Ann. Inst. Statist. Math.
38 (1986), Part A, 1-21

SOME TEST STATISTICS BASED ON THE MARTINGALE TERM OF
THE EMPIRICAL DISTRIBUTION FUNCTION

SIGEO AKI

(Received Aug. 14, 1985; revised Nov. 12, 1985)

Summary

It is proved that the martingale term of the empirical distribution
function converges weakly to a Gaussian process in D[0, 1]. Some sta-
tistics for goodness-of-fit tests based on the martingale term of the
empirical distribution function are proposed. Asymptotic distributions
of these statistics under the null hypothesis are given. The approxi-
mate Bahadur efficiencies of the statistics to the Kolmogorov-Smirnov
statistic and to the Cramér-von Mises statistic are also calculated.

1. Introduction

Suppose Xj, X,,:--, X, are independent and have a common distri-
bution function F(f) on [0, o). F,(t) denotes the empirical distribution
function of the variables X, X;,---, X,. Then nF,(f) can be regarded
as an example of the counting process (cf. e.g. Aalen [1] and Jacobsen
[11]). Khmaladze [12] proposed that the martingale term of the em-
pirical distribution function can be available for construction of test
statistics for goodness of fit. In particular, he asserted that the limit
process of the estimated empirical process is a diffusion process and its
martingale term, which is a Wiener process, can be approximated by
the sample so that the approximated martingale term converges weakly
to the Wiener process in L,[0, 1].

The purpose of this paper is to construct some test statistics based
on the martingale term of the empirical distribution function and to
investigate properties of those statistics. In this paper, however, we
treat only goodness-of-fit tests for simple hypotheses for two reasons;
the one is that the estimated case is too complicated to be treated in
our framework for the present and the other is that as far as we de-
fine test statistics for simple and composite hypotheses by a function
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of the martingale term of the empirical process and by the same func-
tion of the martingale term of the estimated empirical process, respec-
tively, the asymptotic distributions of two statistics are the same, since
the martingale terms of the limit processes of the empirical process
and of the estimated empirical process are the same, which are both
Wiener processes (cf. Khmaladze [12]).

Suppose U, Uy, - -, U, are independent uniformly distributed random
variables on [0,1]. Let I,(t) be the empirical distribution function cor-
responding to U, U,,--+, U,. We shall prove in Section 2 that the stoch-
astic process

(1.1) Wt)=v 7 (r,,(t)— So }_If_"s(.slds)

is a martingale and converges weakly to a standard Wiener process in
DI[0, 1], which is the space of functions on [0, 1] that are right contin-
uous and have left-hand limits endowed with the Skorohod topology
(cf. [4], [14]). We need this theorem for proving weak convergence
of some test statistics such as sgplW,,(t)l ete., although the weak con-

vergence of (1.1) in L,[0, 1] was proved by Khmaladze [12].

In Section 8 we shall study asymptotic distributions of linear func-
tionals of (1.1) and some related topics. Neyman’s ‘smooth’ test will
be shown to be written as a function of (1.1).

We shall propose in Section 4 the test statistic T,:=sutp | W.(t)| and

give its exact and asymptotic distributions. Moreover, we shall give
a condition under which the sequence of the test statistics {7} has
the approximate Bahadur slope. The approximate Bahadur efficiency
of T to the Kolmogorov-Smirnov statistic will be also given.

In the last section Cramér-von Mises type statistics based on (1.1)
will be investigated. The asymptotic distributions and the approximate
Bahadur slopes under the same setup of Section 4 will be obtained.

2. Some limit theorems on empirical distribution functions

Let U, U,,- -+, U, be independent uniformly distributed random vari-
ables on [0,1]. Let Uyp=<Uyp<---<U, be the order statistics corre-
sponding to U, Us,---,U,. T,(t) denotes the empirical distribution
function of U, U,,---, U,. Consider the stochastic process

2.1) W,,(t):x/W(I",,(t)—S: 1;15"8(i)d3> . 0<t<l.

