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Summary

Let m,(x) be the recursive kernel estimator of the multiple re-
gression function m(x)=E[Y|X=z]. For given ¢ (0<a<1) and d>0
we define a certain class of stopping times N=N(e,d, ) and take
L o(x)=[muy(x)—d, my(x)+d] as a 2d-width confidence interval for m(x)
at a given point x. In this paper it is shown that the probability
P {m(x) € Iy 4(x)} converges to a as d tends to zero.

1. Introduction

Let Z=X,7Y), Z=(X, Y1), ---, Z,=(X,, Y,) be independent and
identically distributed R?x R-valued random vectors on a probability
space (2, B, P) with an unknown joint probability density function
(p.d.f.) f*(x,y) with respect to the Lebesgue measure. There have
been many papers on the estimation of the nonparametric regression
function m(x)=E[Y|X=2] (of Y on X) by

(L1 mo(@) =3} Wa(®@) Yo,

where W, (2)= W,(z, X, ---, X,) for each 7 (1=¢<n) is a suitable real-
valued Borel measurable function of z, X, - - -, X,.

Nadaraya [8] and Watson [14] proposed the estimator (1.1) with »
=1 and

Wou(a)=K(@—Xolho) |33 K(@—X)/h)

where K(x) is a suitable kernel function and {k,} is a sequence of
window-widths tending to zero. Later on, many authors have studied

Key words and phrases: Regression function, recursive estimator, nonparametric estima-
tion, sequential confidence intervals, asymptotic consistency.

69



70 EIICHI ISOGAI

its asymptotic properties (see Prakasa Rao [10] for example).

When data increase we may be faced with computational burdens
in processing them. To decrease these burdens Ahmad and Lin [1]
proposed a recursive version of (1.1) with

W) ="K (@~ XDk 5 h*K (@@= X)lh)
or equivalently,
my(z)= f()=0
12 fD) =l i@+ K (@ — X))
1,(8) = M)+ £ @ Y} K (2= X))

and they proved some pointwise results for these estimators. Devroye
and Wagner [4] considered a still simpler recursive estimator than (1.2).
The author [6] proposed a class of recursive estimators m,(x) defined
in Section 2 and used in this paper, which contains (1.2) as a special
case. Stone [13] has investigated the estimator (1.1) and discussed
about sufficient conditions on {W,,(x)} for m,(x) to be consistent.

On the other hand, when one uses a recursive estimator in prac-
tical situations one may be required to terminate the computations to
obtain the estimator with given accuracy. In this case the sample
size is a random variable. Suppose that N, for each ¢ ¢ (0, o) is a stop-
ping time. Recently, Samanta [12] has shown the asymptotic normali-
ty of my(x) by using the estimator (1.2).

In this paper we propose a class of stopping times N=N(e,d, x)
based on the idea of Chow and Robbins [3], construct a sequence of
2d-width sequential confidence intervals Iy (x)=[my(x)—d, my(x)+d]
for m(x) and show that the probability P {m(x) € Iy «(x)} converges to
a as d tends to zero.

In Section 2 we shall make some preparations and give several
lemmas. In Section 8 we shall prove the asymptotic consistency of
the sequential confidence intervals I ,(x).

2. Preliminaries and several lemmas

In this section we shall make some preparations for Section 3.

Let K(x) be a given bounded p.d.f. on R? with respect to the
Lebesgue measure satisfying ||u|2K(u) — 0 as |u||,— co, where ||-||, de-
notes the Euclidean norm on R?. We shall impose either of the fol-
lowing conditions on K(x):

(K1) SRpu,K(ul, <oy, Upduy ¢ du,=0 for all +=1,..-,p, and



(K2)
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[, Il <o

Let {h,} be a nonincreasing sequence of positive numbers converging
to zero, on which some of the following conditions are imposed :

(H1)
(H2)

(H3)

(H4)

(H5)

nhi 1 oo as n— oo ;
For some a (0<a=x1)

n'~%h2 — 0 as n— oo,

n
n"z"hf;gi J4*Ph;»— B  as m— oo for some positive constant B,
n
')1}‘/"""‘h,i‘3’/’jgl 7 Ph;» >0 as m— oo, and

n
nAohEr 3 2 h—> 0 as m— o0
=1

For any ¢ (>0) there exists a positive constant 8 such that
|n/m—1|<8 implies |k, /h,—1|<e;

> (he) < oo ;
n=1

nhEt— 0 as n— oo for some positive constant 7.

