ASYMPTOTIC CONSISTENCY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR A MULTIPLE REGRESSION FUNCTION

EIICHI ISOGAI

(Received June 4, 1984; revised Apr. 22, 1985)

Summary

Let $m_n(x)$ be the recursive kernel estimator of the multiple regression function $m(x)=\mathbb{E}[Y|X=x]$. For given α $(0<\alpha<1)$ and d>0 we define a certain class of stopping times $N=N(\alpha,d,x)$ and take $I_{N,d}(x)=[m_N(x)-d,\ m_N(x)+d]$ as a 2d-width confidence interval for m(x) at a given point x. In this paper it is shown that the probability $P\{m(x) \in I_{N,d}(x)\}$ converges to α as d tends to zero.

1. Introduction

Let Z=(X, Y), $Z_1=(X_1, Y_1)$, ..., $Z_n=(X_n, Y_n)$ be independent and identically distributed $R^p \times R$ -valued random vectors on a probability space (Ω, \mathcal{B}, P) with an unknown joint probability density function (p.d.f.) $f^*(x, y)$ with respect to the Lebesgue measure. There have been many papers on the estimation of the nonparametric regression function m(x)=E[Y|X=x] (of Y on X) by

(1.1)
$$m_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i ,$$

where $W_{ni}(x) = W_{ni}(x, X_1, \dots, X_n)$ for each i $(1 \le i \le n)$ is a suitable real-valued Borel measurable function of x, X_1, \dots, X_n .

Nadaraya [8] and Watson [14] proposed the estimator (1.1) with p = 1 and

$$W_{ni}(x) = K((x-X_i)/h_n) \Big/ \sum_{j=1}^n K((x-X_j)/h_n)$$
,

where K(x) is a suitable kernel function and $\{h_n\}$ is a sequence of window-widths tending to zero. Later on, many authors have studied

Key words and phrases: Regression function, recursive estimator, nonparametric estimation, sequential confidence intervals, asymptotic consistency.

its asymptotic properties (see Prakasa Rao [10] for example).

When data increase we may be faced with computational burdens in processing them. To decrease these burdens Ahmad and Lin [1] proposed a recursive version of (1.1) with

$$W_{ni}(x) = h_i^{-p} K((x-X_i)/h_i) \Big/ \sum_{j=1}^n h_j^{-p} K((x-X_j)/h_j)$$
,

or equivalently,

(1.2)
$$m_0(x) = f_0(x) \equiv 0$$

$$f_n(x) = (h_n/h_{n-1})^p f_{n-1}(x) + K((x-X_n)/h_n)$$

$$m_n(x) = m_{n-1}(x) + f_{n-1}^{-1}(x) \{ Y_n - m_{n-1}(x) \} K((x-X_n)/h_n)$$

and they proved some pointwise results for these estimators. Devroye and Wagner [4] considered a still simpler recursive estimator than (1.2). The author [6] proposed a class of recursive estimators $m_n(x)$ defined in Section 2 and used in this paper, which contains (1.2) as a special case. Stone [13] has investigated the estimator (1.1) and discussed about sufficient conditions on $\{W_{ni}(x)\}$ for $m_n(x)$ to be consistent.

On the other hand, when one uses a recursive estimator in practical situations one may be required to terminate the computations to obtain the estimator with given accuracy. In this case the sample size is a random variable. Suppose that N_t for each $t \in (0, \infty)$ is a stopping time. Recently, Samanta [12] has shown the asymptotic normality of $m_{N_t}(x)$ by using the estimator (1.2).

In this paper we propose a class of stopping times $N=N(\alpha,d,x)$ based on the idea of Chow and Robbins [3], construct a sequence of 2d-width sequential confidence intervals $I_{N,d}(x)=[m_N(x)-d, m_N(x)+d]$ for m(x) and show that the probability $P\{m(x) \in I_{N,d}(x)\}$ converges to α as d tends to zero.

In Section 2 we shall make some preparations and give several lemmas. In Section 3 we shall prove the asymptotic consistency of the sequential confidence intervals $I_{N,a}(x)$.

2. Preliminaries and several lemmas

In this section we shall make some preparations for Section 3.

Let K(x) be a given bounded p.d.f. on R^p with respect to the Lebesgue measure satisfying $\|u\|_p^p K(u) \to 0$ as $\|u\|_p \to \infty$, where $\|\cdot\|_p$ denotes the Euclidean norm on R^p . We shall impose either of the following conditions on K(x):

(K1)
$$\int_{\mathbb{R}^p} u_i K(u_1, \dots, u_p) du_1 \dots du_p = 0 \quad \text{for all } i = 1, \dots, p, \text{ and}$$

(K2)
$$\int_{\mathbb{R}^p} ||u||_p^2 K(u) du < \infty.$$

Let $\{h_n\}$ be a nonincreasing sequence of positive numbers converging to zero, on which some of the following conditions are imposed:

(H1)
$$nh_n^p \uparrow \infty$$
 as $n \to \infty$;

(H2) For some
$$a$$
 $(0 < a \le 1)$
$$n^{1-2a}h_n^p \to 0 \quad \text{as } n \to \infty ,$$

$$n^{1-2a}h_n^p \sum_{j=1}^n j^{2(a-1)}h_j^{-p} \to \beta \quad \text{as } n \to \infty \text{ for some positive constant } \beta,$$

$$n^{3/2-3a}h_n^{3p/2} \sum_{j=1}^n j^{3(a-1)}h_j^{-2p} \to 0 \quad \text{as } n \to \infty , \text{ and}$$

$$n^{1/2-a}h_n^{p/2} \sum_{j=1}^n j^{a-1}h_j^2 \to 0 \quad \text{as } n \to \infty ;$$

- (H3) For any ε (>0) there exists a positive constant δ such that $|n/m-1|<\delta$ implies $|h_n/h_m-1|<\varepsilon$;
- (H4) $\sum_{n=1}^{\infty} (n^2 h_n^p)^{-1} < \infty ;$
- (H5) $n^{1+\eta}h_n^{p+4} \to 0$ as $n \to \infty$ for some positive constant η .