THEOREM 2.1. W,(t) converges weakly in D[0,1] to W(t), which 1is
a standard Wiener process on DI0, 1].
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Remark 2.1. The weak convergence in L,[0, 1] of the process (2.1)
was proved by Khmaladze [12]. Jacobsen [11] suggested that the the-
orem can be proved by using a central limit theorem for local martin-
gales. Recently, Al-Hussaini and Elliott ([2], Lemma 5.4) proved this
fact briefly by applying the result of Liptser and Shiryaev [15]. How-
ever, for our later use, we will give another rigorous proof based on
the theory for counting processes.

For proving Theorem 2.1, we use a theorem and two lemmas. The
next theorem, which is due to Rebolledo [18] (cf. also [19]), is Theorem
5.1.8 of Jacobsen [11].

THEOREM 2.2. (Rebolledo) Let {M,(t); 0<t<0},.; be a sequence of
locally square-integrable martingales in D[0, o). Suppose that for every
t=0 and >0,

E ‘% (AM(8))"1 12091500 as m— oo,

where we write 4f({t)=f(t)—f(t—), and suppose also that there exists a
non-decreasing continuous function @: [0, co)—[0, co) with ®(0)=0 such
that for every t=0 and >0,

P {|[{M.>.—O(#)|>e}—0 as n— oo,

where {M,>, means the quadratic variational process of M,, i.e. the unique
predictable, increasing, right continuous, left limit process such that
M:—(M,) is a martingale. Then M, converges weakly to {B(®(t)); 0t
< oo} in D[0, o), where {B(t); 0st< o} is a standard Brownian motion.

LEMMA 2.1. nl,(t) i8 a counting process and has the integrated
intensity process nA,, where

S”L‘ﬂ»(_s)_ds, if t<1,
0 1-—s

S'_l‘_’"n@lds, if t>1.
0o 1—s

ProOF. It was shown in Example 1.2.6 of Jacobsen [11] that nI(f)
is a counting process. Example 1.3.8 of Jacobsen [11] gives the condi-
tional probability

Grnepor (8 =P (Uems >t Uy=t1,- - -, U<m>=tm)=( 1-¢ )""" :

1-t,

Then from Problem 1.9 of Jacobsen [11], it is easily checked that the
integrated intensity of the counting process wnrl,(t) is m4,. This com-
pletes the proof. .
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LEMMA 2.2. sup [ (&) —t| X (—log (1—Uw))—0 in probability.
ts1
ProOF. It is well known that n(1—U,,) converges in distribution
to the exponential distribution and hence —log (1—U.,,)=0,(log n). Since
¥'n sup | I(t)—t|— sup |(¢)]
0sts1 0sts1
in distribution, where {8(t); 0<t<1} is a Brownian bridge,
sup |I,(5)—t|=0,(n"") .
0sts1
Then the lemma holds.

PROOF OF THEOREM 2.1. Let Y,(t)=y7n(I(t)—4,), 0St<oco. Then
W.(t) is the restriction of Y,(t) to 0<¢{<1. Now we shall show that Y,(¢)
converges weakly to B(®(t)), where

t, 0=t=1,

w(t)={
1, 1<t,

and {B(t); 0<t<oo} is a standard Brownian motion on D[0, c0). For
that, we shall check the conditions of Theorem 2.2.

First, we shall show that Y,(¢) is a square integrable martingale.
Lemma 2.1 and Theorem 1.5.1 of Jacobsen [11] immediately imply that
Y.(t) is a martingale and that Y,(¢) has quadratic variational process
(Y,>,=4,. We show the square integrability of Y,(t). For each t¢ [0,
oo), we note that

xSy (1+] 1750 ds) <vmt—log 1T -
Hence we have
E{Y.)Y=n g: {1—log (1—ac)}*nw"“dm<n28: {1-log (1—2)Pdx<oo .
Secondly, we shall show that for every t ¢ [0, o) and ¢>0,

(2.2) E{Z (4Y.(8) Lasr o0} =0 a8 m—oo.

From the definition of Y,(t), Y,(t) is discontinuous only at U, Usy,- -+,
U.> and the size of the jump of Y,(f) at Uy, is 1/4/n. Then for all
n=[1/e4+1,

'% (4Y ()L ar peoni>0=0 »

which implies (2.2).
Finally, we check that for every ¢ ¢ [0, o) and >0,
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(2.3) P(Y):—0({#)[>e)—0  as n—oo.

