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Summary

Bhattacharyya bound is generalized to nonregular cases when the
support of the density depends on the parameter, while it is differen-
tiable several times with respect to the parameter within the support.
Some example is discussed, where it is shown that the bound is sharp.

1. Introduction

It is well known that the Cramér-Rao and the Bhattacharyya bounds
are most important and very useful for the variances of unbiased esti-
mators. They are, however, not applicable to the non-regular cases
when the support of the distribution is dependent on the parameter.
Same is true about more general and simpler bounds by Hammersley
[6], Chapman and Robbins [2], Kiefer [8], Fraser and Guttman [5],
Fend [4] and Chatterji [3], among others. (For an exposition of some
of this work along with extensions in different directions, see Polfeldt
[10], [11] and the recent papers of Vincze [15], Khatri [7] and Méri [9],
among others). In his paper, Polfeldt [10] discussed the lower bound of
the variances of the unbiased estimators when the class of probability
measures is one-sided, that is, when P, is absolutely continuous with
respect to P, (symbolically, P, <P,) when 6,<6, or 6,>6,. In this note,
our main interest is to obtain the Bhattacharyya bound when for any
6,, 05, with 6,#86,, neither P, <P, nor P, <P,

2. Results

Let ¥ be an abstract sample space with z as its generic point, A
a o-field of subsets of ¥, and let & be a parameter space assumed to
be an open set in the real line. Let P={P,: 0 € 8} be a class of prob-
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ability measures on (X, A). We assume that for each 0¢@, PJ-) is
absolutely continuous with respect to a o-finite measure x. We denote
dP/dy by f(x,6). For each # €6, we denote by A(f) the set of points
in ¢ for which f(x, 8)>0.

We shall consider the Bhattacharyya bound of variances of unbiased
estimators at some specified point 4, in &. We make the following as-
sumptions :

(A.1) #((0 (lhllJ« A(65+h))) A A(60))=0 ,
where EAF denotes the symmetric difference of two sets E and F.

(A.2) For every 6, € 6 there exists a positive number ¢ and a positive
function p(x) such that for every x ¢ A(6) and every 6 € (6,—e,
0, +¢), p(x)>f(x, 8), and for every 0 € (6,—e, O,+¢),

| 1@ 7@, 0)du<co impties | r@lo(e)u<on
4 ae(o;’f.(,ao)oh)

(A.3) For some positive integer k&

1 .
Tm sup b3 (—1):( : ) f(z, 00+jh)] j
" e v im-a0) [hFo(e)

oo ,

1=1,--, k.
First we prove the following lemma.
LEMMA. Assume that (A.1), (A.2) and (A.3) hold. If ¢(x) is any

measurable function for which S |6(2) | p(@)dp < oo, then
x

i .
lim L. | 2 (= 1/( } )o@ (@, Out-dW)du=0 .
0, Ao+ 1) A(O0)

ProoF. By (A.2) and (A.3) it follows that for every i=1,.--,k
and every 6, € 8, there exist positive numbers ¢ and K, such that

1 |& i _
| B V(G )7 @ ot <Keetw
for |th|<e and z € A(6y),

where A(6,)° denotes the complement of the set A(6,). Also, it follows
from (A.1) that for every j=1,---,1, there exist a sequence {¢;,} of
positive numbers converging to zero as m—oco and a monotone non-
increasing sequence {S,,} of measurable sets such that |jh|<e,, implies
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A(6y+ jh)— A(G)S,, and ,a( A S,,,):O. If for each j=1,---,4, |jh|<
n=1

€;n then

1 ARE .
e 1 B (] s@se ocrinag
0, A+ i1)-AG)
s | Es@eies | K@i
0, A(Oo-+71)~ A(Ge) 0,5

<3 | Kis@lo@dp
Sin

which tends to zero as m—oco. The proof follows.
Remark. The assumption (A.2) together with the condition in the
above Lemma is satisfied with p(x)=§‘_, ¢.f(x,0) when the following
i=1

holds: For each 6, and ¢>0, there exist countable points 4, 8,,- - -
and positive constants ¢,, ¢,,--- such that G A(ﬂ,)ﬁA(0) for all 6 ¢ (6,—
i=1

e, ,4¢) and that iic,<oo and 3 c.f(z, 0)>f(z, 6) for all 6 ¢ (G,—e, 6,
=1 i=1
+¢) and almost all z[g].

We assume the following :

(A.4) For each z € A(6), f(x,0) is k-times continuously differentiable

in 6 at 6=4,.
(A.5) For each i=1,---, k,
at
‘é?f(x’ 00+h’)
lim sup <o,  where p(x) is defined in (A.2).
h—0 ze A4y p(x)

We now prove our main theorem on the Bhattacharyya bound of the
variances of unbiased estimators.