Throughout this paper we use the following class of recursive esti-
mators m,(x) of the regression function m(x), which is proposed by
the author [6]:

my(x)=0, fo(x)=c for an arbitrary positive constant ¢
fn(x) = fn-l(x) + a, {Kn(x! Xn) - fn—l(w)}
mu(w) = mn—l(x) + a’nG(fn(m)) { Yn_ m,_. l(m)} Kn(x’ Xn)

for each n=1, where

2.1)

and

a,=afn  with 0<a<l,
y! if y>0

Gy)= i
0 otherwise ,

K. (%, 8)=h;?K((x—s)/h,) for x,8€¢ R”.

In this paper, if in some term its denominator is less than or equal
to zero we define the value of the term to be zero. Let
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@)=\, @y, a@={ e vy, ow={ v v,

¢(x)=SR Y@, y)dy and o(x)=(g(x)/f(2))—(e(x)/f(x))? (20).

Clearly, v(x)>0 is equivalent to f(#)>0 and v(x)>0. Throughout this
paper we assume that f(x), ¢(x), g(x) and ¢(x) are all finite on R? and
write m(x)=q(x)/f(x). Also, let C, C,, C,, --- denote appropriate posi-
tive constants.

Define sequences {g.(%)}, {g.(x)} and {v.(x)} as follows:

%(®)=9o(x)=0,
4u(®) =qn-1(%) + . {Qu(®, Z,)—g,1(%)}
9n(®) = gu-1(#) + 0. {Gu(®, Z,)—gs(2)}
(%) = (9u(@)/f (%)) — (@u(@)/f o(%))*
for each n=1, where for z ¢ R?, 2=(u, y) ¢ R°XR and n>1
Qu(x, 2)=yK,(x, u) and G.(z,2)=y'K.(x, u).
For a, in (2.1) set

rn=n=1, rn=jﬁ(1——a,) for n22 and
=2

T (1—a) if n>m20
— J=m+1

mn

1 if n=m=0.
Obviously, 7,] 0 as n— oo, 7,>0 for all n=0 and
(2.2) Bun=1nrs if n2m=1.
It is known that
(2.3) Brn~m*n=" as n=m—oo, and
(2.4) Cn=r.2Cm™ for all n>1,
where “¢,~¢, as n— oo ” means lljg bulPa=1.

Remark 2.1. We can write f,(x), ¢.(x) and g,(x) as follows:

() =jé a8 K (%, X;)+Bic

q;.(m>=jz::l 0,8,,Q,(x, Z;) and g,.(x)=jz; 08,64, Z,) ,
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Lid .
where 31 (:)=0 if n<m.
j=m

For any real-valued function ¢ on R? let C(6) be the set of con-
tinuity points of # and ||6|l..=sup {|6(x)|: x € R?}. For any fixed = € R?
and n=1 let

nyo)-——Kn(x; Xn)—E [Kn(x’ Xn)] ’ Urfl)an(x7 Zn)—E [Qﬂ(x’ Z")] ’
Wo=ai (U, UPY . By=(nh2)'r, W, and

B =(nh3)"(fu(®)— f(2), g.(x)—q(@))',

where the prime denotes transpose.
We shall summarize some results obtained in [5] and [6].

LEmMA 2.1 ([6]). Let {d,} be a sequence of positive numbers con-
verging to zero. Let k(x) be a bounded, integrable, real-valued Borel
measurable function on R® satisfying ||u|3|k(u)|— 0 as ||u|,— oco. Let
0(x) be an integrable, real-valued Borel measurable function on R*. Then,
for each point x € C(0) we have

Sm» d70e((2 — ) dn) B (w)d — 0(z) Sﬂ kudu  as n—oo and

sup | _ dilk(@@—w)/d.)||0@)|dusC,

where C may depend on x.

LEMMA 2.2 ([6]). Assume E[Y?*<oo. Let (H4) be satisfied, and let
x be a poimt with f(x)>0, belonging to the set C(f)NC(@Q)NClg). Then
we have

lim f(x)=f(x)  with probability one (w.p.1.),
limq,(x)=q(x) w.p.1l., and limm. (x)=m(x) w.p.l..

LEMMA 2.3 ([5]). Let {y.} be a sequence of random wvariables on
a probability space (2, <F, P). Suppose that there exists a mull set A
such that for each w € A°

Y(@)20 for all n=1, limy w)=1 and

Yn(@)>0 for all nzm if Yy (w)>0 for some m=m(w).

