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Summary

In the problem of estimating the covariance matrix of a multi-
variate normal population, James and Stein (Proc. Fourth Berkeley Symp.
Math. Statist. Prob., 1, 361-380, Univ. of California Press) obtained a
minimax estimator under a scale invariant loss. In this paper we pro-
pose an orthogonally invariant trimmed estimator by solving certain
differential inequality involving the eigenvalues of the sample covari-
ance matrix. The estimator obtained, truncates the extreme eigenval-
ues first and then shrinks the larger and expands the smaller sample
eigenvalues. Adaptive version of the trimmed estimator is also dis-
cussed. Finally some numerical studies are performed using Monte
Carlo simulation method and it is observed that the trimmed estimate
shows a substantial improvement over the minimax estimator.

1. Introduction

In this paper we consider the problem of estimating the normal
covariance matrix under a scale invariant loss function introduced in
James and Stein [12]. The usual estimator is S/k, where S is distri-
buted according to the Wishart distribution W,(¥, k). Although S/k is
unbiased it is known that the sample eigenvalues of S tend to be more
spread out than the population eigenvalues of ¥. This fact suggests
that, Stein’s phenomenon should be observed in estimation of ¥. The
improved estimator (over S/k) are obtained in Stein [15], [16], Efron
and Morris [56], Haff [7]-[11] and a host of others.

Since S/k itself is not minimax, it is more meaningful to consider
the minimax estimators. James and Stein [12], obtained minimax esti-
mator by considering the best invariant estimator with respect to the
triangular group G% (the group consisting of lower triangular matrices
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with positive diagonal elements). This estimator, of course, depends on
the coordinate system. Later on, Takemura [18] obtained an orthogo-
nally invariant minimax estimator by averaging Stein’s minimax esti-
mator over the p X p orthogonal matrices with respect to Haar measure.
However for higher dimensions (p=3), his estimator does not have a
simple form. Recently Dey and Srinivasan [4] obtained an orthogonally
equivariant minimax estimator of ¥ which is expressable in closed form
for any dimension.

In this paper our objective is to find an orthogonally invariant mini-
max estimator of ¥, having a simple form, which will truncate the
extreme eigenvalues. This estimator will be very useful for practical
application. We will consider the scale invariant loss function, consid-
ered in James and Stein [12], which is given as

1.1) L(Z, 5)=tr ($3)—log det (FX)—p .

The loss given in (1.1) was introduced and motivated in Section 5 of
James and Stein [12], and will be referred to as Stein’s loss. To aid

to one’s intuition about L, note that L(¥, X, is the likelihood ratio
statistic for testing H,:¥=2X, against all alternatives. It is also inter-
esting to observe that under the loss (1.1), the best invariant estimator
coincides with the best unbiased estimator.

Suppose S=RLR' in which RR'=R‘R=I and L=diag (;,l,--,1,)
is the diagonal matrix of eigenvalues, with [;=l,=---=l,. The class
of estimators which are considered is

1.2) I=Ry(L)R'

where ¢(L)=diag (¢(L), (L), - - -, ¢,(L)). Clearly it follows that ¢*(L)

=(1/k)L determines the best invariant and unbiased estimator $=8/k.
The performance of the estimator is evaluated by considering the risk
function given as R(E, 5)=E(Z, %)| ).

In Section 2, using Stein [15] and Haff [11], we will express the
risk difference of two estimators as a differential inequality involving
sample eigenvalues. The solution of the differential inequality is ob-
tained, which is motivated by Dey and Srinivasan [4] and Stein’s [17]
truncation method. The truncation method, proposed in Stein [17],
gives rise to a minimax estimator of the multinormal mean, which is
extremely effective in the presence of outlier. This is further studied
in Dey and Berger [2] and extended in estimation of parameters from
continuous and discrete exponential families by Ghosh and Dey [6].

In Section 3, we propose an adaptive trimmed estimate of ¥ and
use Monte Carlo simulation method to study the risk behavior of the
estimate. The percentage improvements are computed with respect to
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the risk of best invariant estimator and the minimax risk.

2. Derivation of the trimmed minimax estimator

Assume the loss function and the class of estimators are of the
form (1.1) and (1.2). We first observe that

@.1) L, 3)=tr (i*r-l)—é log ¢(L)+log det ()—p .