THEOREM 2.1. Assume that (A.l) to (A.5) hold. Let g(0) be an esti-
mable function which s k-times differentiable over 6. Let §(x) be an
unbiased estimator of g(0) satisfying

5 16@) | o) < oo .
(0

Further, let A be a kxXk mm-negaiive definite matrixz whose elements are
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iv j=1"",k-

— 1 3 f(x, 6,) 3 f(x, 65)
ZU—A(S,O) S, 6y) { 26* 207 }df‘ ,

Assume that Ay, 1=1,---, k are finite. If A is nonsingular at 6, then
(2.1) Var @ =(gV(80), - - -5 §*(00))A7H(gV (6o, - - -, §*(60))

0
where g(0) is the i-th order derivative of g(6).

PRrROOF. Denote

20)= | §@f@ 0dp and 4,5, 0= 0+h)—f(,0).

4lep)

Then, by (A.5), we have

9t ERTIN G —lim L A ‘
@2 [ Lo, =tim - sig0)=lim - (S) §@) i =, 0y
VI VOIS I |
=lim MS%) 9(=) = 451 (=, 65)dp
=tim | 3@ F(@ 0+en)dp
h—0 oy 06"

= | 0|2 f@ 0)] s

o=
Aoy

where 4ig(8)=4:(4,9(8)), i=1,+--, k and 0<&<1. Since g(6)= Sé(x)

40

-f(x, 6)de, we obtain for each i=1,---, k
(2.3)  4i(9(60) —gu(60))

) {000t 30)— 00+ )}

5 (-1 7
=3 (-1)!( ; ) { S §@) f () o+ Gh)dp

A0+ §h)

— | s@rs(@ o+ iz}

=2 =)

A(Bg+in) AN Aoy +In)  AC8p)— A(6y+ k)

B (&, 00t g

=D ] - | )ere srina

AQog+in) AN A9y+IR)

=50} | i@ o ind

A+ IR)- 400
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=n-(;) | i@ et
= .7 ‘ y Vo P
tU A(6o+ ke h)— A(60)

Il

I 2ew(§ )i ot imdp
}:Jl A(Go+ kh)—A(o.)

By (2.3) and Lemma, we have for each i1=1,..-, k,
o RTINS s
@y [Zoe0)]  =lim - sig(0)
=lim ——A #(9(60)— go(ﬁo))+11m =- A,.g(ﬂo)

= 11m —_— A,,g(ﬁo)

I [ao* g°(0)]

by

From (2.2) and (2.4) we obtain for each i=1,...,k,

25) [Z200)] = | 0@ s @ o), dn-

i
a0 2

Proceeding now as in the regular case (see e.g. Zacks [16], page 190),
one can show that the Bhattacharyya bound of the variances of the
unbiased estimators of g(f) is given by (2.1).

3. Example

We consider the location parameter case, i.e., f(z, §)=f(x—0), and
unbiased estimators of 6.
We assume that for any p=1, the density function f(x) is given by

e(l—a?Pt  if |z|<1

foe] 07
0 if |z|=1

where ¢=1/B(1/2, p) with B(a, ﬁ)=S:x““(1—x)"‘da; (@>0, p>0).

Case (i): Let p=1. Then the distribution is uniform, and it is easy to
check that min Var, (6)=0 for any specific value 6,. (See Takeuchi

4: unblased
[14]).
Case (ii): Let p=2. In this case, it is easy to check that the Fisher

information Sl 1 L' @)/ f ()2 f (x)dz = co.
For any ¢>0, we define an estimator 4, which satisfies
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. —cf'(@)/[f(v)  if |v|s1-e,
o

if 1—e<|z]<1,

where ¢, is a constant determined from the equations
3.1) Sllé,(x)f(x)dxzo and Sllﬁ,(m)f’(a:)d:c=—1 .

We shall determine 4,(x) for x outside the interval [—1,1] from the
unbiasedness condition

(3.2) Sl_t: 0.(%)f (@—0)dz=0 .

First consider the case 0<#=<1, and define
1
3.3) 00=\" 0@r@—oyds.
Since 4,(r) and f’(x) are bounded, g(f) is differentiable and g9'(0)=
—S‘l b.(2)f (& —60)dz.
—1+0

If we assume that 4,(x) is bounded for 1<z<2, the right hand
side of (3.3) is also differentiable, and we have by (3.2) and (38.3)

(3.4) 1—g'(6)=— Si“ b.(2)f (x—0)da .

Differentiating (3.4) again, and noting that lim f/(x)=—38/2, we have
T—1-0

(3.5) 0"0)=—30.1+0)— (" 0.@)r"@—0)ds

If 9, satisfies (3.5), then it also satisfies (3.4) since lim g@)=-1; it
00
also satisfies (3.3) since li_.rf} 9(6)=0 by (3.1).
. ‘

Since the integral equation (3.5) is of Volterra’s second type, it
follows that the solution 6,(x) exists and is bounded. Repeating the
same process, we have the solution 4,(x) for all z>1. Similarly, we
can construct 6,(x) for x<—1. On the other hand,

a 1-s
(3.6) Van, @)= | [F@IF@If @),

while from (3.1), we have

1—-

3.7) c,S | f@)de=0 and o, S‘_H @)/ f @) F (@)de=1 .