From Lemma 2.1, we can easily see that (Y,),=4,. Then, for every
t € [0, o0),

S:i;—ifi)ds . if t<1,
Y —0(t)=

23545, it e>1.
o 1-—s
Hence it holds that for all ¢ € [0, ),

Y —0)|= sup | I(t)—t|X (—log (1~ Uw))+ (1~ Uw) -

Since it is easily seen that 1—U,,—0 in probability as n— oo, (2.3) is
shown from Lemma 2.2.

Because all conditions of Theorem 2.2 have been checked, we have
that Y,(f) converges to B(®(t)) in D[0, o). Since W,(t) is the restric-
tion of Y,(t) to [0,1] and W(t) is the restriction of B(®(f)), it can be
seen by using Theorem 3’ of Lindvall [14] that W,(f) converges weakly
to W() in D[0, 1]. This completes the proof of Theorem 2.1.

THEOREM 2.3. Suppose X, X;,---, X, are independent and have a
common distribution function F(t) over [0,1]. Let F,(t) be the empiri-
cal distribution function corresponding to X, X;,---,X,. Let Y, ()=
vn (F,,(t)—gt limdF(s)). Then Y,(t) converges weakly in D|O0, 1]

o 1—-F(s)
to W(F'(t)), where W(t) s a standard Wiener process on D[0, 1].

PROOF. The theorem can be proved similarly as Theorem 16.4 of
Billingsley [4]. We define an inverse to F' by F'(s)=inf {t; s<F(t)}.
If 7, s+, 7, are independent uniformly distributed random variables
over [0, 1], then

P(F(p)<t)=F(t), i=1,2,---,m.

Since the theorem states only about the distributions of the processes,
we may write X;=F"!(y) 1=1,2,---,n. Then we have that Y,({)=
Z(F(t)), where

20050 255

and I (t) is the empirical distribution function for », 7, 7,. Define
¢: D[0, 11> D[0, 1] by (¢x)(t)==z(F'(t)). Let =z, x,, z;,--- be elements of
D[0,1]. If z, converges to « in the Skorohod topology and x € C[O0, 1],
then ¢z, converges to ¢ in the Skorohod topology. Therefore, Theorem



6 SIGEO AKI

2.1 and Theorem 5.1 of Billingsley [4] imply that Y,(t) converges to
W(F(t)), which completes the proof.

3. Linear functionals of W, and Neyman’s ‘smooth’ test

Let X, X;,---, X, be independent random variables having a com-
mon distribution function F'(t) over [0, 1]." In this section we study the
testing problem whether F(¢)=t on [0,1]. F,(t) denotes the empirical

distribution function of X, X,---, X,. Let W,.(t)=~/W<F,,(t)——S:1—IF%(i)
-ds).
First, we consider linear functionals of W,(t) as the test statistics.

The asymptotic distributions of the statistics are obtained under the
null hypothesis.

THEOREM 3.1. Suppose X, X,,---, X, are independent uniformly
distributed random variables on [0,1]. Let h be a continuously differ-

entiable function on [0,1]. Then as n— oo, T.(h)= S: h(t)dW,(t) con-
verges in distribution to the normal distribution with mean zero and var-
iance S:hz(t)dt.

PROOF. Since & is continuously differentiable and W,(¢) is of bound-
ed variation,

[, HOAW.O=hDW,(1)— hOW,(0) - [, oWt

holds from integration by parts of Stieltjes integral. Define ¢: D[0, 1]
—R by ¢(x)=h(1)x(1)—h(0)x(0)—S: K (@)x(t)dt. Let x, and = be elements

of D[0,1]. If z, converges to « in the Skorohod topology and x € C[0,
1], then the convergence is uniform and hence ¢(x,) converges to ¢(x).
Since W has its support on CJ[0, 1], Theorem 5.1 of Billingsley [4] and
Theorem 2.2 imply that T,(h) converges in distribution to

3.1) h(l)W(l)—h(O)W(O)—S: K @E)W(t)dt .
But (8.1) is equal to S:h(t)dW(t), by using integration by parts of

Wiener integral. It is well known that S:h(t)dW(t) is normally distri-

buted with mean zero and variance S: Ri(t)dt. This completes the proof.

