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Summary

Let X,, ©=1,---, p be the ith component of the pXx1 vector X=
(X, X;,+ -+, X,)'. Suppose that X, X;,---, X, are independent and that
X, has a probability density which is positive on a finite interval, is
symmetric about 6, and has the same variance. In estimation of the
location vector 6=(0,, 0,,---, 6,) under the squared error loss function
explicit estimators which dominate X are obtained by using integration
by parts to evaluate the risk function. Further, explicit dominating
estimators are given when the distributions of X,’s are mixture of two
uniform distributions. For the loss function L(f, 6)=|/d—6|* such an
estimator is also given when the distributions of X,’s are uniform dis-
tributions.

1. Introduction

Stein [7] and Brown [3] proved that the best invariant estimator
of the location vector of three or more dimensions are inadmissible,
and there has been considerable interest in how to improve it. James
and Stein [5] presented an explicit estimator {1—(p—2)/|| X|*}X, which
is better than X under squared error loss if X has a normal distribu-
tion with covariance matrix I, the identity matrix. They also showed
that the estimator

b

1.1) 3(X)= {1—m”_2

x.
is better than X, without the normality assumption, for sufficiently
small b and sufficiently large a. They did not, however, determine ex-
plicitly the values of these constants.

When X=(X,, X,,---, X,)’ is an observed value from a spherically

Key words and phrases: Simultaneous estimation, location parameter, finite support,
squared error loss, risk function, polynomial loss.
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symmetric p-dimensional distribution, explicit estimators of a location
vector which dominate X are given. See Brandwein and Strawderman
[2] and the papers in their references. Shinozaki [6] obtained similar
results in the case where X|, X,,---, X, are independent, identically and
symmetrically distributed » random variables, by applying integration
by parts to three typical distributions; uniform, double exponential and
t. Since Stein [8] used integration by parts for estimating the location
parameter of the normal distribution, it has been shown to apply to
simultaneous estimation problems in general continuous exponential
family by many authors. See Hudson [4].

In this paper, let X;, i=1,---, p be the ith components of the px1
vector X=(X,, X;,--+, X;)’. Suppose that X, X,,---, X, are independent
and that X, has a probability density which is positive on a finite in-
terval, is symmetric about #,, the center of the interval, and has the
same variance, and we estimate the location vector 0=(4,, 8-, 0,)
by the estimator 8, of (1.1) under the squared error loss function.

Berger [1] showed some results for losses which are polynomial in
the coordinates of (§—6) for the normal case, and Brandwein and
Strawderman [2] for the spherically symmetric distribution when the
loss is a nondecreasing concave function of quadratic loss. Here we
also study a special form of Berger’s loss function for the uniform dis-
tribution.

In Section 2, some sufficient conditions on the constants a and b
for the estimator 3, to dominate X are given. Further the constants
in another estimator

{1 b(I—B) }

(1.2) o(X)=11 e ey Bl

where B is a pXp projection matrix and I is the identity matrix, are
determined. In Section 3, the results in Section 2 are applied to the
truncated normal, the parabola and the cusp shaped distributions which
are defined by (3.1), (8.3) and (3.5), respectively. The cusp shaped
distribution is the distribution of the best invariant estimator of the
location parameter of the uniform distribution.

In Section 4, the values of a and b for the estimator 4, to domi-
nate X are given when the distributions of X,’s are mixture of two
uniform distributions with a common center.

In Section 5, we give sufficient conditions on the constants a and
b for the estimator 8, to dominate X under the loss L(d,, )=/ d,—8|*
when the distributions of X,’s are uniform distributions.
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2. Estimation of location parameters of the distributions with
finite support

Let X,, ©=1,.--, p, be the ith component of the px1 vector X=
(Xi, X3+ -+, X,) and a random variable from a probability ‘density of
the form

ft(lxi—0i|)>0 ’ if |@,—0.|=c;,

(2.1) filx,—0,)= .
) otherwise .