Clearly the last two terms are constant with respect to Y. Thus we
define

2.2) RB*@, 2‘)=E[tr (27— 33 log ¢i(L)|)J'] .

The following lemma gives the unbiased estimate of R*(}:‘, X). The
proof is given in Stein [16] and Haff [11].

LEMMA 2.1. The unbiased estimator of R*(E, X) is given as
(23) B3, 5=2 3 5 G—4)/0—1)+2 3 992,
+(k—p—1) é ¢¢/l&—é log ¢, .

We now need the following lemma to obtain an upper bound of
the risk difference. The proof of which is given in Dey and Srinivasan

[4].

LEMMA 2.2. For |z|su<l],

3—u
2.4 log (1 =r———at.
2.4 og (1+z)z% s
Now following James and Stein [12], the minimax estimator is
given as 35=TDT", where D=diag (d,, dy,- - -, d,) and T € G} with TT*

=S. By choosing d;=1/(k+p+1—2i), the minimax risk is given as

(2.5) R($*, $)=—3 log di—plog 2— 3} <k+;—i> ,

where ¢(a)=I"(a)/I'(a) is the digamma function.
The following theorem gives a minimax estimator of X. The proof
is given in Dey and Srinivasan [4].

THEOREM 2.1. Consider the estimator £*=Rg*(L)R' where ¢*(L) is
given componentwise as
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(2.6) s(L)=ld;, 1=1,2,---,p.
Then R(3*, )<RE*, X) and hence £ is minimaz.

Now we will develop the trimmed minimax estimator of }. First
we need the following notations. Define,

Y.=logl,, 1=1,2,---,p
and
1Y o< < ¥l <+ <| Y
be the ordered |Y;|'s, where m=[yp] and 0<y<1l. Also define
Z=6gn Y){| YA Y |m} »  1=1,2,---,p,

where a Ab=min (a, b).

THEOREM 2.2. Conmsider the estimator $m=Rg™(L)R'. If ¢™(L) is
given componentwise as

Z . )
?(L)—lg:_(ll Z'IZ logli, if YIS|Ylm

@.7) )=

2
¢:'(L)—%|Y;w(sgn logl), if Yi>|YPw

where ¢¥(L)=ld; b>144(m—2)}/25(k+p—1)* and z(|Z]}) 18 a function
satisfying

(i) 0<z(ZPMH<12(m—2)/5(k+p—1)*
(2.8) and
(ii) z(Z[) monotone mondecreasing in |Z[* and
E['(Z[)]1<o0;

then R(I™ 3)<R(E* %) and hence ™ is minimaz.

PrRoOOF. Define,

00zp="YZ2D_(>0), and 9=-g(ZPZ, i=1,2,--p.

b+|Z
Then from (2.7), it follows that
(2.9) MLy=ld;,+ln.=1ld,+7, (say), 1=1,---,p.

Now define a(L) to be the unbiased estimator of the risk differ-
ence of $™ with respect to J% that is, E[«(L)]=R(Z™, £)—RE*, ¥).
Using (2.9) and Lemma 2.1 it follows that



MINIMAX ESTIMATION OF COVARIANCE MATRIX 105

210)  al)=2F % Ga—la)/—1)+2 3 (r-+Hu@ndol)
+(6—p—1) 2} 7~ 3 log (L+nfd) -

Now it is easy to observe that

=(Z[) (k+p+1-—20)(ZP)
AL ARS LO+ZP PARS /b

12(k+p—1)(m—2) _ _ 6(m—2) _yp
= 10Vb (k+p—1  5Vb (k+p-1)

Hence using Lemma 2.2, with ©=1/2, one gets
log (1+%,/d.) = 7,/d.— (5/6)7i/d: .
Thus from (2.9), it follows that

«(L)S2 3 5 Une—ln)l L)+ Ge—p+1) 33 7= 33 iy
+2 33 L(@nd/oL) +(5/6) 33 il
Let us define,
a(L)=2 31 3 Un— L) =)+ (k—p+1) 3 nu— 35 milds
and
aL)=2 33 L(@nd/ol)+(5/6) 33 71/d? -

We will show that «(L)<0 and ay(L)=0.
Substituting the value of d,, it is clear that,