PROPOSITION 3.1. Suppose that a function k on [0, 1] is continuous.



SOME TEST STATISTICS BASED ON THE MARTINGALE TERM 7

Then T,.(h)=S: hE)AW,(t) is written as
.L S -— = tﬂ_
=2 (MX)=H(X)),  where H®) | ds

PrOOF. Let X, =Xp=<---<X. be the order statistics of X, X,
«, X,. Then we have

o ) g
xg-n 1-—t

S:h(t)dW,,(t)zfl__i‘,h(Xt)_Jn §ynil |

n
T_- 2 MX,)— vn E n- %+1 (H(Xw)—H(Xu-1))
=L 3 6x)-HX) .

Thus the assertion is proved.
In particular, we let h(t)=a,+at+---+a,t™. Then we have

H(t)=— </§0 a,) log (1—t)— 33 %(jﬁ;‘ a,)t‘ .
Set
0O =ht)- HO=av+ 3} (at+ S a )t (5] a,) log (1—1).

Denote by E,(d;x) the one-parameter exponential family of probability
density

C,(0) exp {0g(x)} for O<x'<1 and 0> — ml
2 a,

j=0

Then T,(h) is the test statistic of the uniformly most powerful unbiased
test for H: 6=0 vs. K:0+#0 in E,(6; ) (cf. Lehmann [13], page 126).

Next, we shall show that Neyman’s ‘smooth’ test statistics can
be represented as functionals of W,(t). Neyman’s ‘smooth’ test was
defined in [17] by

1 k n 2
v=1+ (z n,(X,)) ,  for some k,
n j=t \i=1

where n,, 75, -+, 7, are orthonormal polynomials on [0,1]. If X’s are
uniformly distributed over [0, 1], then T¥ converges in distribution to
the chi-square distribution with k& degrees of freedom.

PROPOSITION 3.2. Neyman’s ‘ smooth’ test statistics are writlen as
Sunctionals of W,(t), i.e.
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¥ k 1 1 t , _ > )2
TY=3) <So—1—t <S°7r,(s)(1 8)ds AW, )+ V71 7, (0)) .
Proor. For each j=1,2,---,k, we set

1
1—

PO="1 | O A—)ds .

Then it holds
t 0
20—, 224 do=r(t)—=,(0) .
Hence, by Proposition 3.1 we have, for each j=1,2,..-,k,
n 1
= 315X = BOWO+ VR0

Thus the proposition is now proved.

4. Supremum of absolute value of W(t)

Let F be the totality of continuous distribution functions over [0,
1]. Every continuous distribution on (—o0, o) can be arranged to be
in F by a monotone transformation. We consider a goodness-of-fit test
for distributions in F, since the test statistic to be treated in this sec-
tion is invariant for such a transformation.

Let He F be fixed as the null hypothesis. Let X, X,,---, X, be a
random sample from a distribution Fe F. F, denotes the empirical
distribution function for X,, X,,---, X,. We shall use

T.=+n sup

0sts1

_ ¢ 1'_1a48)
F® So 1—Hi H (s)‘

for testing the hypothesis F=H. We could, however, define

T.=+~n sup
0sts1

F,,(H“(t))—st_ll-ﬂ(—H—l(z—l’ndul ,
0 1—u
which shows that the testing problem is equivalent to testing whether
H(X), H(X,), - -, H(X,) are uniformly distributed over (0, 1) by using
the corresponding test statistic. Therefore, without loss of generality,
we assume that H is the uniform distribution over (0, 1).

Now we shall use

T:=+n sup

0sts1

Fi(t)— S' 1_;%)_013

0

as the test statistic for testing the hypothesis F(f)=t on [0,1]. The
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asymptotic distribution of 7', under the null hypothesis is given by the
next theorem.