Let {b(n)} be a sequence of positive numbers satisfying
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limb(n)=cc and limb(n)/b(n—1)=1.

n—00 N~

For each t ¢ (0, oo) define N, as the smallest integer n=1 such that b(n)/t
2Y.>0. Then, we have

P{N,<+o0}=1 for each te(0, ), P{N,1 o as t—oo}=1 and
P{b(N)/t—1 as t — oo} =1.
The following lemma gives the asymptotic normality of B,.

LEMMA 2.4. Assume E[Y*']<oco. Let (H2) be satisfied. Consider
a point x € C(f)NC(Q)NC(g) with v(x)>0. If either x e C(¢) or ||¢|l.<
oo holds, then we have

B,— N0, I) as n— oo (in law),
where the covariance matrix I'=I(x) is given by

ot (@) ()
F=ds SR" K (u)du( q(=) g(w)) '

Proor. By Hoélder’s inequality we get that for each j=1
E[[UMPI=8E[1Q,(x, Z)["]
=8 {WPK @, w9 K (@, u)(FHw, )} dudy

3/4

és[gnl’xx v K (@, w)}*f*(u, y)dud?/]
1/4
X [SRPXR Kz, u)f*u, y)dudy] =8h;»x I, x 1,
where

L=||,, K@=k} g(win]"  and

h=|{,, hrK (@—uyh)fdu] .

As 2z e C(f), it follows from Lemma 2.1 that L<C, If x¢eC(¢) then
by Lemma 2.1 we get [,<C;, and if |¢|.<oo then we have

L={lgll-l K]l&}"< oo .
In any case, I; X1, is bounded by a constant and therefore, we obtain
(2.5) E[JUMPSCh;?  for all j=1.
Replacing (4.17) in [6] by (2.5) we can use the same arguments as in
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the proof of Lemma 4.1 of [6], to complete the proof of Lemma 2.4.

LEMMA 2.5. Let {h,} be a nonincreasing sequence of positive num-
bers converging to zero and satisfy (H1) and (H2). Let {V,} be a se-
quence of independent random variables on a probability space (2, &, P)
satisfying

E[V.]=0 and R E[V]]ISC for dall n=1.

For any d € (0, ) let N(d) be a positive integer-valued random variable
on (2, F, P) and n(d) a positive integer with lgm n(d)=oo0. Set
—0

T,,=j$ a;B;V; for each n=1,

where a, 8 given in (2.1). If
N@d)nd)—>1 asd—0,
then we have
(N w) Tywr—Toaw) 0  as d—0.

PrOOF. For simplicity let N=N(d) and n=n(d). Let any positive
numbers ¢ and & be fixed. For any p (>0) set

M,=[(1—-pyn] and M,=[(1+p)n],

where [b] denotes the largest integer not greater than b. Since as
p—0

2p/(1—p)—0 and {(1-p)/(1+p)}*—1,
there exists a positive constant p=p(e, §)<1/2 such that
(2.6) 20/(1—p)<e*/2 and (1—{(1—p)/(1+p)}*)'<e%/2.
As ljg)xn:oo we get M{— o as d—0 for i=1,2 and M,/M,~(1—)p)/
(14+p) as d — 0. Hence by (2.3) and (2.6) we have

2.7 (1—Bux,)' <% for d sufficiently small.

Also, since (M,—M,)|M,~2p/(1—p) as d — 0, it follows from (2.6) that
(2.8) M;—M)IM, <% for d sufficiently small.

It is clear that

(2.9) M,/M,<C, for all d>0.

Now, we shall prove the lemma. By assumption we get
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(2.10) P{IN/n—1|=p}<é  for d sufficiently small.
Put

=P (NR3)*|Tu—T,| Z¢, IN—n|<pn} .
Then

(2.11) IZP{(ik)*|T,— T,|=¢ for some 1 € (M;, M;]}
SP ()Y Ts— Tu,|+|To— Ty,) = ¢ for some <€ (M, My]}
<P{ max ('Lh")‘”XZ max IT, Ty, |z¢}

Mi<isMy

=P { max (zh")”zx max lTi Ty |ze/2}.