Throughout this paper we use the following class of recursive estimators $m_n(x)$ of the regression function m(x), which is proposed by the author [6]:

$$m_0(x)\equiv 0$$
, $f_0(x)\equiv c$ for an arbitrary positive constant c
$$f_n(x)=f_{n-1}(x)+a_n\{K_n(x,\,X_n)-f_{n-1}(x)\}$$

$$m_n(x)=m_{n-1}(x)+a_nG(f_n(x))\{Y_n-m_{n-1}(x)\}K_n(x,\,X_n)$$

for each $n \ge 1$, where

(2.1)
$$a_n = a/n \quad \text{with } 0 < a \le 1,$$

$$G(y) = \begin{cases} y^{-1} & \text{if } y > 0 \\ 0 & \text{otherwise.} \end{cases}$$

and

$$K_n(x, s) = h_n^{-p} K((x-s)/h_n)$$
 for $x, s \in \mathbb{R}^p$.

In this paper, if in some term its denominator is less than or equal to zero we define the value of the term to be zero. Let

$$f(x) = \int_{R} f^{*}(x, y) dy , \quad q(x) = \int_{R} y f^{*}(x, y) dy , \quad g(x) = \int_{R} y^{2} f^{*}(x, y) dy ,$$

$$\phi(x) = \int_{R} y^{4} f^{*}(x, y) dy \quad \text{and} \quad v(x) = (g(x)/f(x)) - (q(x)/f(x))^{2} \quad (\ge 0) .$$

Clearly, v(x)>0 is equivalent to f(x)>0 and v(x)>0. Throughout this paper we assume that f(x), q(x), g(x) and $\phi(x)$ are all finite on R^p and write m(x)=q(x)/f(x). Also, let C, C_1 , C_2 , \cdots denote appropriate positive constants.

Define sequences $\{q_n(x)\}$, $\{g_n(x)\}$ and $\{v_n(x)\}$ as follows:

$$q_0(x) = g_0(x) \equiv 0$$
,
 $q_n(x) = q_{n-1}(x) + a_n \{Q_n(x, Z_n) - q_{n-1}(x)\}$
 $g_n(x) = g_{n-1}(x) + a_n \{G_n(x, Z_n) - g_{n-1}(x)\}$
 $v_n(x) = (g_n(x)/f_n(x)) - (g_n(x)/f_n(x))^2$

for each $n \ge 1$, where for $x \in \mathbb{R}^p$, $z = (u, y) \in \mathbb{R}^p \times \mathbb{R}$ and $n \ge 1$

$$Q_n(x, z) = yK_n(x, u)$$
 and $G_n(x, z) = y^2K_n(x, u)$.

For a_n in (2.1) set

$$\gamma_0 = \gamma_1 = 1$$
, $\gamma_n = \prod_{j=2}^n (1-a_j)$ for $n \ge 2$ and $eta_{mn} = \left\{egin{array}{ll} \prod_{j=m+1}^n (1-a_j) & ext{if } n > m \ge 0 \ 1 & ext{if } n = m \ge 0 \end{array}.
ight.$

Obviously, $\gamma_n \downarrow 0$ as $n \to \infty$, $\gamma_n > 0$ for all $n \ge 0$ and

$$\beta_{mn} = \gamma_m^{-1} \gamma_n \quad \text{if } n \ge m \ge 1.$$

It is known that

$$\beta_{mn} \sim m^a n^{-a} \quad \text{as } n \ge m \to \infty , \quad \text{and}$$

$$(2.4) C_1 n^{-a} \leq \gamma_n \leq C_2 n^{-a} \text{for all } n \geq 1 ,$$

where " $\phi_n \sim \psi_n$ as $n \to \infty$ " means $\lim_{n \to \infty} \phi_n/\psi_n = 1$.

Remark 2.1. We can write $f_n(x)$, $q_n(x)$ and $g_n(x)$ as follows:

$$f_n(x) = \sum_{j=1}^n a_j \beta_{jn} K_j(x, X_j) + \beta_{0n} c$$
,

$$q_n(x) = \sum_{j=1}^n a_j \beta_{jn} Q_j(x, Z_j)$$
 and $g_n(x) = \sum_{j=1}^n a_j \beta_{jn} G_j(x, Z_j)$,

where $\sum_{j=m}^{n} (\cdot) = 0$ if n < m.

For any real-valued function θ on R^p let $C(\theta)$ be the set of continuity points of θ and $\|\theta\|_{\infty} = \sup\{|\theta(x)| : x \in R^p\}$. For any fixed $x \in R^p$ and $n \ge 1$ let

$$U_n^{(0)} = K_n(x, X_n) - \mathbb{E}\left[K_n(x, X_n)\right], \quad U_n^{(1)} = Q_n(x, Z_n) - \mathbb{E}\left[Q_n(x, Z_n)\right],$$

$$W_n = a_n \gamma_n^{-1} (U_n^{(0)}, U_n^{(1)})', \quad B_n = (nh_n^p)^{1/2} \gamma_n \sum_{j=1}^n W_j \quad \text{and}$$

$$B_n^* = (nh_n^p)^{1/2} (f_n(x) - f(x), g_n(x) - g(x))',$$

where the prime denotes transpose.