Suppose that X, X,,---, X, are independent and have the same vari-
ance V. Set Z,=X,—0,, and assume E Z;=0. In estimating the loca-
tion vector 6=(6,, 0, -+, 6,) by 3(X)=(3u(X), 01:(X),- - -, 3:,(X))’, some
sufficient conditions on the constants a and b of (1.1) are given such
as the risk R(3,, §)=E;|8,—0|* is uniformly smaller than R(X, §), where

13(X)—01=3 (2:(X) -0

E; denotes the expectation with respect to X.

THEOREM 2.1. Let X, have a probability demsity of the form (2.1).
Assume the following conditions be satisfied for i=1,--.,p:

(2.2) EZi{<,
and there exists a constant d,>0 such that

(2.3) 1 (1, v sw)iy| <dse

[

where V=S ‘ 2'f(2)dz. Then the risk of 8, is unmiformly smaller than

that of X if a=6 éd,/p and 0<b<2(p—2)V.

ProOOF.

_ _ 2 X(Xi—0) b X!
2.4)  R(X, 0)—R(@, 0)_21>E{§1 T 2(a+”X”,)2}.

The conditional expectation of a term of the summation in (2.4) equals

_ X(Xi—0,)) _ Z(Z,+40,) }
I=E {t_'_* =K, | 2dZ.t0) |
i a+uXuz} "{a+u2+ou*
Integration by parts gives

@5 I=={" 0" W=V Es l0(Z)+E,
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where

1 2(z,+0,)}
2.6 = — LA
@.6) U= T @tlat oy
and

==V " a)([" sV .

Integration by parts is applied to I, twice, then

en  L=ev{’ a@({" | (1", sdov+sioo)dudy)de,

e
where

9:(2)= 1 _ 8(z+0.) 8(2:+0.)* '
@FTF01F  (@+le+0y  (atla+opy

Note that S” <Su tf(t)dt/V+ fi(u)>du is an odd function and that
-c; \J=—c¢;

Sz S” <Su tfi(t)dt/V+f¢(u)>dudy is an even function.
t T};e inéquality |g:(z:)|=1/(a+]|z+0]%)* and the condition (2.3) show
that
(2.8) Lz —6dVEy, 1ol
t e+ X1
and from the last expression of (2.5) and (2.8),

1 _ 2Xi 6d, }
a+||X[*  (@+|I X (a+]X|P

I2VEs, |

Hence from (2.4),

ap+(p—2)]|X||2——6éEd, b X }

Rxa—Rmog%VE{
(X, 8)— R, 6) @ IXTy V-t IXTY
which is nonnegative if ag6§f}d¢/p and 0<b=2(p—2)V.

=1

Remark 2.1. Note that —S” tfi(t)dt/V=f(y) in the normal case.

It is shown, by using integration by parts also, that
— Sci Sa Sv (S" tf;(t)dt/V-i—fi(u))dudydz:: {E Z;_g(E Zi’)z}/6 E Z?.
—c; J—e; J—c; \J—c;

Under a stronger condition an alternative sufficient condition is ob-
tained.
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THEOREM 2.2. Let f, satisfy the conditions of Theorem 2.1 and
2 v u
2.9) (T voavesw)dudyzo,  faise.
=€ J=C \J—¢

Then the risk of 8, is uniformly smaller than that of X if a=24(2—
v 2)maxd,/p and 0<b=2(p—2)V.

1sisp
PrOOF. The inequality
9/2) Z — 42—V 2)(2+0.)/(a+]|z+ 6],
(2.7) of Theorem 2.1 and the condition (2.9) give
(2.10) L2 —242— 2 )V Eg, {d.X?/(a+]| X |} .

Therefore from the last expression of (2.5) of Theorem 2.1 and (2.10),
R(X, 6)—R(3,, 0)=0 if the conditions on a and b are satisfied.

