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Summary

Further properties are derived for a class of invariant polynomials
with several matrix arguments which extend the zonal polynomials.
Generalized Laguerre polynomials are defined, and used to obtain ex-
pansions of the sum of independent noncentral Wishart matrices and
an associated generalized regression coefficient matrix. The latter in-
cludes the k-class estimator in econometries.

1. Introduction

The zonal polynomials C,(X) arise mathematically as zonal spherical
functions on the space of real positive definite symmetric m X m matrices
X, which may be regarded as the quotient space Gl(m, R)/O(m), where
Gl(m, R) is the real linear group of real nonsingular m Xm matrices
and O(m) is the orthogonal group of m Xm orthogonal matrices. The
application of the C(X) to multivariate distribution theory was recog-
nized and developed by James [14] [15] and Constantine [3]. A class
of invariant polynomials Ci{(X;,,) generalizing the C,(X) to any num-
ber r of symmetric matrices X;,;=(Xj,: -+, X,) has been defined by Davis
[6] in the case r=2, and extended to »=2 by Chikuse [2]. These poly-
nomials have also been applied to multivariate distribution theory (see
e.g. Chikuse [2], Davis [5], [7], [8], [9], Hayakawa [10], [11], Hillier et
al. [18], Mathai and Pillai [18], Phillips [19]).

Section 2 of the present paper reviews various properties of the
C¢"? which were indicated by Chikuse [2]. In particular, equation (3.12)
of the latter paper expresses a basic result from which various other
properties can be obtained. This result is restated in Section 2 with a
minor correction. A further generalization of Constantine’s [4] Laguerre

Key words and phrases: Invariant polynomials with matrix arguments, generalized Lag-
uerre polynomials, matrix differential operators, sum of noncentral Wishart matrices,
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polynomial of matrix argument is also defined. Proofs of the results
in Section 2 are indicated in Section 3. In Section 4, we shall present
methods to determine the coefficients which are ¢suitably’ defined in
the expansions obtained in Section 2.

Various estimators of the regression coefficient in a single struec-
tural equation with multiple endogenous variables have been considered
in the econometric literature. Theil’s [24] k-class estimators contain
the ordinary least squares (OLS) and two-stage least squares (TSLS)
estimators as special cases (k=0, 1 respectively). These have the form
of the regression coefficient vector Aj;'a, for a random matrix A=

1 m—1

1 . . . . .
[Z“ a‘z]m y where A is a noncentral Wishart matrix in the case of
21 22, -

the OLS and TSLS estimators, and is the sum S,+S, of independent
noncentral and central Wishart matrices respectively for the general
k-class estimator. In Section 5 we derive the density functions of

A=ﬁ} S;, a sum of independent noncentral Wishart matrices with pos-
i=1

sibly distinct covariance matrices. The associated generalized regres-

ml My
sion coefficient matrix B=A;'4,, where A= [ﬁ“ A”]:‘, is considered
9

21 22,
in Section 6, together with particular cases of econometric interest.

2. Properties of the C4"

If P,(X) denotes the class of homogeneous polynomials of degree
k in the elements of a symmetric matrix X, then under the represent-
ation of Gl(m, R) in P,(X) generated by the congruence transformation
X—-LXL', LeGlm,R), P(X) decomposes into the direct sum of
uniquely defined irreducible invariant subspaces [15]

P(X)= (—B Y(X),

where « ranges over all ordered partitions of %k into <m parts. The
restriction of the representation to C{/,(X) is the irreducible represent-
ation of Gl(m, R) indexed by [2x], and &V/(X) has a one-dimensional
subspace, invariant under the restriction to O(m), which is generated
by the (suitably normalized) zonal polynomial C,(X).