We shall summarize some results obtained in [5] and [6].

LEMMA 2.1 ([6]). Let $\{d_n\}$ be a sequence of positive numbers converging to zero. Let k(x) be a bounded, integrable, real-valued Borel measurable function on R^p satisfying $\|u\|_p^p|k(u)| \to 0$ as $\|u\|_p \to \infty$. Let $\theta(x)$ be an integrable, real-valued Borel measurable function on R^p . Then, for each point $x \in C(\theta)$ we have

$$\int_{\mathbb{R}^p} d_n^{-p} k((x-u)/d_n) \theta(u) du \to \theta(x) \int_{\mathbb{R}^p} k(u) du \quad \text{as } n \to \infty \quad \text{and}$$

$$\sup_{n \ge 1} \int_{\mathbb{R}^p} d_n^{-p} |k((x-u)/d_n)| |\theta(u)| du \le C,$$

where C may depend on x.

LEMMA 2.2 ([6]). Assume $E[Y^2] < \infty$. Let (H4) be satisfied, and let x be a point with f(x)>0, belonging to the set $C(f)\cap C(q)\cap C(g)$. Then we have

$$\lim_{x\to\infty} f_n(x) = f(x) \quad \text{with probability one } (w.p.1.),$$

$$\lim_{n\to\infty}q_n(x)=q(x)\quad w.p.1.,\quad and\quad \lim_{n\to\infty}m_n(x)=m(x)\quad w.p.1..$$

LEMMA 2.3 ([5]). Let $\{y_n\}$ be a sequence of random variables on a probability space (Ω, \mathcal{F}, P) . Suppose that there exists a null set A such that for each $\omega \in A^c$

$$y_n(\omega) \ge 0$$
 for all $n \ge 1$, $\lim_{n \to \infty} y_n(\omega) = 1$ and

$$y_n(\omega) > 0$$
 for all $n \ge m$ if $y_m(\omega) > 0$ for some $m = m(\omega)$.

Let $\{b(n)\}\$ be a sequence of positive numbers satisfying

$$\lim_{n\to\infty}b(n)=\infty\quad and\quad \lim_{n\to\infty}b(n)/b(n-1)=1.$$

For each $t \in (0, \infty)$ define N_t as the smallest integer $n \ge 1$ such that $b(n)/t \ge y_n > 0$. Then, we have

$$P\{N_t < +\infty\} = 1$$
 for each $t \in (0, \infty)$, $P\{N_t \uparrow \infty \text{ as } t \to \infty\} = 1$ and
$$P\{b(N_t)/t \to 1 \text{ as } t \to \infty\} = 1.$$

The following lemma gives the asymptotic normality of B_{n} .

LEMMA 2.4. Assume E $[Y^i] < \infty$. Let (H2) be satisfied. Consider a point $x \in C(f) \cap C(g) \cap C(g)$ with v(x) > 0. If either $x \in C(\phi)$ or $\|\phi\|_{\infty} < \infty$ holds, then we have

$$B_n \xrightarrow{r} N(0, \Gamma)$$
 as $n \to \infty$ (in law),

where the covariance matrix $\Gamma = \Gamma(x)$ is given by

$$\Gamma = a^2 \beta \int_{\mathbb{R}^p} K^2(u) du \begin{pmatrix} f(x) & q(x) \\ q(x) & g(x) \end{pmatrix}.$$

PROOF. By Hölder's inequality we get that for each $j \ge 1$

$$\begin{split} & \mathbb{E}\left[\|U_{j}^{(1)}|^{3} \right] \leq 8 \, \mathbb{E}\left[\|Q_{j}(x, Z_{j})|^{3} \right] \\ & = 8 \int_{\mathbb{R}^{p} \times \mathbb{R}} \left\{ \|y\|^{3} K_{j}^{2}(x, u) (f^{*}(u, y))^{3/4} \right\} \left\{ K_{j}(x, u) (f^{*}(u, y))^{1/4} \right\} du dy \\ & \leq 8 \left[\int_{\mathbb{R}^{p} \times \mathbb{R}} y^{4} \{K_{j}(x, u)\}^{8/3} f^{*}(u, y) du dy \right]^{3/4} \\ & \times \left[\int_{\mathbb{R}^{p} \times \mathbb{R}} K_{j}^{4}(x, u) f^{*}(u, y) du dy \right]^{1/4} = 8 h_{j}^{-2p} \times I_{1} \times I_{2} , \end{split}$$

where

$$\begin{split} I_1 &= \left[\int_{\mathbb{R}^p} h_j^{-p} \{ K((x-u)/h_j) \}^{8/8} \phi(u) du \right]^{8/4} \quad \text{and} \\ I_2 &= \left[\int_{\mathbb{R}^p} h_j^{-p} K^4((x-u)/h_j) f(u) du \right]^{1/4} \,. \end{split}$$

As $x \in C(f)$, it follows from Lemma 2.1 that $I_2 \leq C_1$. If $x \in C(\phi)$ then by Lemma 2.1 we get $I_1 \leq C_2$, and if $\|\phi\|_{\infty} < \infty$ then we have

$$I_1 \leq \{ \|\phi\|_{\infty} \|K\|_{\infty}^{5/3} \}^{8/4} < \infty$$
.