In Theorems 2.1 and 2.2 it is shown that the estimator 3,, which
pulls X,’s towards the origin, dominates X. Here the estimator 3, of
(1.2), which pulls the estimators towards a sub-space spanned by B, is
considered, and some sufficient conditions on the constants a and b of
(1.2) are given such as R(X, 8)— R(3;, 6) is nonnegative.

THEOREM 2.3. Let f; satisfy the conditions of Theorem 2.1. Then
the risk of 93, is uniformly smaller than that of X if

6 {8 31 budit 3 (1—-bu)'d
az i=1 i=1
- Y4
g} (1 - bti)

and if

M=

0<b§2<p" b“—2>V,

i=1

where B=(b,,).

PrOOF. Theorem 2.3 can be proved in a similar way as Theorem
2.1 and the proof is omitted.

THEOREM 2.4. Let f, satisfy the conditions of Theorem 2.2. Then
the risk of 8; is uniformly smaller than that of X if

a=6 f: (1—by)d, /f% (1—by,)

and if
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0<bg2(p—§: bu—2>V.
i=1

COROLLARY 2.5. Let f, satisfy the conditions of Theorem 2.2. As-
sume that the diagonal elements of B are equal. Then the risk of 3, is
uniformly smaller than that of X if a=242—+'2)maxd,/p and 0<b

=2{p(1—-b.s)—-2}V.

Remark 2.2. If B=(b,), b,=1/p for all < and j, the estimator 9,
pulls the estimators towards their average X=(X,+- .- +X,)/p.

3. Examples

In this section Theorem 2.1 and Theorem 2.2 are applied to the
truncated normal, the parabola and the cusp shaped distributions to
obtain the estimator 3, which dominates X.

Example 3.1. Suppose that Z, has the common density of the form

@8.1) Ji

== (@00~ 0(—0))

where @ is a c.d.f. of standard normal distribution and I_,(2) is an
indicator function of the interval [—c,c]. (i.e. L_.(2)=1 if |2|<c, and
III—c,c](z)=0 if |z|>c¢).

Then, integration by parts shows that

pe=={" " (I sroanv+sen)aty=2C" aasi

where

9(2) = {2c2.0(2,) +26°0( —c) — (20— ¢) (20(c) — 1)/2— e(2;+-c) } &1
+2¢(1— e(zz—cz)/z) / Vor.

Note that ¢(z,)<0 for 0=z,<c. The inequality @(z,)=(20(c)—1)z.,/2c+
1/2 gives

—0(2) S (— k22 + k24 Ky)et* —2¢/v2n  for 0=z=<c,
where k,=20(c)—1 and k,=2ce "*/v/2x, and
(3.2) —0i(2) S (ke —ky) fi(=) [k, V

By Theorem 2.2 and (3.2), the risk of 3, is uniformly smaller than that
of X if

aza,, where a,=24(2—v2) (ke "1 — )k, pV
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and if
0<b=2(p—2)V.
Table 3.1 gives the value of a, for ¢c=1; ¢=2 and c=oo.

Table 3.1. ao: The lower bound of a

c 1 2 o
6.40V 5.52V/ 242—v2
Go (V=0.7/51§9) (V=0.8/211’4) X (V=1))/ep

Example 3.2. Suppose that Z; has the common density of the form
(3.3) F0) =25 (@ =)
Without loss of generality we set ¢c=1. Then
@o =" [ (" trodv+iio)dudy=— - @-1FE0z—fe)24

According to Theorem 2.2 and (3.4), R(X, 6)— R(3,, ) is nonnegative if
a=5(2—+2)V/p and 0<b=<2(p—2)V.

Example 3.3. Suppose that Z; has the common density of the form

(3.5) F@=EEL o—le)heel@)

where £=0. Assume ¢=1. Then

ney=—" " (" thoav-+si)dudy

= (1—2z)
2k +1)(ke+2) (o +4) 9(2:) f4(2) » for 0<2,<1,

where ¢y(z)=—(k+1)(k+2)2}+(k+2)(k—2)z,+k—2. To evaluate py(z),
we consider the following two cases: 0<k<2 and k>2.