The class Py,1(X.,;) of homogeneous polynomials of degree ki,---, k,
in the elements of X,-.-, X,, respectively, may be written as the
Kronecker product

@D PusX)=Q P(X)=Q (V. (X)®- - @V (X))

(Chikuse [2]), where «k[r]=(k;,---,k,). Under the representation of
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Gl(m, R) in this space generated by

X, —-LXL' (i=1,---,r; LeGl(m,R)),
the restriction to the product space in braces in (2.1) is the Kronecker
product @ [2k;], which may be decomposed into a direct sum of irre-
ducible ;;;)resentations of Gl(m, R) indexed by partitions @ of 2f into

<m parts, where f =é k,. Thus we may write
i=1

P, k[T](X[r])z‘@r] Ei‘) VFU X)) -

Subspaces such that #=2¢, where ¢ is a partition of f into =m
parts, also contain a one-dimensional subspace generated by a polyno-
mial invariant under the simultaneous transformations

X, —HXH  (i=1,---,7; HeOm)).

A complication which arises at this point is that [2¢] may occur with
a multiplicity greater than one for a given k[r], and the corresponding
subspaces CVii"? and their invariant polynomials are then not uniquely
defined. However, the direct sum of equivalent subspaces

qJ‘[ ](X[r]) @ CV‘[TJ(X[TJ)

is uniquely defined, and it has so far proved sufficient for applications
(Davis [6]) to construct a basis {CY(X(.), ¢'=¢} for the subspace of
invariant polynomials in U4 which is “orthogonal” in a certain sense.
Any such basis (with a suitable normalization) then has the fundamen-
tal property

@2 | TC(AHXH)MH= 5 Ci(An)CiX)ICuD) -

m) i= Etl .y
Here the A, are m Xm symmetric matrices, I is the m X m unit matrix,
dH is the invariant Haar measure over O(m), and the sum on the right-
hand side extends over the representations [2¢] in the decomposition of

@ [2¢,]. The appropriate multiplicity of ¢ is implied by the notation
i=1

(2.2), but in other situations may need to be indicated explicitly, e.g.
by (—B Although the basis is only required to be orthogonal, it is

convement to take the uniquely-defined projection of T[{tr (X,)}*+ onto

U4 as the first member of the set, and to choose the remaining poly-
nomials to be orthogonal to it. No attempt is made to specify indivi-
dual V57, or to relate the Ci"? to them. Coefficients in formulae based
on the C{7 must therefore in general be regarded as relative to a par-
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ticular tabulation of the polynomials.

With regard to the effect on C{"(X(,;) of simultaneously permuting
X, and the corresponding «k;, it is convenient for tabulation to define
the polynomials to be invariant under transpositions

(2‘3) (Xt! K¢)<_’(va Kj) ’ (7/¢j) ’

provided that x,#x,. However, reference to the tables in [8] shows
that invariance cannot be assumed when k,=k;,. On the other hand,
since the class of polynomials defined by U4 is necessarily invariant
under (2.3) when k,=«k,, it follows that the result of simultaneously
permuting (X, k;) in C{"(X},)) can in general be expressed as a linear
combination of the original C{ (X)), ¢'=¢.

Clarification of these points has necessitated some adjustment of
various formulae in Chikuse [2]. The equation numbers of the latter
paper are cited for convenience under the present equation numbers.
Proofs of the results are indicated in Section 3. We shall use the nota-
tion afs, r1=(a,,- -+, ;).

LEMMA 2.1.

2.
%(341)2)] S 0m) CIUA'H' X HA, Aggir,)dH

= 3 3 rEPCEXa)0 e Y AA, A n)ICAD)

CEK ek,
1°""%q
($eoroeg yoeery)

Jor suitably defined coefficients v, where o* denotes the partition o ignor-
ing multiplicity. No general formula is given for the v’s, but in parti-
cular

8‘1,06¢,¢’ (q= 1)
00,404,6 (g=7)

([2] (3.15), (8.14) respectively). A mumber of further properties may be
derived from Lemma 2.1.