M <iSH,

By (2.2) and the definition of T, we have that for e (M, Mj]

My i
T~ T || 5 0, Bu—Ba) Vi | +| 3, @iV
i=1 J=M+1

M, i
Slru,—1)| 2 ajr;lvj‘ +Tt] 2] aijJ—IV;l:
=1 J=u 41

which, together with (2.11) and the monotonicity of k,, nhZ and 7,,
implies that

212) I= {(Mzh )‘/2(ru1-1x,)|2‘1171 VII

+(1thp )1/2 max 7;

zsll:

E a'jTj_lel 25/2} sJi+d;,
=M +1

where

b
jzzl a;ry ‘V,I = 6/4} and

=P {(M 5’:1)1/2(7’.111 - sz)

{(M,h” ) max n] 3 a,r;'V,l g_e/4}.
M<isM, |j=H+1
From (H2), (2.4) and assumption we get
ih{’jiaﬁﬁ;iE [V,’]ngi"’“h‘;jé jebhr<C,  for all 1.
Hence by Chebychev’s inequality, (2.2), (2.7) and (2.9) we obtain
(2.13) Ji=Ce™(1— ﬂﬂllz)z(MZ/ M,)M k3, 2 @B, E [Vi1=C¢

for d sufficiently small. From assumption, the Hajek-Rényi inequality
(see Petrov [9], page 51), the monotonicity of &, (2.8) and (2.9) we
have that for d sufficiently small
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M. N,
(2.14) Jy=Cee  Mhi, Zz‘. a; E[V/]=Ce™M, Zz‘. Jt
=M +1 =M +1

SCe MM (My— M) =Gk
Combining (2.10), (2.12), (2.13) and (2.14) we obtain
P{(NIR) | Ty—Talze} =I+P{|{N—n|zpn} =C

for d sufficiently small, which concludes the proof of Lemma 2.5.

3. Main results

In this section we shall propose sequential confidence intervals
L, «(x) for m(x) with prescribed width 2d and coverage probability a.
Then the asymptotic consistency of these confidence intervals will be
shown, that is, P {m(x) € Iyw %)} —a as d —0, where {N(d)} is the
class of stopping times defined below. ‘

Let any a (0<a<1) be given. Define D=D(a)>0 by &(D)—&(—D)
=a, where &(-) is the standard normal distribution function. Let d be
any positive number, and let any z € R? be fixed. We define the stop-
ping time N(d)=N(a,d,x) as the smallest integer n=1 such that
(D*B)~'d*nh2 2 v,(x)/f(x) >0, where

3.1) B=a'g Snr K*u)du (>0) with B being given in (H2).

Define the confidence interval I, ,(x) as
L «(x)=[m,(x)—d, m.(2)+d].

Also, define n(d)=n(a,d,x) as the smallest integer m=1 such that
(D*B)~'d*nh2 = v(x)/ f(2)>0.

Let o*(x)=Buv(x)/f(x) with B being given in (3.1).

The following lemma states the asymptotic properties of N(d).

LEMMA 3.1. Assume E[Y*<oo. Let (H1), (H3) and (H4) be satis-
fied. Comsider a point x € C(f)NC(q)NC(g) with v(x)>0. If either x ¢
C(¢) or ||¢|l.<oco holds then we have

P{N(d)<+o0}=1 for each d>0, P{N(d)] o as d—0}=1,
N(@)h%w))d* (Do (x)) »1 as d—0 w.p.l., and
N(d)Rwr/(n(d)h2ay) — 1 as d—0 w.p.l..

PrROOF. From the definition of N(d) we get

(3.2) N(d)=smallest integer n=1 such that b(n)/t=y,>0,
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where

- ’U,,(x)/fﬂ(x) , b — 'ﬂhﬁ d =D2 -2 .
hE i@ | T E e DB

Clearly,
3.3) b(n)>0 for all n=1, limb(n)=oc and limb(n)/b(rn—1)=1.

We shall show that

(3.4) V() =0 for all =1 on 2

and that for any fixed we £

3.5) v (x)>0 for all n=m if v,(x)>0 for some m=m(w)=1.

For simplicity we omit w. By the definition of »,(x) it suffices to con-
sider the case where f,(x)>0.
That v,(x)=(resp. >) 0 for all n=1 is equivalent to

(3.6) gn(®) fo(®)—qi(x)=(resp. >) 0 for all n=1.