Case 1: 0<k<2. Noting that ¢y(2;)<0, we can show that
(3.6) —py(2) SL(L+LW) V(2
where
l,=(k+3)/2048(k+ 1) (k+2)"(k+4) ,
l,= —27k"—252k* — 620k* + 640k* 4 4992k 4- 7168k 41024 ,
l,=9k'+ 62K+ T2k*— 96k 1128 , and
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L= (k+2) 5k — 4 — 16k(k—2) (k+1) (k+2) .

Therefore from Theorem 2.2 and (8.6), R(X, 6)— R(3,, 6)=0 if a=24(2—
V2 )Ml + Ll V/p and 0<b=2(p—2)V.

Case 2: k>2. Noting that
20, if 0sz<(EH2DE—2)+{(k+2)'(k—2)

2(k+1)
qx(2) +4(k—2)(k+1)(k+2)} '~ ’
X (k+2)
<0, otherwise ,
we get
(3.7 |Da(2) S UL+ Vii(z)) -

By Theorem 2.1 and (3.7), R(X, 6)—R(3,, 6)=20 if a=6l,(|l,|+1lY*)V and
0<b=2(p—2)V.

Remark 3.1. Note that the best invariant estimator of the loca-
tion parameter of the uniform distribution has the probability density
(3.5). According to Example 3.3, the estimator 4, has a smaller risk
than the best invariant one.

4. Estimation of location parameters for the mixture of
uniform distributions

Let X;, ¢=1,---, p be the i¢th component of the px1 vector X=
(X;, X;,+++, X,) and have a mixture of distributions with the same var-
iance. Let their densities satisfy the conditions (2.2) and (2.8) of Theo-
rem 2.1. In this case, sufficient conditions on the constants a and b of
the estimator 4, in (1.1) to dominate X are obtained by applying Theo-
rem 2.1. Here we study the case where Z; has the common density
which is a mixture of two uniform distributions, i.e. the density is

1—
ChY A= he i+ e ifd)

where 0<a<1 and ¢, Zc,.

THEOREM 4.1. Let Z; have the common density of the form (4.1).
Then the risk of 8, is uniformly smaller than that of X if

a=max {6c,+3(2— ' 2 )¢}/, 8cy+(9c3+60c(2— v 2 )c})?}
and if
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0<db=2(p—-2)V,

where

a(1—a)eics(c—e)(Ve,— Vo) e, —e) (V,,—Ve) } ,

Co=max y
’ { 2((A—a)e, +acy)V 2V

V—Sct 2 g —-Sc‘ 2 -
=\ 502, and V=\ 2 f(R)de=aV, +(1—-a)V,, .

-C 261 -

Note. 1t is easily seen that
a(l—a)ecs(c,—e)(V, Vcl) if a< a

A —ay,+acyV = ofe—c)+ad
a(c;—c,)"(V. ;= Ve,) , if a> a .
2V e(c;—er)+cf

PrOOF. From (2.4) of Theorem 2.1, the conditional expectation of
a term of the summation in {R(X, 8)—R(3,, 6)}/2b can be written as

_ X(X—a)}
L=E {_‘#
eI X
o z(z40) 1 S’ zi(zt+0¢) 1
=a —-—————Z —_— —_— .
| i g dact (=) |7 BEERS s,

Integration by parts shows that

%

v S PP
(4.2) S S_c, (S_cjtdt/2c,ch+1/26,)dudy—160; @—c)t  j=1,2.

...cj
The last expression of (2.5) of Theorem 2.1 and (4.2) give
43) LzaV, S

—-c;

tlz(f':).dz1;+(1——az)Vca S_’cz tlz(::) dz2,=VE, {t(Z)} +L,,

where
t(2)= 1 _ 2(z,10,) _ 3(2—1/7)0?,(2‘—{—0,)2
TaH AT @t Ol @l
L=V (" t@)(fe)-Fndz,

and

1-a)V,
WI[-%%](Z) .