LEMMA 2.2. (i)

25 G Xy L---, D=CI) X a0 Xy)/CAI)
[(3' 1)] [¢] E:'E. :;._;_.:.q -:’)

where

T t=

a;[r]m: Z r;g;;:#o;‘,,:[qﬂ,f} , 0;[r]=C;[r](I’ cee, I)/C¢(I) .
¢'=¢
(i)

@8 X denn)= 2 B EFOTHENE Aen)
. E‘]""Q =
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where
Bt =3 050
0=d’

and the summation in (2.6) is over distinct partitions o* ignoring multi-
plicity.

If the arguments are permuted in the left-hand sides of (2.4), (2.5)
and (2.6), then as moted earlier the result is a limear combination of
polynomials with arguments as shown in these equations. Thus the for-
mulae continue to hold, except that the coeffictents v, a, B must be replaced
by the corresponding linear combinations. In particular, if the last q
arguments are involved, we shall denote the resulting coefficients 7, @, B.

(iii) Product of polynomials

@n | GO )= B RO
where

n.:’[:]w =;§¢ 7’::[;'];¢E:"'[q+l’r];¢' .

(V) (Eatension of (). If r=31q, then

(2'8) C;[r](XI’ ct Xl; ctcy Xu M) Xt)
a; q;

= 2 0 X2 ¢§¢ Bilthf CoM i ( Xen)

* aee * ees
"l€'1 tq ”te‘r‘qr}'l £y

for suitable coefficients B which reduce to the B’s of (2.6) when g=---
=q,=1.
(v) Multinomial expansion

41 9

(2.9) Cg[t](?":; Xy ) Xu)
= ‘ si } Qe ¢
«[7] #'=4 H [k’z~1+1’ cee, kri "E‘il ¢

0, €x soor
(p€8,  41°005r)

* C;['T](Xlly ct Yy Aqulv ct 0y thl)
i
where r,=> q; (t=1,--,t), r=r,.
Jj=1

LEMMmA 2.3.
(2.10) Ci(XinA)= 3 GIHCI* (X, 4),
gE P P*

for suitable coefficients (. If A is placed first on the right-hand side,
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the coefficient will be written C.

Generalized Laguerre polynomial. Extending Constantine’s [4] de-
finition of a Laguerre polynomial of matrix argument (see also [2], [5],
[16]), let

@.11)
L (Xiqy; Byy)=etr (é X‘) S

q
+ Cf"((BRB')3(BB')q41,1) ;U; dR; ,

T {etr (— R)IRI“Au(X.R)}

.
R>0 S Rg>0 1=

where A, is Herz’s [12] Bessel function of matrix argument. The
Laplace transform with respect to X, is

q q
@) | - etr(=31X2) f1IXMLE(Xios Bo T X,
X,>0 Xg>0 i=1 i=1 i=1

=]i[ {Ca(uy D, k)| Z,| 4 2} CL((B(I—Z7)B" g (BB )g41,11) »

where p=(m+1)/2. Applying (2.9) and [2] (8.23), we obtain the serial
expression

@19) LK Bo= ([latn.) 3 5 {1 (%) fwctn.)

- Bt 1o OOt dett (BB, — BXB )y (BB )iqs,r) -

LYy, is the coefficient of C{(Ui,q) /;[:[ k!Cy(I) in the expansion of
1

(2.14) S ( )ﬁ[I—B{H'UtHBir"rP etr[— S\ X,B/H'UHB(I—B/H'UHB,)""
o(m)i=1 i=1

+ 3 BiH’U,HB,]dH.
i=q+1
3. Proofs of the results in Section 2
PROOF OF LEMMA 2.1. The integral in (2.4) is the coefficient of
CFU(Uin)/Cy(I) in

So( )dHS 11 C.(A'H' X, HAK'U,K) jﬁ C.(A,K'UK)K .
m. =q+1

0o(m) i=1

Interchanging the order of integration, this becomes

S5 {CEXICDY |, | CEUNBR'UK) T C(AKUKWK
q m. =q+1

verl---:

where B=A’A. Following James’s [14] argument, we obtain
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CY(BUyy) € Ui (U) @ V(B)
C(AU) e V (U)QV.(A), (1=¢+1,---,7),
and from invariance under
B,A.—»LBL',LAL  (i=q+1,---,71),
U-L-"UL"* (i=1,---,r: LeGl(m, R))

we have

CL(BU,,) ﬁ C(AU) € reu @ UENU,,) QU 9B, Argsr,r) -

i=q+1 Q41" r
Hence the integral in (2.4) has the required form.