Let any w € 2 be fixed. First we shall prove (38.4). By the definitions
of fu(x), ¢.(x) and g,(x) we have

3.7 A,.,=(1-—a,)A,+a,(l1—a,)D, for each n=1,
where

Ar=gns(2) for(®)—Goa(x)  and

D=6 (@, 2) fons(®) + Kol Xo)uos(@)—2Q1(e, Zo)0r(2)
By Remark 2.1 we get

3.9) D,.=:2: 0,8y 1[G, Z)K (%, X))+ K (%, X,)G (%, Z))
—2Q,(@, Z)Q®, Z))} +Gol®, Z)Bo nst

for each n=1. From the definitions of K,(x, X,), Q.(%, Z,) and G.(x, Z,)
we have

G (2, Z,)By n1e=0 for each n=>1
and

Gn(xr Zﬂ)Kj(w’ Xj)+Kn(x! Xn)Gj(x9 Zj)"'an(x) Zn)Qj(xy Zj)go
for each j=1, -.., n—1 with n=2,

which, together with (3.8), yields that
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(3.9) D, =0 for each n=1.
It follows from (3.7) and (3.9) that
(3.10) Ai=(1—a,)4, for each n=1.

As A,=0, by (3.10) and induction we have A,=0 for each n=1, which,
together with (3.6), gives (3.4).

Next we shall prove (3.5). Assume that v,(x)>0 for some m=1.
From (8.6) we get A,,.,>0. Suppose that A,>0 for some n>m+1.
Then by (2.1) and (3.10) we have A,,;>0. Hence by induction we ob-
tain A,>0 for all n=m+1, which is equivalent to v,(x)>0 for all n=
m. Thus (3.5) was proved.

Next we shall show that

(3.11) g.(x) — g(x) as n— oo w.p.l..

Since Lemma 2.1, the definition of G.(x, Z,) and x € C(g) give E [G.(x, Z,)]
— g(x) as n— oo, it follows from Remark 2.1 and the Toeplitz lemma
(see Loeve [7], page 238) that

(3.12) E[g.(2, Z,)] > g(x) asmn—oco.
Lemma 2.1 and (H4) give
)6} E[Gi(#, Z)]< oo,
n=1
which, together with Kolmogorov’s convergence theorem, Kronecker’s
lemma, Remark 2.1 and (2.2), implies that
(3.13) g.(x)—E [g.(x)] = 0 as n— oo w.p.l..

Thus, according to (3.12) and (3.13) we obtain (3.11). Lemma 2.2 and
(3.11) give

(3.14) V(2) — V() as m— co w.p.l..

From Lemma 2.2, (8.4), (3.5), (8.14) and the property of f,(x), there
exists a null set A such that for each w € A°

Yu(w)=0 for all n=1, limy,(w)=1 and
Y(@)>0 for all n=zm if y,.(w)>0 for some m=m(w)=1,

which, together with (8.2) and (8.3), permits us to apply Lemma 2.3
to obtain the first three assertions of Lemma 3.1. Replacing N(d),
v(x) and f.(z) by n(d), »(x) and f(x), respectively, we have that as
d—0 n(d) > oo and n(d)hi,,d*/(D'e*(x)) — 1, which, together with the
third assertion, implies the last assertion. This completes the proof.
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Remark 3.1. By use of Lemmas 2.2 and 3.1, and Theorem 1 of
Richter [11] we have that under all the conditions of Lemma 3.1

My (2) — m(x) as d —0 w.p.1..
The following theorem is one of main theorems.

THEOREM 3.1. Assume E[Y*]<o. Let (K1), (K2) and (H1)~(H5)
be satisfied. Suppose that there exist bounded, continuous second partial
derivatives 9*f(x)/ox,0x, and d'q(x)/oxdx, on R? for i, j=1,---,p. Com-
sider a point x € C(g) with v(x)>0. Assume x € C(¢) or ||¢|l.<oo. If

(3.15) N(d)/n(d) 51 as d—0
then we obtain
(N(@hE ) (myw(2)—m(x)) 7 N(0, ¢*(x))  as d—0.