Note that f(2)—f(2)>0 if ¢,<|z|<¢ and f(2)—f(2)<0 if |z|<¢,. Inte-
gration by parts is applied to L, twice, then

f@)= Ic —epei(2)+
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C

= _evg | (i)

where
t2) = 1 (2—v2 )ci—8(z,+0,)"
(a+lz+0|°)? (a+lz+01"°
n 8(z,40,)' —15(2— 2 )ci(z,+0,)*
(a+]lz+0]H*
n 24(2— 2 )c¥(z,+0,)
(a+llz+06|F ’
and

§2)=(1—a)(V,,/V—D)zi/4es— (1—a) (Vo) V—D)|z.|/2
+(1—a)(V,/V—1)c)/4 , if ¢ <|zi|=e,
=V, [V—1)aif e +(1—a)(V./V—1)2/4c,
+(1—=a)(V,/V=1)(cs—c))/4 , if |z]=Z¢; .

Note that §(z,) is positive, even and unimodal on (—¢,¢,) and f(z,) is
a step function of the same property. Thus, §(z,)/f(2)) has the maxi-
mum value when 2,=0 or z,=c¢,, and

(4.4) gz)saf(z) .
The inequalities (4.4) and
t(z) S 1/(a+|z+6]*)*—102—+ 2)c}/(a+lz+0)* ,

give

(4.5) L= —66,VEy, [ 1 10e2—v —2_)03] .

(@+IXI*  (@+ X[
Therefore from (4.3) and (4.5),

1 2X}46c, _ 32—v2)3X:+602—+'2 )0063} .
a+ | X|" (@+IXIF) @+ X1FY

L2VEs, |

Hence
R(X, 0)—R(3,, 6)
>2VE {‘W“‘(P—z)IIXI|2—6cop—3(2—«/—2')c§

(a+[1 X1
+ 32—+ 2)aci—602—v 2 )acip | X|?
(a+{1 X% 2Ve+IX|p)

which is nonnegative if
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a=max {6c,+3(2—+ 2)ci/p, 3co+(9c3+60cy(2— v 2)c) 2} .
and if
0<b=2(p—2)V.

Table 4.1 shows the lower bound of a/V for p=3; c¢/c;=1.5,2, 2.5
and «=0.2, 0.4, 0.6,0.8. The lower bound of a/V becomes large when
¢fe, or a is large.

Table 4.1. The lower bound of a/V

a
] o2 0.4 0.6 0.8
1.5 2.63 3.82 4.84 7.51
2 3.91 6.61 12.15 23.93
2.5 4.55 9.42 19.01 44.58

Remark 4.1. Theorem 4.1 can be extended to the mixture of =-
uniform distributions.

5. Estimation of location parameters for the uniform distribution
under the loss ||3,—@|

In this section the constants a and b of (1.1) are given such as the
risk of the estimator 4, is uniformly smaller than that of X with re-
spect to the loss

2
’

(5.1) loi—ol= {1 @u—00

for the uniform distribution.
Following Berger’s notation [1], let

7(X)=(r(X), -+, 1(X)) =8(X)—X
and
1, if =0,
0, if <0 or ¢>n or i is odd,

cn,t=
n—1
23 9C5-1,0-3» if 2515w
j=1
If g: R'—R! is n times differentiable, let

gw(z)=—;§,—g<z), 0<i=n, (@¥@)=0@).
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If h: RP— R! is a function with sufficient order derivatives, let

a(k-i-l)
ht(k),j(”(z) = W h(z) .
iV%j

The following lemma is useful in carrying out integration by parts
for the loss ||3;,—48|[*.

LEMMA 5.1. Let Z have the density of the form
flz),  if |z|=e,
f@)=

0, otherwise .

Suppose that g(z) is a real-valued m times continuously differentiable
Junction and that

[ lgr@llel,- (Mz<oo  for 05sm,
where
ft(z)=s; —yYfa)dy  for 1=ism and fi(2)=/(2).

Then

E{02)2) =310 g" ) fiu-in(2)z
where [x] 18 the greatest integer less than or equal to x.