In any case, $I_1 \times I_2$ is bounded by a constant and therefore, we obtain (2.5) $\mathbb{E}\left[|U_j^{(1)}|^3\right] \leq C_3 h_j^{-2p} \quad \text{for all } j \geq 1.$

Replacing (4.17) in [6] by (2.5) we can use the same arguments as in

the proof of Lemma 4.1 of [6], to complete the proof of Lemma 2.4.

LEMMA 2.5. Let $\{h_n\}$ be a nonincreasing sequence of positive numbers converging to zero and satisfy (H1) and (H2). Let $\{V_n\}$ be a sequence of independent random variables on a probability space (Ω, \mathcal{F}, P) satisfying

$$E[V_n]=0$$
 and $h_n^p E[V_n^2] \leq C$ for all $n \geq 1$.

For any $d \in (0, \infty)$ let N(d) be a positive integer-valued random variable on (Ω, \mathcal{F}, P) and n(d) a positive integer with $\lim_{n \to \infty} n(d) = \infty$. Set

$$T_n = \sum_{j=1}^n a_j \beta_{jn} V_j$$
 for each $n \ge 1$,

where a_n is given in (2.1). If

$$N(d)/n(d) \rightarrow 1$$
 as $d \rightarrow 0$,

then we have

$$(N(d)h_{N(d)}^p)^{1/2}(T_{N(d)}-T_{n(d)}) \to 0$$
 as $d \to 0$.

PROOF. For simplicity let N=N(d) and n=n(d). Let any positive numbers ε and ξ be fixed. For any ρ (>0) set

$$M_1 = [(1-\rho)n]$$
 and $M_2 = [(1+\rho)n]$,

where [b] denotes the largest integer not greater than b. Since as $\rho \to 0$

$$2\rho/(1-\rho) \to 0$$
 and $\{(1-\rho)/(1+\rho)\}^a \to 1$,

there exists a positive constant $\rho = \rho(\varepsilon, \xi) < 1/2$ such that

(2.6)
$$2\rho/(1-\rho) < \varepsilon^2 \xi/2$$
 and $(1 - \{(1-\rho)/(1+\rho)\}^a)^2 < \varepsilon^2 \xi/2$.

As $\lim_{d\to 0} n=\infty$ we get $M_i\to \infty$ as $d\to 0$ for i=1,2 and $M_i/M_2\sim (1-\rho)/(1+\rho)$ as $d\to 0$. Hence by (2.3) and (2.6) we have

Also, since $(M_2-M_1)/M_1\sim 2\rho/(1-\rho)$ as $d\to 0$, it follows from (2.6) that

(2.8)
$$(M_2-M_1)/M_1 < \varepsilon^2 \xi$$
 for d sufficiently small.

It is clear that

$$(2.9) M_1/M_1 \leq C_1 \text{for all } d>0.$$

Now, we shall prove the lemma. By assumption we get

(2.10)
$$P\{|N/n-1| \ge \rho\} < \xi$$
 for d sufficiently small.

Put

$$I = P\{(Nh_N^p)^{1/2}|T_N - T_n| \ge \varepsilon, |N - n| < \rho n\}.$$

Then

$$\begin{split} (2.11) \quad I &\leq \mathbf{P} \left\{ (ih_{i}^{p})^{1/2} | T_{i} - T_{n}| \geq \varepsilon \text{ for some } i \in (M_{1}, M_{2}] \right\} \\ &\leq \mathbf{P} \left\{ (ih_{i}^{p})^{1/2} (|T_{i} - T_{M_{1}}| + |T_{n} - T_{M_{1}}|) \geq \varepsilon \text{ for some } i \in (M_{1}, M_{2}] \right\} \\ &\leq \mathbf{P} \left\{ \max_{M_{1} < i \leq M_{2}} (ih_{i}^{p})^{1/2} \times 2 \max_{M_{1} < i \leq M_{2}} |T_{i} - T_{M_{1}}| \geq \varepsilon \right\} \\ &= \mathbf{P} \left\{ \max_{M_{1} < i \leq M_{2}} (ih_{i}^{p})^{1/2} \times \max_{M_{1} < i \leq M_{2}} |T_{i} - T_{M_{1}}| \geq \varepsilon/2 \right\}. \end{split}$$

By (2.2) and the definition of T_n we have that for $i \in (M_1, M_2]$

$$\begin{split} |T_{i} - T_{M_{1}}| & \leq \left| \sum_{j=1}^{M_{1}} a_{j} (\beta_{ji} - \beta_{jM_{1}}) V_{j} \right| + \left| \sum_{j=M_{1}+1}^{i} a_{j} \beta_{ji} V_{i} \right| \\ & \leq (\gamma_{M_{1}} - \gamma_{i}) \left| \sum_{j=1}^{M_{1}} a_{j} \gamma_{j}^{-1} V_{j} \right| + \gamma_{i} \left| \sum_{j=M_{1}+1}^{i} a_{j} \gamma_{j}^{-1} V_{j} \right|, \end{split}$$

which, together with (2.11) and the monotonicity of h_n , nh_n^p and γ_n , implies that

$$(2.12) I \leq P \left\{ (M_2 h_{M_1}^p)^{1/2} (\gamma_{M_1} - \gamma_{M_2}) \left| \sum_{j=1}^{M_1} a_j \gamma_j^{-1} V_j \right| \right. \\ \left. + (M_2 h_{M_2}^p)^{1/2} \max_{M_1 < i \leq M_2} \gamma_i \left| \sum_{j=M_1+1}^{i} a_j \gamma_j^{-1} V_j \right| \geq \varepsilon/2 \right\} \leq J_1 + J_2 ,$$