THEOREM 4.1. Suppose X, X;,---, X, are independent wumiformly
distributed random wvariables over [0,1]. Then T;} converges in distri-
bution to sup |W(t)|, where {W(t); 0<t<1)} is a standard Wiener process

ts1

wn D[0, 1].
ProOF. Under the null hypothesis, T:=sup |W,(f)|, where W,(t)
0stst
was defined by (2.1). We define ¢:D[0,1] >R by ¢(x)=s;u£ |2(2)].

Then the functional ¢ is continuous on C[0, 1]. Since the Wiener meas-
ure has its support in C[0, 1], Theorem 2.1 and Theorem 5.1 of Billingsley
[4] immediately imply the weak convergence of T, which completes
the proof.

Remark 4.1. The distribution function G of sup |W(t)| is contin-
0sts1
uous and it is known to be

(cf. e.g. Feller [7]). It is known also that the distribution is the limit
distribution of the statistic for testing symmetry of the underlying dis-
tribution proposed by Butler [5].

Now we shall investigate the approximate Bahadur efficiency of
the statistic to the Kolmogorov-Smirnov statistic. Following Bahadur
[3] we briefly mention some definitions about efficiency of tests. Prob-
lems related to efficiency of tests of fit were discussed by several au-
thors (e.g. Wieand [21], Gregory [8] and [9]).

DEFINITION 4.1. (Bahadur [3]) Let {P,, 8 €8} be a set of prob-
ability measures on a measurable space (S, S). Let 8, be some subset
of ® and let H be the hypothesis that 6 € §,. Suppose we are given a
sequence of real-valued statistics {T',} defined on (S, S) based on a sam-
ple of size n. We say that {T,} is a standard sequence if the follow-
ing three conditions are satisfied :

I. There exists a continuous probability distribution function G
such that, for each 4 € 6,,

lim P (T,<x)=G(%) for every z.

II. There exists a constant a, 0<a<co, such that

log (1—G()) =~ [1+o(1)]
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where 0o(1)—0 as x—oo.
III. There exists a real valued function b(4) on 6\8,, with 0<b(6)
< oo, such that, for each 6 € 6\8,,

T—+00

limP(\V”’%——b(ﬂ)l>x>=0 for every .

For every standard sequence {T,}, c(6)=ab*#) is called the approxi-
mate Bahadur slope. For two standard sequences {7} and {T. %},
the approximate Bahadur efficiency of {7} to {T'™} is defined by the
ratio of the approximate Bahadur slopes, ¢,(6)/cy(8).

In our framework, we assume that S=[0, 1], {P,, 6 € 8} is a subset
of F, 8,={6,} and P, is the uniform distribution over [0, 1].

Now we define two conditions on the distribution function F.

CONDITION A. Let Y,,Y; -+, Y, be independent random variables
having the common distribution function F(1—e™), 2>0. Let Y=
max {Y;,-++, Y,}. Then there exist two sequences {a,};-;, {b.}n-: and a
distribution 4 such that, as n—o, ¥Yn a,— o0, b,/(¥ 1 a,)—0 and a,Y,
+b, converges to 4 in distribution.

CONDITION B. S:ill'fgﬂdk co.

Remark 4.2. If the conditions in Condition A are satisfied, then 4
must be one of three types of limiting distributions (cf. e.g. David [6]).

We can note that even when there exist two sequences {a,}:-.,
{b.}2-, and a distribution 4 such that a,Y,+b,— 4 in distribution, the
conditions ¥ 7 a,— co and b,/v¥'n a,—0 are not necessarily satisfied. For
example, we let F(x)=(2/r)tan"!(—log (1—x)). Suppose X;, X;,---, X,
are independent random variables having common distribution function
F. Let YV,=—log(1-X)), 1=1,2,.---,n. Then Y, Y,--+,Y, are inde-
pendent random variables having the common distribution function G(y)
(=F(1—e?)=(2/z) tan"! (y), y>0. Setting a,=1/n and b,=0, we have

P (6, Yo+ byp) = {(1—;1;ny(1—G(nu)>}"—>exp (—%) , y>0,

But v na,—0#0o0.

