finally we shall apply the criteria in Theorem 3.1
to investigate the asymptotic theory of quasi-extreme order statistics.
Let X;, X,, -+, Xy be a random sample of size N drawn from a contin-
uous distributions with cdf. F(x) and pdf. f(z). Denote the correspond-
ing order statistics by Xy <Xy, <:++<Xyy. Assume that the support
of the underlying distribution is one open interval

(¢, B)={z; f(x)>0},

where @ and 8 may be extended real numbers. Assume that N—n=2
and define the lower n=n(N) extremes by

XN(n):‘(XNl’ XN2! tt XNn) .

Corresponding to this, consider the following n=n(N) dimensional ran-
dom variable

XN(n):(Xle XNZ’ Tty XNn)

whose distribution has the Radon-Nikodym derivative with respect to
Lebesgue measure given by

3.7 Pr(w)=N"-exp [~ N-F@)] 1T f(=) ,
on the domain
(3.8) Ay ==, -, 2,)|a<2, <2, < - - - <2, < B}

Note that 7y(x.,) is not necessarily a pdf. If we multiply a normaliz-
ing constant to the R.H.S. of (3.7), we get formally the corresponding
pdf., which is the case considered in Matsunawa and Ikeda [3].
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Concerning to the distributions of the above two random variables
we get

THEOREM 3.2.
(3.9) Xvw~Xvw, (Bl (N> o),
if and only if the condition
(8.10) n/N—0, (N—x)
i fulfilled.

Proor. The ‘if’ part is closely related to Theorem 2.2 in Matsu-
nawa and Ikeda [3]. This part, however, needs to be proved by the
modified information criteria presented in Theorem 8.1. The pdf. of
Xym i8 clearly given by

(3.11) Py(Tew)= (N ), ———[1-F (xn)]”'”TTf(wt).
(@<, < - <2, <P) .
Then, after some calculations we have
I *(XN(n)y XN(n); AN,n)

={,.  Pa(ow) In [Po(oe)/Ba(zo) st

—_1 _ny_n  1/1 1
(3.12) = 21n(1 N) 2N+12<N N—n)
+R(N—n)— R(N)+<1——>T(N) T(N—n)+—T N(N+1)
where
_ Qi1
Ro)=Fsgitt o, (22,
Te)=3 Oust . (s>1),

i=1 (84+1)---(s+1)
with for any integer r=2

_1 l .« e — — 1—
a,_.r_sot(l—t)(z—t) (r—1 t)<—2— t)dt,
¢,=1 Slt(l—t)(2—t)- (r—1—t)dt .

r 0

Using the inequalities on R(s) and T'(s) discussed in Matsunawa [4] we
see that
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(8.18)  I*(Xweny Xneny; Aw.n)

1 n n n n 1
_1, (1__ _ _
z-g ™ N) 3N NN+ 12N°  6N+05
1 _N—-n { 1. 1 1
6(N—n) 12 (N* (N—n)N—n—1) N'N+1)
2 } _ . '
= th == N ’
+N(N—1)(N+1)(N+2) (=na(ey) With ey=n/N)
and that
(8.14) T*(Xweayr Xncwys Awon)
1 n n n n 1
_1, 1___>_ _
<73 n( N/ eN TN+ 128 6N
_ 1 L N=n { S |
6(N—n)+0.5 ' 12 [ (N—n)* N¥N-1)

1
T (N—n)(N—n+1)

+ 2 |
(N—n)(N—n—1)(N—n+1)(N—n+2)
(=7x(ex) with ey=n/N).

Clearly P~ (Ay ,)=1, and from (3.13) and (3.14) the condition (8.10)
implies

(3.15) [ T*( Xy nys XN(,,) s Ayn)|—0, (N—oo),

which proves (3.9).

On the other hand, in order to prove the ‘only if part’ of the
theorem, suppose that (3.10) does not hold. Namely, assume that there
exists a positive constant p (0<p=1) such that n/N—p as N—oo. It
is enough for us to disprove (3.15) under the assumption. When p=1,
two cases may happen, where (i) N—n—m (=a positive integer larger
than 2) as N—oo and (ii) N—n—oo a8 N—oo. It is obvious from
(3.13) that both cases lead to I*(Xymy Xywy; Awn)— o0 a8 N—ooo. If
0<p<1, we have from (3.14) I*(Xyemy Xy} Aw.n)=—(1/2) In (1—p)—p/2
=p/4>0 as N—oo. This also contradicts (8.15). Therefore we have
completed the proof of the theorem.

From the theorem we can derive the asyniptotic distribution of
the n-th order statistic X, by considering the marginal distribution
of Xyu. The pdf. of X, , is given by

__ I(N+) .
(18) @@= per s F@P 1-F@I /@),

(a<a<B).
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Let X’N,,, be the random variable whose distribution has the Radon-
Nikodym derivative with respect to Lebesgue measure given by

N

(B.17)  Gu(x)= T

[F(@)]"" exp [-N-F(x)]f(v) , (a<2<f).

We obtain the following

COROLLARY 3.1.
(3.17) Xyo~Xy. (Bl (N>),
if and only if (3.10) is satisfied.

Remark 38.2. If we set e=ey=n/N and make nse of the inequali-
ties (3.13) and (3.14), we have the corresponding two-sided uniformly
¢-equivalent statements to (3.9) and (3.17). As for the upper m=m(N)
extremes Yy =(Xy,y-msn - +» Xy,y) and the (N—m+1)-th order statis-
tic, we obviously have parallel results to Theorem 3.2 and Corollary
3.1.
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