where

$$\begin{split} J_1 &= \mathrm{P}\left\{ (M_2 h_{M_1}^p)^{1/2} (\gamma_{M_1} - \gamma_{M_2}) \left| \sum_{j=1}^{M_1} \alpha_j \gamma_j^{-1} V_j \right| \ge \varepsilon/4 \right\} \quad \text{and} \\ J_2 &= \mathrm{P}\left\{ (M_2 h_{M_2}^p)^{1/2} \max_{M_1 < t \le M_2} \gamma_t \left| \sum_{j=M_1+1}^t \alpha_j \gamma_j^{-1} V_j \right| \ge \varepsilon/4 \right\}. \end{split}$$

From (H2), (2.4) and assumption we get

$$ih_i^p \sum_{j=1}^i a_j^2 eta_{ji}^2 \to [V_j^2] \le C_2 i^{1-2a} h_i^p \sum_{j=1}^i j^{2(a-1)} h_j^{-p} \le C_3$$
 for all $i \ge 1$.

Hence by Chebychev's inequality, (2.2), (2.7) and (2.9) we obtain

$$(2.13) J_1 \leq C_4 \varepsilon^{-2} (1 - \beta_{M_1 M_2})^2 (M_2 / M_1) M_1 h_{M_1}^p \sum_{i=1}^{M_1} \alpha_i^2 \beta_{j M_1}^2 \operatorname{E} [V_j^2] \leq C_5 \xi$$

for d sufficiently small. From assumption, the Hájek-Rényi inequality (see Petrov [9], page 51), the monotonicity of h_n , (2.8) and (2.9) we have that for d sufficiently small

(2.14)
$$J_{2} \leq C_{6} \varepsilon^{-2} M_{2} h_{M_{2}}^{p} \sum_{j=M_{1}+1}^{M_{2}} a_{j}^{2} \mathbb{E} \left[V_{j}^{2} \right] \leq C_{7} \varepsilon^{-2} M_{2} \sum_{j=M_{1}+1}^{M_{2}} j^{-2}$$

$$\leq C_{7} \varepsilon^{-2} M_{2} M_{1}^{-2} (M_{2} - M_{1}) \leq C_{8} \xi.$$

Combining (2.10), (2.12), (2.13) and (2.14) we obtain

$$P\{(Nh_{\nu}^{p})^{1/2}|T_{\nu}-T_{\nu}|\geq \varepsilon\}\leq I+P\{|N-n|\geq \rho n\}\leq C_{0}\varepsilon$$

for d sufficiently small, which concludes the proof of Lemma 2.5.

3. Main results

In this section we shall propose sequential confidence intervals $I_{n,d}(x)$ for m(x) with prescribed width 2d and coverage probability α . Then the asymptotic consistency of these confidence intervals will be shown, that is, $P\{m(x) \in I_{N(d),d}(x)\} \to \alpha$ as $d \to 0$, where $\{N(d)\}$ is the class of stopping times defined below.

Let any α (0< α <1) be given. Define $D=D(\alpha)>0$ by $\Phi(D)-\Phi(-D)=\alpha$, where $\Phi(\cdot)$ is the standard normal distribution function. Let d be any positive number, and let any $x \in R^p$ be fixed. We define the stopping time $N(d)=N(\alpha,d,x)$ as the smallest integer $n\geq 1$ such that $(D^2B)^{-1}d^2nh_n^2\geq v_n(x)/f_n(x)>0$, where

(3.1)
$$B=a^2\beta\int_{\mathbb{R}^2}K^2(u)du$$
 (>0) with β being given in (H2).

Define the confidence interval $I_{n,d}(x)$ as

$$I_{n,d}(x) = [m_n(x) - d, m_n(x) + d]$$
.

Also, define $n(d)=n(\alpha, d, x)$ as the smallest integer $n \ge 1$ such that $(D^2B)^{-1}d^2nh_x^2 \ge v(x)/f(x) > 0$.

Let $\sigma^2(x) = Bv(x)/f(x)$ with B being given in (3.1).

The following lemma states the asymptotic properties of N(d).

LEMMA 3.1. Assume $E[Y^4] < \infty$. Let (H1), (H3) and (H4) be satisfied. Consider a point $x \in C(f) \cap C(q) \cap C(g)$ with v(x) > 0. If either $x \in C(\phi)$ or $\|\phi\|_{\infty} < \infty$ holds then we have

$$egin{aligned} & ext{P}\left\{N(d)\!<\!+\infty
ight\}\!=\!1 & for \ each \ d\!>\!0 \ , & ext{P}\left\{N(d)\uparrow\infty \ as \ d\to 0
ight\}\!=\!1 \ , \\ & ext{N}(d)h^p_{N(d)}\!/\!(D^2\sigma^2(x))\to 1 & as \ d\to 0 \ w.p.1. \ , & and \\ & ext{N}(d)h^p_{N(d)}\!/\!(n(d)h^p_{n(d)})\to 1 & as \ d\to 0 \ w.p.1. \ . \end{aligned}$$

PROOF. From the definition of N(d) we get

(3.2) $N(d) = \text{smallest integer } n \ge 1 \text{ such that } b(n)/t \ge y_n > 0$,

where

$$y_n = \frac{v_n(x)/f_n(x)}{v(x)/f(x)}$$
, $b(n) = \frac{nh_n^p}{v(x)/f(x)}$ and $t = D^2Bd^{-2}$.