Remark 4.3. Every distribution on [0, 1] can not satisfy Condition
B. It is clear that Condition B does not hold if F' is the distribution
of the point mass at 1. Even if F is a continuous distribution on (0, 1),
it does not necessarily satisfy Condition B. Consider
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1
1+ ——,
Ft)= " og 1-1)

0, if 0<t<1—1/e.

if 1-1fe<t<1,

Then it does not satisfy Condition B.
LEMMA 4.1. Condition B is equivalent to the condition

(4.1) sup

osts1

The proof is easy and so we omit it.

Now we fix a testing problem as we previously described. We de-
note by F, the distribution function over [0, 1] corresponding to P,, 4 € 6.

THEOREM 4.2. Suppose that, for every 0 ¢ 0, F, satisfies Conditions
A and B. Then the sequence of test statistics {T;} is a standard sequence.

Before proving the theorem, we prove the next lemma.

LEMMA 4.2. Suppose a distribution function F satisfies Condition
A. Then (1/¥n)(—log (1—X.)) converges to zero in probability, where
X 18 the mazimum among independent random variables X, X;,- -+, X,
having the common distribution function F.

PrROOF. Set Y;=—log (1—X,) for each i=1,2,.--,n. Then Y;,Y;,
-++, Y, are independent random variables having the common distribu-
tion function F(1—e¥). If we define Y,,=max{Y;, Y, --,Y,}, then
we have Yi,=—log(1—X,,). From Condition A, there exist two se-
quences {a,}, {b,} and a distribution function 4 such that vn a,— oo,
b/vna,—0 and a,Y,+b,—4 in distribution. Then the result is ob-
vious.

PROOF OF THEOREM 4.2. We shall check the conditions in Defini-
tion 4.1.

From Theorem 4.1 and Remark 4.1 we can see that {7} satisfies
Condition I in Definition 4.1. We denote by G the distribution func-
tion of os;ltlspl [W (@)

Next we show that G satisfies Condition II in Definition 4.1, i.e.
there exists a constant a, 0<a< o, such that

log (1-G(@) =22 [1+o(D)],

where o(1)—0 as z— oo.
Noting that
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1—G(z)=P (sup |W(t)|=2)=P ({sup W(t)=z} U {sup (—W(t))=2}) .
0sts1 osts1 0sts1
We have
P (sup W(t)=2)<P ({ sup |W(t)|=2})
osts1 0sts1
<P ({sup W(t)=z})+P ({sup (—W(t))=2}) .
osts1 0stis1
Since Brownian motion is symmetrically distributed, we see that
P ({sup (—=W(t)z2)=P ({sup W()22})
and hence we have
M(2)=1-G()=2M(2) ,

where M(2)=P ({ 0sssug W(t)=2z)).

By Proposition 2.9 of Hida [10], it holds

M(z)=~/—22_n— S:o exp [——Zi]dx .

Here we note that, if w>0, the next inequalities hold

w5 e

Vor lw  w 21 > Vor 2
1 1 w?
<v—z;—e"p[ ?]

Thus we have

A2 Yen[-ZJs-cos Lo [-5]

Hence,

log (1—G(x))=—_”21(1+o(1)) a8 F— oo .

Therefore Condition II in Definition 4.1 is now satisfied for a=1.

Finally we shall check Condition III in Definition 4.1, i.e. there
exists a real valued function b(4) on 6\6,, with 0<b(f)< oo, such that,
for each 6 € 6\8,,

£%P<|%—b(0)|>x>=0 for every .

Let

0
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We shall note that, if €6\, then 0<b(@)<co. The definition b(6)
and Lemma 4.1 imply that 0<b(f)<oco. We show that if b(0)=0, then
0 €8, Suppose that b(#)=0 for some 6 € 8. Then we can write

Fyt)= S 11F’(3)ds 0=st<1.

Since F, is continuous on [0, 1], F,(¢) is continuously differentiable on
(0,1) and hence F,(t) satisfies the differential equation

——(F;(»+F’“) Tl-T F,(0)=0.