PROOF OF LEMMA 2.2. (i) Set A=A,,,=---=A,=I in Lemma
2.1.
(ii) Set X;=..-.=X,=I in Lemma 2.1.
(iii) The left-hand side in (2.7) is the coefficient of C:9(A,)C:e+"]

(Argriry) /]r kC(I)CAT) in
q r
P=S S etr (z X,HfA,H) etr( >3 X,K'AJK)deK.
om) Jom) i=1 j=g+1

Let H—HK. By invariance of Haar measure
3 T -1
P= 3 CiXe)|TTkICAD| ™ | CHYH AcpH, A, r)dH -

From Lemma 2.1 and (2.5) the integral may be expressed as

Cl) > 3 X el et CI(Ar)

g€cpeteng f?;'ét.‘.:.‘;’ e T)
- G (Agg 14,m)[CAI)CAT)

The result follows.
(iv) Apply (ii) successively, with appropriate interchange of arguments.

(v) The left-hand side of (2.9) is the coefficient of C{(U,) /;lf[ 8,1C,(I)

n

Smm etr {é]l [:YE XU]HUtH'} dH

J=1

= i C;['](Xll! R Xl‘h’ ] qu,)

[rl;¢
L CETy e, Uy Uy, DT ACAD)
T’ \_——;‘—-/ i=1

PrOOF OF LEMMA 2.3.
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Ci(Xind) € UR X)) @V AE @  Us™ (X, A) -

Since the left-hand side is invariant under the simultaneous trans-
formations X;— HX,H', A—~HAH' (H € O(m)), it must be a linear com-
bination of the C:"*'(X,;, A).

4. Construction of the coefficients

In Section 2 we have shown the existence of the coefficients 7, §
and { in the expansions (2.4), (2.8) (or (2.9)) and (2.10) respectively in
terms of the invariant polynomials. In this section, we indicate methods
of constructing them using matrix differential operators. The tabula-
tion is lengthy and hence, due to limited space, it will be presented in
a subsequent paper.

We utilize the matrices of differential operators

((1/2)(1+9,;)0/0u,) , for an mXxXm symmetric
matrix U=(u),
4.1) oU=
(o/ouy,) , for an mxXm asymmetric
matrix U,

with 3 being Kronecker’s delta. Applications of the operators oU in
multivariate analysis are indicated in Richards [21], [22] and Phillips
[20]. The 92U have useful properties

(4.2) f(R) etr (UR)=f(oU) etr (UR) ,
and hence
4.3) S(R)=f(U)etr (UR) |y~ -

We note here an alternative representation of the multinomial ex-
pansion (2.9),

q1 q;
@y (S X 3 X
i=1 i=1
t 9k
=11 [etr (2 X J0Xu | CF X+, Koo+ +1 X
which is the formal representation of Taylor’s expansion

(4.5) f(U+R)=etr (ROU)f(U) .