Clearly.

(3.3) b(n)>0 for all $n \ge 1$, $\lim_{n\to\infty} b(n) = \infty$ and $\lim_{n\to\infty} b(n)/b(n-1) = 1$.

We shall show that

(3.4)
$$v_n(x) \ge 0$$
 for all $n \ge 1$ on Ω

and that for any fixed $\omega \in \Omega$

(3.5)
$$v_n(x) > 0$$
 for all $n \ge m$ if $v_m(x) > 0$ for some $m = m(\omega) \ge 1$.

For simplicity we omit ω . By the definition of $v_n(x)$ it suffices to consider the case where $f_n(x) > 0$.

That $v_n(x) \ge (\text{resp.} >) 0$ for all $n \ge 1$ is equivalent to

(3.6)
$$q_n(x) f_n(x) - q_n^2(x) \ge (\text{resp.} >) 0 \text{ for all } n \ge 1.$$

Let any $\omega \in \Omega$ be fixed. First we shall prove (3.4). By the definitions of $f_n(x)$, $g_n(x)$ and $g_n(x)$ we have

$$(3.7) A_{n+1} = (1-a_n)^2 A_n + a_n (1-a_n) D_n \text{for each } n \ge 1,$$

where

$$A_n = g_{n-1}(x) f_{n-1}(x) - q_{n-1}^2(x) \quad \text{and} \quad D_n = G_n(x, z_n) f_{n-1}(x) + K_n(x, X_n) g_{n-1}(x) - 2Q_n(x, Z_n) q_{n-1}(x) .$$

By Remark 2.1 we get

(3.8)
$$D_{n} = \sum_{j=1}^{n-1} a_{j} \beta_{j n-1} \{ G_{n}(x, Z_{n}) K_{j}(x, X_{j}) + K_{n}(x, X_{n}) G_{j}(x, Z_{j}) - 2Q_{n}(x, Z_{n}) Q_{j}(x, Z_{j}) \} + G_{n}(x, Z_{n}) \beta_{0 n-1} c$$

for each $n \ge 1$. From the definitions of $K_n(x, X_n)$, $Q_n(x, Z_n)$ and $G_n(x, Z_n)$ we have

$$G_n(x, Z_n)\beta_{0, n-1}c \ge 0$$
 for each $n \ge 1$

and

$$G_n(x, Z_n)K_j(x, X_j) + K_n(x, X_n)G_j(x, Z_j) - 2Q_n(x, Z_n)Q_j(x, Z_j) \ge 0$$

for each $j=1, \dots, n-1$ with $n \ge 2$,

which, together with (3.8), yields that

$$(3.9) D_n \ge 0 \text{for each } n \ge 1.$$

It follows from (3.7) and (3.9) that

$$(3.10) A_{n+1} \ge (1-a_n)^2 A_n \text{for each } n \ge 1.$$

As $A_1=0$, by (3.10) and induction we have $A_n\geq 0$ for each $n\geq 1$, which, together with (3.6), gives (3.4).

Next we shall prove (3.5). Assume that $v_m(x) > 0$ for some $m \ge 1$. From (3.6) we get $A_{m+1} > 0$. Suppose that $A_n > 0$ for some n > m+1. Then by (2.1) and (3.10) we have $A_{n+1} > 0$. Hence by induction we obtain $A_n > 0$ for all $n \ge m+1$, which is equivalent to $v_n(x) > 0$ for all $n \ge m$. Thus (3.5) was proved.

Next we shall show that

(3.11)
$$g_n(x) \to g(x)$$
 as $n \to \infty$ w.p.1.

Since Lemma 2.1, the definition of $G_n(x, Z_n)$ and $x \in C(g)$ give $E[G_n(x, Z_n)] \to g(x)$ as $n \to \infty$, it follows from Remark 2.1 and the Toeplitz lemma (see Loève [7], page 238) that

(3.12)
$$E[g_n(x, Z_n)] \to g(x) \quad \text{as } n \to \infty.$$

Lemma 2.1 and (H4) give

$$\sum_{n=1}^{\infty} a_n^2 \mathrm{E}\left[G_n^2(x, Z_n)\right] < \infty$$
 ,

which, together with Kolmogorov's convergence theorem, Kronecker's lemma. Remark 2.1 and (2.2), implies that

$$(3.13) g_n(x) - \mathbb{E}[g_n(x)] \to 0 \text{as } n \to \infty \text{ w.p.1.}.$$

Thus, according to (3.12) and (3.13) we obtain (3.11). Lemma 2.2 and (3.11) give

$$(3.14) v_n(x) \to v(x) \text{as } n \to \infty \text{ w.p.1.}.$$

From Lemma 2.2, (3.4), (3.5), (3.14) and the property of $f_n(x)$, there exists a null set A such that for each $\omega \in A^c$

$$y_n(\omega) \ge 0$$
 for all $n \ge 1$, $\lim_{n \to \infty} y_n(\omega) = 1$ and

$$y_n(\omega) > 0$$
 for all $n \ge m$ if $y_m(\omega) > 0$ for some $m = m(\omega) \ge 1$,

which, together with (3.2) and (3.3), permits us to apply Lemma 2.3 to obtain the first three assertions of Lemma 3.1. Replacing N(d), $v_n(x)$ and $f_n(x)$ by n(d), v(x) and f(x), respectively, we have that as $d \to 0$ $n(d) \to \infty$ and $n(d)h_{n(d)}^p d^2/(D^2\sigma^2(x)) \to 1$, which, together with the third assertion, implies the last assertion. This completes the proof.