PrOOF. This lemma can be proved by induction on n along the
same line as in the proof of Lemma 1 in Berger [1].

THEOREM 5.2. Let Z, (i=1,---, ) be p independent random wvari-
ables from a uniform distribution on (—c, c). Then the risk of the esti-
mator 3, is uniformly smaller than that of X with respect to the loss

gwen by (6.1) if

L p+107/30 , , 331
02— a5 a0

and if
0<b$2—1 +4/5 -2)V.
) (r—2)
PRrOOF.

2

l0—01'={£ @ -+a— 007 = {3 e+ 0)+2]
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Therefore
(5.2) A@)=E|s—0||'-E || X—0|"
=E {4 EUZ TtTjZiZj-'_EHE T§T§+4 2“2 thZ;
+2 Z}”Z} riZi+4 EUZ 147324} .

Using Lemma 5.1 to evaluate the conditional expectation of a term of
each summation in (5.2), we get

Es, (riZ8}=2 | (01 +roi®Miedact | rifieda
Eso, (rer, 22} =7 triosoy wriopoprione
iV ) fie Mads,
638 Es(rnZ=| rofieoda+s | rosieoda,
Bz, (022} = | 1 (2)f iz Mads,

+ S‘_c S’_c 1iPf(2)f1(2,)dz dz;

Ex, (271 =2 | (1 +rt®V ez + || rife)dz,

and
Ezi {ririzi} = S_c {ri®ri+2rir; 7OV (z)dz;
where
b(z —Fﬂ ) 1 2 | A2
0)=—_"21 4 ’ i) =——\— ’
ret0=—LEt  f)= )

f: z(zt)=%(23—c’)’ , and fa(z¢)=—9%—c—(—z%+c2)’ .

Similarly in the proof of Theorem 2.1, a straightforward calculation of
each term in (5.3) gives

b m || X|*+my | my]| X[*+m,
a+[| X e+ X| (a+]1 X%
ms|| X' me | X|P4mn | mg| X, | X }}
@+ X|1* (@+IX1%* @+ X1

(5.4) AOSE ] {m.,+

+

where
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mo=—4p(p+4/5)c'/9 ,
m,=2(p+2)c*b/3+8(p+4/5)c!/9 ,
my=4p(p+107/30)c*b/9+61p(p+89/61)ct/135 ,
my= —4(p+2)c’b*/3—176(p+19/11)c*b/45— 128(p+2)c*/135 ,
my=pc'b’+4p(p—1/10)c/3+3p(p—1)c*/5 ,
ms=">b"+8¢*b*+ 64¢'b/5+128¢/45 ,
me=21(p—4/T7)c*b*/5+1492(p—1477/1492)c®b/75+ 186(p—1)c/25 ,
m;=3p(p—1)c’b/2 ,
my=352(p—1)c’b , and
my=480c% .

Define

2
(Y, a, b)=my+ Y TMs | MY+ My | MY+ MY+ My
(y ) 0 a+y (a+y)2 (a_i_y)g
2
+ msy + myYy .
(e+y)  (a+y)

It is clear from (5.4) that A(6)<0 if @ and b can be chosen so that
vy, a,b)<0 for all 0<y=<oc. To evaluate v(y, a,b), we decompose v(y,
a, b) as

'v(y, a, b)Evl(yr a, b)+v2(yr a, b) .

where
/,
0y, @, b)y=mo+ TUYFTM | My miytmg | mey
l ) ' aty (a+y)? (a+y) (a+y)*
msy mgyt+mi'y myy*

(Y, a, b)=

(@+y)? (@+y) = (@+y)’
mi=3(p—2/5)c'b*-+ 1492(p— 1477/1492)c*h/45 + 186(p—1)c*/25 ,
and
my =6(p—1)cb/5 .

It is straightforward to verify that v(y, a,b)<0 and vy(y, a, b)<0
if the conditions on a and b are satisfied. The proof is completed.
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