@1)  al)=23 5 2+2 3 Sl mll—1)—2 3 -
=23 S L=/

Now observe that, n,—7.=9(Z[})(Z,—Z) and for t>i, Z,—Z;<0
and [,—1,>0. Thus from (2.11), it follows that «(L)<0.
Now consider ay(L). Letting I, denote the usual indicator function
of set A, it is clear that
Z; _ Ly, s1%1emy if j=1
oY, (sgn Y,) (381 Y ) vy 1% 11 1my) if j#1

and hence
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~2 a‘(yy) =9(|Z|2)Inxq|sm(m))+2g'(|Z|2)Zt{ZtIuY1151Y|(m)J
i

+;2¢¢ Zy(sgn Y))(sgn Y ) x5 1 1=17 16y} -

Now observing that,

|ZP=3 Zot(p—m)Zim=___ 2 Yi+@—m)|Vlw
i=1 IED - ) gi
it clearly follows

U2 100ZPZ]=[00Z Pm+29'(ZP)|Z1] .

Therefore,

_ ome(ZD) _y pe UZDG+ZH—(2P)
al)=—=rzp 47! G+HIZIY

(Zf) & — 92017
+618) gz 2 (bt p+1—20)Z
<_2me(Z[) _4|Z[<'(Z[) , 41Z[=(Z[)
= b+IZP b+|Z[ G+ZTy
+6/60) T et p— 1127
_2(m—2)(Z]) (k+p—1)y'<*(Z[)
B Y e Y T
—__Zp) _9y_Bk+p—1) 170
=~ U feem—2) - BEEE=L <z <0

(by (2.8)).
This completes the proof of the theorem.

Remark 2.1. The estimator given in (2.7) is a very simple mini-
max estimator, however ¢7’s are not order preserving. Following
Barlow et al. [1] one can get rid of this problem by performing an
isotonic regression technique over ¢’s. See Lin [13] for a complete
description of this modification.

3. An adaptive choice of trimming point

The estimator given in (2.7) has a very elegant form. However
in the expression (2.7), the quantity m is not known. An appealing
possibility is to let the data select m, the trimming point. Since the
optimum choice of m should minimize the risk, therefore the obvious
method of selection is to choose that m=3 (say m*) which minimizes
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R(3™ 3).

Theoretical analysis of this estimator is immensely difficult, due to
the complicated dependence of m* on the sample eigenvalues.

For p=5, 6, 10, and for several values of k, we generated 100
independent and identically distributed observations from a Wy(I, k) dis-
tribution. We considered =1, to obtain maximum percentage improve-
ment in risks.

In Table 1, we consider our improved minimax estimator as given
in (2.7) with b=>5.8(m—2)}/(k+p—1)* and (| Z[) is treated as a constant
¢ with ¢=6(m—2)/5(k+p—1)*. The numerical studies show that such a
choice is optimum in terms of minimum risk criterion. We then com-

pute the minimax risk (R(f¥)) and the risk of the best invariant esti-

mator (R(fo)) for different p and k. Then using Monte Carlo simula-
tion method, we compute the risk of our trimmed minimax estimator
R(f‘"‘, %) for m=38,-.-,p. Then we find m* which minimizes R(f"", X).
The percentage improvements in risk of our adaptive trimmed estima-
tor is then computed over R(J) and R(¥®). The average standard
error is about .05. The numbers in parentheses are respectively {R(i'o)
—R(3™)} x100/R(%,) and {R(F*)— R(E™)} x 100/R(£").

Table 1 indicates that the percentage improvements are significant.

Table 1 also indicates that our estimator uniformly dominates Take-
mura’s [18] estimator in terms of risk.

Table 1. Risks, Optimum trimming point (m¥) and

Percentage Improvements of ™' over 2‘0 and XS.

k R(Z) R(Es) m* R(E™)
p=5

5 5.96 4.76 3 3.04(48.95, 36.13)

6 3.98 3.28 3 1.90(52.27, 42.00)

10 1.87 1.65 4 .88(52.80, 46.67)

15 1.14 1.05 4 .43(62.32, 59.04)
p=6

6 7.05 5.54 3 3.14(55.36, 43.27)

10 2.78 2.38 4 .97(64.94, 59.18)

15 1.65 1.49 6 .84(49.05, 43.47)
p=10

10 11.29 8.57 4 5.30(53.03, 38.09)

15 5.04 4.19 6 2.12(58.00, 49.43)
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