Remark 3.1. By use of Lemmas 2.2 and 3.1, and Theorem 1 of Richter [11] we have that under all the conditions of Lemma 3.1

$$m_{N(d)}(x) \to m(x)$$
 as $d \to 0$ w.p.1..

The following theorem is one of main theorems.

THEOREM 3.1. Assume E [Y⁴] < ∞ . Let (K1), (K2) and (H1)~(H5) be satisfied. Suppose that there exist bounded, continuous second partial derivatives $\partial^2 f(x)/\partial x_i \partial x_j$ and $\partial^2 q(x)/\partial x_i \partial x_j$ on R^p for $i, j=1, \dots, p$. Consider a point $x \in C(g)$ with v(x) > 0. Assume $x \in C(\phi)$ or $||\phi||_{\infty} < \infty$. If

$$(3.15) N(d)/n(d) \rightarrow 1 as d \rightarrow 0$$

then we obtain

$$(N(d)h_{N(d)}^p)^{1/2}(m_{N(d)}(x)-m(x)) \to N(0, \sigma^2(x))$$
 as $d \to 0$.

PROOF. For simplicity put N=N(d) and n=n(d). It follows from Lemma 3.1 that $n\to\infty$ as $d\to0$. First we shall show that

(3.16)
$$B_N \to N(0, \Gamma)$$
 as $d \to 0$,

where Γ is given in Lemma 2.4. From Lemma 2.4 and the Cramér-Wold theorem (see Billingsley [2], page 49) we get

(3.17)
$$D'B_n \to N(0, D'\Gamma D)$$
 as $d \to 0$ for any $D' \in \mathbb{R}^2$.

Since

$$D'B_N = D'B_n + (D'B_N - D'B_n)$$
 for any $D' \in \mathbb{R}^2$,

to prove (3.16) it suffices from (3.17) and the Cramér-Wold theorem to show that

(3.18)
$$D'B_N - D'B_n \to 0 \quad \text{as } d \to 0 \text{ for any } D' \in \mathbb{R}^2.$$

Let any $D'=(d_0, d_1) \in \mathbb{R}^2$ be fixed. For $i \ge 1$ set

$$S_i^{(t)} = \sum_{i=1}^t a_i \beta_{ji} U_j^{(t)}$$
 for $t = 0, 1$.

It is clear that

(3.19)
$$D'B_{N} - D'B_{n} = \sum_{t=0}^{1} d_{t} (Nh_{N}^{p})^{1/2} (S_{N}^{(t)} - S_{n}^{(t)}) + \{ (Nh_{N}^{p}) (nh_{n}^{p})^{1/2} - 1 \} D'B_{n}.$$

Put

$$\xi^{(t)}(x) = (f(x))^{1-t}(g(x))^t$$
 for $t = 0, 1$.

It follows from assumption and Lemma 2.1 that for t=0, 1

$$h_i^p \to [(U_i^{(\iota)})^2] \leq \int_{\mathbb{R}^p} h_i^{-p} K^2((x-u)/h_i) \xi^{(\iota)}(u) du \leq C_1$$
 for all $i \geq 1$.

Thus by use of Lemma 2.5 we have

(3.20)
$$\sum_{t=0}^{1} d_{t}(Nh_{N}^{p})^{1/2}(S_{N}^{(t)} - S_{n}^{(t)}) \xrightarrow{P} 0 \quad \text{as } d \to 0.$$

Let any ε (>0) be fixed. From (3.15) and (H3) we get that for δ in (H3)

$$P\{|h_n/h_n-1| \geq \varepsilon\} \leq P\{|N/n-1| \geq \delta\} \rightarrow 0$$
 as $d \rightarrow 0$,

which implies that

$$h_N/h_n \rightarrow 1$$
 as $d \rightarrow 0$.

Therefore, (3.15) gives

$$\{Nh_N^p/(nh_n^p)\}^{1/2}-1 \to 0$$
 as $d \to 0$,

which, together with (3.17), yields that

$$(3.21) \{(Nh_N^p/(nh_n^p))^{1/2} - 1\}D'B_n \to 0 \text{as } d \to 0.$$

From (3.19), (3.20) and (3.21) we obtain (3.18). In the proof of Theorem 4.1 of [6] it was proved, under the assumptions of Theorem 3.1, that $||B_i^* - B_i||_2 \to 0$ as $i \to \infty$ on Ω . Hence by Lemma 3.1 we get $||B_N^* - B_N||_2 \to 0$ as $d \to 0$ w.p.1., which, together with (3.16), implies that

$$(3.22) B_N^* \xrightarrow{L} N(0, \Gamma) as d \to 0.$$

Define a function T(u, v) on R^2 as

$$T(u, v) = \begin{cases} v/u & \text{if } u \neq 0 \\ 0 & \text{otherwise } . \end{cases}$$

Let $L'=(-q(x)/f^2(x), f^{-1}(x))$. By the Taylor theorem we get

$$(3.23) (Nh_N^p)^{1/2} \{ T(f_N(x), q_N(x)) - T(f(x), q(x)) \} = L'B_N^* + \varepsilon_N ||B_N^*||_2$$
 on $[N < +\infty]$,

where

$$\varepsilon_i \to 0$$
 if $||(f_i(x), q_i(x))' - (f(x), q(x))'||_2 \to 0$.