Then we have F,(tf)=t and hence #=6,, Now we shall prove that T,/
v/'n converges to b(f) in probability for every 6 € 8\8,. The triangle
inequality implies that

75

(6)— F,(t)|+§ Mj’@l
We can easily see that
So |1Fu(&)=Fi($)l 3o sup |F(t)— Fi§)| X (—log (1— X))

1—s
4 1Flag,,
X(n) 1-—s

Since X, converges to inf {t; F,(t)=1} in probability, Sl II—F‘;(ﬂds
X -

converges in probability to zero by Condition B. Then Glivenko-
Cantelli’s theorem and Lemma 4.2 imply that |7}/ n —b(d)| converges
to zero in probability.

Therefore all conditions in Definition 4.1 are checked and this com-
pletes the proof.

The following result is an immediate consequence of Theorem 4.2.

COROLLARY. If F, satisfies Conditions A and B for every 6¢€6,
then the approximate Bahadur slope of T. is given by

[ L= gy )
o 1-—s )
Remark 4.4. The approximate Bahadur efficiencies of T; to other

well-known test statistics immediately can be given by using Table 1
of Wieand [21].

c(0)= {sup
0sts1

Now we consider a concrete example of the testing problem in
which we can calculate the approximate Bahadur slope of T, numeri-
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cally.

Example 4.1. Let 8=(0, o). Define, for every 6 ¢ 8, F,(t)=t’, 0<
t<1. We test the hypothesis that =1 by the test statistic 7!. Then
the following propositions show that the test statistic 7} is asympto-
tically rather good for 6=1.

PROPOSITION 4.1. In the problem of Example 4.1, {T}} 18 a stand-
ard sequence.

PrROOF. From Theorem 4.2, it suffices that we check that Condi-
tions A and B hold for Example 4.1. Since for every >0,

S‘ 1-¢
o 1—s

ds=7+¢(0+1)<oo ,

Condition B is satisfied, where 7 is Euler’s constant and ¢(z) is the
digamma function. It is easy to see that Condition A is satisfied with
a,=1 and b,=—log (nf), which completes the proof.

PROPOSITION 4.2. In Example 4.1, the approximate Bahadur slope
for Tt is given by

c(0)=(¢(0+1)+r—1)".

Proor. From Proposition 4.1, {7;} in Example 4.1 is a standard
sequence. Then the corollary of Theorem 4.2 shows that the approxi-
mate Bahadur slope is given by

t1-¢

ds ,
0 1—s

¢(O)={sp o),  where a(t)=t'|

It is not so difficult to see that
sup |pi(t)|=¢i(1) -
0sts1

Then the desired result is now proved.

PROPOSITION 4.3. In the setup of Example 4.1 we consider the
Kolmogorov-Smirnov statistic TXS=+"n sup |F,(t)—t| as another test sta-
0sts1

tistic. Then the approximate Bahadur efficiency of {T:} to {TXS} s
written as

(¢(0+1)+7—1)

(5" "a-0)

PrOOF. The approximate Bahadur slope of the Kolmogorov-Smirnov
statistic was given by Bahadur [3] as




SOME TEST STATISTICS BASED ON THE MARTINGALE TERM 15

c®5(0)=4 ossuglF,(t)-—t[ .
For Fi(t)=t’, it is easily seen that

cKS(0)=4{<%->W(0_D(1——0)}2 .

Then the result is proved from Proposition 4.2.

We denote by E\(6) the approximate Bahadur efficiency of {T;} to
{T%5} at 6. The values of E,(6) for some # are given in Table 1. The
table shows that, if #>2, then the approximate Bahadur efficiency of
{T:} to {TX5} at 6 is greater than 1. We, however, are also interest-
ed in the value of E,(§) when 6—1. The next result can be proved
from Proposition 4.3.

. ez 71.2 2
PROPOSITION 4.4. lim E1(0)=—(——1> .
o1 4\ 6
Now we shall give the exact distribution of T: under the mull hy-
pothesis.