(4.4) may provide a mechanism for the generation of the coefficients 3
in the expansion (2.9).
In similar fashion to that in Richards [21], [22], we define differ-

ential operators having a certain orthogonality property. Let £, %,,---
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be the distinct traces of products of X,,---, X,. Then, the orthonormal

polynomials I LY Xi) =25 PCE U XLy), With 2,=Cy(1,)/2/(m/2)4, are express-
ed as

(4.6) FfX) = 7ot

for suitable sets v=(v,, v,5,---) of nonnegative integers v, v;---. The
coefficients 7i7) are tabulated up to r=3 and f=5 in Davis [5], [8]. Let
g, be a partition of k,, i=1,..-,r, and r € g[r]. Based on the orthog-

onality property of the invariant polynomials, associated with each in-
variant polynomial C{)(X;,), we define a differential operator 95 [X,]
having the basic property that

4.7 a;ErJ[X[r]]C';[T](X[,J) =8,tr 1 gselrhe 0
as
(4.8) I X, = Z 27 ) Grrtete

(il vl - JeHPFis ™ opdtys- o
Now, (4.3) yields

(4.9) f(aU)oFl(%m: %BU U’B'> ”e

o= So<m> f(HB)AH .

This gives a representation of the left-hand side of (2.4),

(4.10) CFUABU XpUA, Ay, ,]).,F,<—m, UU')

=CL Y AU X, ;0UA, Argirr) Z <t'4‘< > ) cuun),

where r runs through the partitions of t=2q] k,. The representation
i=1

makes the evaluation of the left-hand side of (2.4) much easier, involv-
ing only the differential computation. Applying the differential oper-
ators 0:9[X;,;] and then 954**"[A'A, Ay, 1] to both sides of (2.4) with
the left-hand side replaced by (4.10), we obtain

@1) O =3 (ta(Sm) ) e A, Ay
» O X ] CF AU X 10UA, Argsr,n)CUT) .

Similarly, the coefficients 3 and { are determined. Applying the
differential operators 9;'[X,], or 0F7[Xyy,« -+, X+ -5 X, and 0;F72#
[Xi,;y A] to both sides of (2.8), or (2.9), and (2.10) respectively, we
obtain
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(4.12) a;',[‘][X[,J]C;['J(Xp Yy -le tt Xu R} Xt)=§:£Et]j$’ ’
or

q q
(@13) X Kige s XgJOP(E Koo 32 X

=11 [kr,_lﬂ,s o Ic,‘] B3

and

(4'14) a:[r]'¢‘[X[r]v A]C;ETJ(X[TJA)=C:UJ;¢ .

5. Sum of noncentral Wishart matrices
Let A=izi§ S;, where the S; are independently distributed as W,(n,,
3., 2) (1=1,---,7r). We shall also use the notation
r=@1/2)T2.T!, where 37'=T,T! (1=1,.---,7),
A,=2-31=GG., (E=1,---,7).
Then following Chikuse’s [2] derivation, we obtain for the density of A

6.1) f(A)=¢, etr (—%2;‘A>|Alz wi-p 3 {o;w f[ <-%-n,> /

s[7]:¢
fim( 8], 2, 2 0 ()2

- Bggirerv O tr=0er( L A4, Do T
where
From (2.13), (5.1) may be written as

6.2) f(A)=e, etr(——;—Z‘:‘A)MlE"t"‘P 31 g4

e[r];¢
1 1/2
Ly~ (@6 i (5-A) G )
ﬁ k¢! <"1— ‘Sr‘_.l nt) ’
t=1 2= /s

which does not involve unknown coefficients.
In view of (2.11), the Laguerre polynomial is expressible in the
form
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(5.3) etr (—:2: RA;‘) SR .. SR 'n {etr (—R)|R.J*»

> r—1>0 =1

Aup (G TG RIVCH™( L AUGRG -1, T1]) Tl dF

6. Distribution of the generalized regression coefficient

(a) General case. Using the notation in the Introduction, we make the
transformation (Ay, Ay, Ap)— (Ayns B, Ay) where A, ,=A;—ApAz'Ay.
The Jacobian is |Ag|™; also |A|=|A4;..||Az| and

A= [A(l)l.z g] +[B, I,,YAx[B, I, )= A+ 3, say .

211 Z‘:ﬂ
m 5

tr (371A)=tr (3} 4.+ QAy)
Q=[B, I,)3;'[B, L,Y=B3'B'+ B3+ 3"B'+ 27 .