According to Lemma 2.1 of [6] we have $m_N(x) = q_N(x)/f_N(x)$ on $[N < +\infty]$. Hence by the definitions of T(u, v) and N we obtain

(3.24)
$$T(f_N(x), q_N(x)) = m_N(x)$$
 on $[N < +\infty]$.

Since m(x)=q(x)/f(x) it follows from (3.23) and (3.24) that

$$(3.25) \quad (Nh_N^p)^{1/2}(m_N(x)-m(x)) = L'B_N^* + \varepsilon_N ||B_N^*||, \quad \text{on } [N < +\infty].$$

Lemma 2.2 gives $\varepsilon_i \to 0$ as $i \to \infty$ w.p.1., which, together with Lemma 3.1, yields that

(3.26)
$$\varepsilon_N \to 0$$
 as $d \to 0$ w.p.1..

Combining (3.22) and (3.26) we get

(3.27)
$$\varepsilon_N ||B_N^*||_2 \to 0 \quad \text{as } d \to 0.$$

Therefore, according to (3.22), (3.25), (3.27) and Lemma 3.1 we obtain

$$(Nh_{\scriptscriptstyle N}^p)^{\scriptscriptstyle 1/2}(m_{\scriptscriptstyle N}(x)-m(x)) \mathop{\longrightarrow}\limits_L N(0,\,L' \varGamma L) \qquad {
m as} \ d \longrightarrow 0$$
 ,

which concludes the proof of Theorem 3.1.

We are now in the position to give our main result.

THEOREM 3.2. Under all the conditions of Theorem 3.1 we have

$$P\{m(x) \in I_{N(d),d}(x)\} \rightarrow \alpha$$
 as $d \rightarrow 0$.

PROOF. Put N=N(d). By Lemma 3.1 and Theorem 3.1 we have

$$\begin{aligned} Dd^{-1}(m_N(x) - m(x)) \\ &= (D^2\sigma^2(x)/(Nh_N^p d^2))^{1/2} (Nh_N^p / \sigma^2(x))^{1/2} (m_N(x) - m(x)) \xrightarrow{L} N(0, 1) \\ &\text{as } d \to 0 \end{aligned}$$

Thus we obtain

$$P\{m(x) \in I_{N,d}(x)\} = P\{|Dd^{-1}(m_N(x) - m(x))| \le D\} \to \Phi(D) - \Phi(-D) = \alpha$$
as $d \to 0$

This completes the proof.

COROLLARY 3.1. Assume E [Y⁴] < ∞ . Let (K1) and (K2) be satisfied, and let $\|\psi\|_{\infty} < \infty$. Suppose that there exist bounded, continuous second partial derivatives $\partial^2 f(x)/\partial x_i \partial x_j$ and $\partial^2 q(x)/\partial x_i \partial x_j$ on R^p for $i, j=1, \dots, p$ and that g(x) is continuous on R^p . Set

$$h_n = n^{-r/p}$$
 with $p/(p+4) < r < 1$.

Let a in (2.1) satisfy $1 \ge a > (1-r)/2$. Then, for each point x with v(x) > 0 we obtain

$$P\{m(x) \in I_{N(d),d}(x)\} \rightarrow \alpha$$
 as $d \rightarrow 0$.

PROOF. We can easily verify (H1) \sim (H5) with $\beta=(2a+r-1)^{-1}$. Lemma 3.1 gives (3.15). Thus, since all the conditions of Theorem 3.1 are fulfilled, we obtain Corollary 3.1 by Theorem 3.2. This completes the proof.

Acknowledgement

The author would like to thank the referee and the editor whose comments were very helpful in the improvement of the original manuscript.

NIIGATA UNIVERSITY

REFERENCES

- Ahmad, I. A., and Lin, P. (1976). Nonparametric sequential estimation of a multiple regression function, *Bull. Math. Statist.*, 17, 63-75.
- [2] Billingsley, P. (1968). Convergence of Probability Measures, John Wiley and Sons, New York.
- [3] Chow, Y. S., and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean, Ann. Math. Statist., 36, 457-462.
- [4] Devroye, L. P., and Wagner, T. J. (1980). On the L_1 convergence of kernel estimators of regression functions with applications in discrimination, Zeit. Wahrscheinlichkeitsth., 51, 15-25.
- [5] Isogai, E. (1981). Stopping rules for sequential density estimation, Bull. Math. Statist., 19, 53-67.
- [6] Isogai, E. (1983). A class of nonparametric recursive estimators of a multiple regression function, Bull. Inform. Cybernetics, 20, 33-44.
- [7] Loève, M. (1963). Probability Theory, 3rd edition, D. Van Nostrand, Princeton.
- [8] Nadaraya, E. A. (1964). On estimating regression, Theor. Prob. Appl., 9, 141-142.
- [9] Petrov, V. V. (1975). Sums of Independent Random Variables, Springer-Verlag.
- [10] Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation, Academic Press.
- [11] Richter, W. (1965). Limit theorems for sequeuce of random variables with sequences of random indices, *Theor. Prob. Appl.*, 10, 74-84.
- [12] Samanta, M. (1984). On sequential estimation of the regression function, Bull. Inform. Cybernetics, 21, 19-27.
- [13] Stone, C. J. (1977). Consistent nonparametric regression, Ann. Statist., 5, 595-645.
- [14] Watson, G. S. (1964). Smooth regression analysis, Sankhyā, A, 26, 359-372.