Hence Var, (4.)=c..
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Now, since 1i3)1 S:; [f'(®) f (@) f(x)de=c0, we have from (8.7),

lim ¢,=0. Consequently, inf Var,, (0) 0 for any specified value 6,.
0 §: unblased

Before proceeding on to the next cases, we note the following :
If k<p/2, then 21, (i=1,---,k) given in Theorem 2.1 are finite,

since Sl (1—2b)?~%*-1dg < oo.
-1

Also,
_("™__ 1  ?f(x—0) ?'f(z—0)
&9 lu_g’-l fl@—0) 0" P
=S (=) —— e )f“’(x)f‘f’(ac)dx, i, j=1,---,k,

We also obtain for |z|<1,
FP (@)= —2c(p—1)a(1—a®)*~*;

(39)  fO(r)=—20(p—1){(1—2)'—2p— DAL — 2"}
FP(x)=4c(p—1)(p—2){3x(1 — ")~ 2(p—B)a* (1 —a?)*} ;- - -

If ¢+7 is an odd number, if follows by (3.8) and (3.9) that 2,,=0 since
SO(x)f(x) is an odd function.
From (3.8) and (3.9), we have

Ay=4c(p— 1)23( 3, p-2);

hy=8e(p—1)(p~2){2(0—3) B3 p—4) —3B(2, p—3)} ;

ta=4o(p—1"{B(, p—2) —4(0—-2)B(3, p-3)

+4(p— 2)23( 2. p=4)|;

hu=166(p—1)(p—2{9B( 3 p—4) ~120—3)B(2, p—5)
+40—3/B(1, p—6)} ;-

Case (iii): Let p=3,4. Then, we have, for any unbiased estimator
0(X) of 6,

(3.10) S‘_l d(@) f(x)de=0
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(3.11) S’_l 0@) f'(z)dz= —1
(3.12) S‘_l d@) fo@)de=0, k=2,---,p—1.
Noting that Sl_l [{g c,,f""(x)}z/ f(w)]dx<oo implies ¢;=--.=¢, ;,=0, we

have by Takeuchi and Akahira [13], that the infimum of Var,(§)=
Sllﬁz(x)f(x)dm under (3.10), (8.11) and (3.12) is given by  inf  Var, (§)

§: (3.10)~(3.12)
=1/2y, where 111=S_m Lf'@)f (@) f(x)de=(p—1)(2p—1)/(p—2) and for
any €>0 there exists 4,(x) in (—1, 1) satisfying (8.10), (3.11) and (8.12),
and Sll92(m)f(x)dac<(1/2“)+s. We can extend 4,(x) for x outside (—1,
1) from the unbiasedness condition Slto 6(x)f(x—0)dx=0. First, we
—1+6

consider the case when 0<6<1, and define g(f)= Sl 1 b(x)f (x—6)dz.
—1+6

In a similar way to the case (ii), we have for k=2,..., p—1,

(B13)  (~1gO)=BA+0)-|" b.@r*oa—oz,
B,=lim f®(a).

Since the integral equation (8.13) is again of Volterra’s second type, it
follows that the solution f,(r) exists. Repeating the process, we can
construct an unbiased estimator 4,(x) for all values of z. Then, it fol-
lows that inf Var,, (9)=1//111 for any specified value 6,.

4 unblased

Case (iv): Let p=5,6. Note that

Sl_ @) f" @) f(@)ldz=0,,

- fardo e P=DEI=D@=3) o, o o
[ r@is@rs e o =D (2 ~Tp+8)

=Ap (say),
and
1 p—-1 2
I, B aro@ir@) fads<eo
imply ¢;=---=c¢,;=0. Then we see that

A 4 0\7'f1 1
Varao(ﬁ)z(l,())((;1 I) (0)=Z_u
22
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for any specified 6,, where 1, is defined above (3.8). Here again, as

in the previous case inf Var, (6)=1/2, for any specific 6,
6: unblased

Case (v): Let p=7. In this case, we see that k=3. Using Theorem
2.1, (8.8) and (3.9), we obtain

2 0 2 -1
—[x (1—.._1!_)]
Var,, (0)2 2 [ 1 P
where
Ay 0 2y
A———' 0 zzg 0
213 0 2
with

111_14403(% 5) ;
2= 1440c {83(52- 3) -33(%, 4)} ;

1,,:1440{B(% 5) 203(2 4>+1003( g 3)};

We also obtain

bo_ {8B(5/2, 8)—3B(3/2, 4)}*
Adw _ B(3/2, 5){9B(3/2, 3)—48B(5/2, 2)+64B(7[2, 1)}

Here again inf Var, (O)=[24(1—(%/242;5)]™* for any specific 6,, i.e.

6: unblased
we have a sharp bound.
Case (vi): For p=8 we can continue in a similar manner by choosing
k=[(p—1)/2], where [s] denotes the largest integer less than or equal
to s.

The above discussion establishes that here the bound is sharp but
generally it is not attainable.
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