Writing Z‘;‘=[ ], we have

The invariant polynomial in (5.8) may be expanded by Lemma 2.3 as
(6.1) E“ CIHCEA S (GRG Yy Tr A2) -
pep:

Substituting A= 1+3B, applying the multinomial expansion, and
integrating with respect to A, , and Ay, we obtain the density of B in
the form

68 sm=aiarss (L)) (HGnem)

5d;¢ i=1

1 T Y.’ P d
k!l!(—-— >, ] f gL S Celrlsetrhe
i=1 ¢ ofr] sl! LU s‘r tE€EPep t'mr

+ LGRS (=G TG ™y Grymyy TV, [(S9)717, OF,
[B, L,,YQ"")

omse (-3 51 (B m-m) o)
{ <_1_ ) 'n' PAE PRI n‘—m,)/z} .

(b) Theil’s k-class estimators. These correspond to the special case
T=2, my= 1,

where

2=3, 2=(01-k2, (0<k<1)
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=238, LY 418, L3,
=0,

where B is the population value of B, and 4 is an m,Xm, positive de-
finite matrix. Unfortunately, the most convenient form of f(B) in this
case does not follow immediately from (6.2), although it can be obtain-
ed by a minor manipulation. However, it is preferable to return to
(5.3), in which the invariant polynomial reduces to 9, .C,((1/2)R,GIAG,),
i.e. L reduces to Khatri’s [16] Laguerre polynomial 4, L§/*~*(—G{'[\G] ™,
(1/2)G{AG,). In place of (6.1), we now expand

ofyreuc)= 2 3 ({)w x5

- cz*»-»‘(Rl, %G{JGl, %G{.@G1> .

Averaging over A, and A, as before, and taking
Gi=(k'—1)2T

-1/2 0
T= [ 11.2 ] X 2—l= TT’ ,
IR I5 IR ( )

D=2y — 20352y,

the density of the k-class estimator may be expressed in terms of the
standardized quantities (Anderson and Sawa [1])

= SY(B— S5 5y) S
=38 (B— 35 2y T5Y
A* =345
as
(6.3)  f(B)=cy(1—k)y"™"|L, 4 B*B¥/|-Tnitmpn
- S (G () (G (G m)) g 3n |

£4;¢

S C”¢L:¥’f]’f,<“‘%(k_l—1)[.3*» Im,]'A*[ﬁ*’ L.);

cEped

[IS’ 8], [B*, L,,)/(I, -+ B*B¥)'[B*, Imz]>

where L here denotes Chikuse’s [2] Laguerre polynomial, and
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c;=etr (—-I—A*(I +B*ﬂ*’)>F (l<é n —m2>>1" (l<é n +m1))
2 ™ m\g\ = ™\ \i e
2
: ]22211"1/2/]’,”<_1_ P ”"t>|211.z|m’/2 .
2 i=t

It is useful to note that
[B, L, 1T=23"[B* L) ,

with a corresponding result for 8. Anderson and Sawa [1] have given
a series expansion of the cumulative distribution function of B in the
case m;=m;=1. An asymptotic expansion for the general k-class esti-
mator was given by Kunitomo et al. [17].

The density of the OLS estimator may be deduced by letting k—0
in (6.3). From (2.13), the Laguerre polynomial, multiplied by k**', ap-
proaches a C?** polynomial, and applying Lemma 2.3 once again we
obtain

— * Rk |~ (n+m)/2 & _1_ _ _]; ) A _:!‘_.
SB=all + BB 3 (3 (rmm) (g ntm) o5 (o) |
: Cy?( 3 A%6%6¥, - AU+ 8*B) L, + B*B¥) (L, + B*"))

where n=n,+mn,. The TSLS case follows by replacing n by =n,. Both
the OLS and the TSLS cases correspond to the result in Phillips [19],
and we refer to [1] and [19] for interpretations of the quantities in-
volved. Taking m;=m,=1 we immediately obtain Richardson’s [23]
result.
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