Proor. For simplicity put N=N(d) and n=n(d). It follows from
Lemma 3.1 that » — o0 as d > 0. First we shall show that

(3.16) By—>NO,I) asd—0,

where I' is given in Lemma 2.4. From Lemma 2.4 and the Cramér-
Wold theorem (see Billingsley [2], page 49) we get

(3.17) D'B,— N(0, D'I'D) as d — 0 for any D' € R.
Since
D'By=D'B,+(D'By—D'B,)  for any D' ¢ R?,

to prove (3.16) it suffices from (3.17) and the Cramér-Wold theorem to
show that

(3.18) D'By—D'B, -0 as d -0 for any D' e R?.
Let any D'=(d,, d,) € R* be fixed. For i=1 set

S‘(”=,§i] a,B; U for t=0,1.
It is clear that

(3.19) D'BN—D'B,,=§ d(NRR)(SP— S©)
-_l- {(Nh%/(nk?))*—1}D'B, .
Put
§x)=(f(®))"(9(x))  for ¢=0,1.
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It follows from assumption and Lemma 2.1 that for ¢{=0,1
ME(UONS] WK @ -wh)eowdusC  for all izl.
Thus by use of Lemma 2.5 we have
(3.20) 2 d(NRE)HSP—S8P) >0  as d—0.

Let any ¢ (>0) be fixed. From (3.15) and (H3) we get that for 4 in
(H3)

P {lhy/h,—1|Ze} <P {IN/n—1|28} -0 as d—0,
which implies that
byl —1 a3 d—0.
Therefore, (3.15) gives
{Nh%/(nh2)}?—~1—-0 as d—0,
which, together with (8.17), yields that
(3.21) {(Nh}/(nh2)*—1}D'B,—>0 as d—0.

From (3.19), (3.20) and (3.21) we obtain (3.18). In the proof of Theorem
4.1 of [6] it was proved, under the assumptions of Theorem 3.1, that
|B¥—By|l;— 0 as 1— oo on 2. Hence by Lemma 3.1 we get || B¥— Byl
—0 as d — 0 w.p.1l., which, together with (3.16), implies that

(3.22) Bf—> N(©O,I') asd—0.
Define a function T'(u,v) on R* as
vlu if u+0
T(u, v)=
otherwise .

Let L'=(—q(x)/f*x), f'(x)). By the Taylor theorem we get

(3.28)  (NRR){T(fx(x), an(2))— T(f(®), a(%))} =L'Bj+ el B¥|l2
on [N +oo],

where
e—0 if ||(fi(@), ¢(2))—(f(2), ¢(®))'[l: — 0.

According to Lemma 2.1 of [6] we have my(x)=qx(x)/fx(x) on [N < +co].
Hence by the definitions of T'(u, v) and N we obtain
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(3.24) T(f(®), gu(x))=my(x) on [N<+oo].
Since m(x)=q(x)/f(x) it follows from (3.23) and (38.24) that
(3.25) (NhR)"(my(x)—m(x))=L'Bf+ey||Bfl. on [N<4oo].

Lemma 2.2 gives ¢, —0 as ¢ — oo w.p.l., which, together with Lemma
3.1, yields that

(3.26) ex—0 as d—0 w.p.1..
Combining (3.22) and (3.26) we get
(3.27) ex||B¥l: >0 as d—0.

Therefore, according to (3.22), (8.25), (3.27) and Lemma 3.1 we obtain
(NRR)"*(my(z)—m(z)) - N0, L'T'L) as d—0,
which concludes the proof of Theorem 3.1.

We are now in the position to give our main result.
THEOREM 3.2. Under all the conditions of Theorem 8.1 we have
P {m(x) € Iy o(x)} — a as d—0.
ProoF. Put N=N(d). By Lemma 3.1 and Theorem 3.1 we have

Dd~Y(m (%) —m(x))
= (D'e*(x)/(Nh3d")) (N[ o' (2))*(my(2) — m(x)) > N(0, 1)
asd—0.

Thus we obtain

P {m() € Iy,«x)} =P {| Dd~'(my(x)—m(x))|< D} — &(D)—&(—D)=a
as d—0.

This completes the proof.

COROLLARY 3.1. Assume E[Y!|<oo. Let (K1) and (K2) be satisfied,
and let ||¢ll.<oo. Suppose that there exist bounded, comtinuous second
partial derivatives 0'f(x)/ox,0x; and 9q(x)/ox.9x, on R? for i,5=1,.---,p
and that g(x) is comtinuous on R?. Set

h,=n""? with p/(p+4)<r<1.

Let a in (2.1) satisfy 1=a>(1—7r)/2. Then, for each point x with v(x)
>0 we obtain

P {m(x) € Iy, s(2)} — @ as d—0.
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PrOOF. We can easily verify (Hl)~(H5) with g=(2a+r—1)"".

Lemma 3.1 gives (3.15). Thus, since all the conditions of Theorem 3.1
are fulfilled, we obtain Corollary 3.1 by Theorem 3.2. This completes
the proof.
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