THEOREM 4.3. Suppose X, X;,---, X, are independent uniformly
distributed random wvariables over [0,1]. Then the exact distribution
function of T3 is represented as

P(T:=2)
Jynz 1+ynz n— nx
g S " dt2' ‘ 'S " exp (—tn)dtn ’
Jova-yaz £,V (2—yTT) tp—qV(n—yTiZ)
= if 2>1/2V7),
0, if £<1/(2Vn),

where a\/b denotes the maximum of a and b.
PROOF. T:/vn is written as sup (1/n)|nF,(t)—n4,|. Since nF,(t)
OS£SX(.")
is a counting process with integrated intensity m4, by Lemma 2.1,
Py(s)=nF,(4;") is a Poisson process with intensity 1 (cf. e.g. Proposi-
tion 1.4.6 of Jacobsen [11]). Hence we have

T: 1
_tn =|P,(38)—s|,
T = Sup | P(s)—s|

where t, is the nth jump time of the Poisson process P,. Let R be
the domain between two lines y=t+mnd. Then,

Ve

gd} ={(ru0) € R, (r, 1) € R, (2, 1) € R, (1, 2) € R,
<oy (twM—1) € R and (z,, m) € R} .
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Since P, is a Poisson process with intensity 1, the density function of
7; and the conditional density function of r,,, given z,,---, v, are writ-
ten, respectively, as

pit)=exp(—t) and  P(,.l7yee, v, )=€XpP (—(tr11—7,)) .

Note that, if d<1/(2n), then either (z;,0)¢ R or (r;, 1)¢ R holds and
hence P(T;<d)=0. Then we assume that d>1/(2n). Suppose that (z;,
1i—1)e R and (r;,7) € R for every 1,2,--.,7. Then (r,,, 7)¢ R and
(tr+1 74+1) € R hold if and only if 7, exists in the interval A,=(z,V
(r—nd+1), r+nd). Therefore we have, if d>1/(2n),

P(7i-sd)={ dut)| dmtle) | dutelt,t)
|, b )

This proves the theorem.

5. Cramér-von Mises type statistic of the martingale term of
the empirical process

In this section we also consider the same testing problem as in
Section 4, i.e. testing the hypothesis that the observations are uni-
formly distributed over [0,1]. Let {F,; 6 € &} be a subset of F. We
assume that there exists 6, ¢ ® such that F, is the uniform distribu-
tion over [0,1]. Suppose that X, X;,--., X, are independent random
variables having a common distribution function F,. We denote by F,
the empirical distribution function correponding to X, X;,---, X,. Let

Wat)=vn <Fﬂ(t)—§‘ l:ﬂi’lds> .
o 1-—s
We shall consider testing hypothesis that 6=6, by the test statistic
T9= S: Wat)ds .
We can also consider as a test statistic

S: Wit)gt)dt for some weight function ¢ .

THEOREM 5.1. Suppose that a function ¢ on [0,1] is integrable.
Then S: P(OW2(t)dt converges to S: POWHt)dt in distribution.

Proor. Define @: D[0,1]—>R by @(x)=S: o) (x(t))dt. If z, con-
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verges to x in the Skorohod topology in D[0,1] and z € C[0, 1], then
the convergence is uniform and hence &(x,) converges to @(x) since
the next inequality holds,

10()—0(z)|
<(sup |20~ ()} (SUp |2.(0)~2(O)+2 sup =) x | 14(®)ldt -

Thus @ is continuous on C[0,1]. Then Theorem 5.1 of Billingsley [4]
and Theorem 2.2 imply the desired result. This completes the proof.

Remark 5.1. The distribution function G of S: W(t)d¢t was given
by Rothman and Woodroofe [20] as

G- (W)i-o( L)) .

where & denotes the standard normal distribution function. Further,
MacNeill [16] obtained the characteristic function of Sl o(t)W?*(t)dt and
0

he tabulated selected percentage points for the random variable for
some weight functions. They investigated the distributions as limit
distributions of some test statistics which are different from our sta-
tisties.

Now we shall calculate the approximate Bahadur efficiency of T¢
to the Cramér-von Mises statistic.

THEOREM 5.2. Suppose that, for every 0 < 8, F, satisfies Conditions
A and B. Then the sequence of test statistics {(T9)"?} is a standard
sequence.

PrOOF. From Theorem 5.1, T¢ converges to S: W*(t)dt in distribu-
tion. Then (T'%)": converges to {S: W“’(t)dt} " and Condition I of Defi-

nition 4.1 holds. It is well known that 7’:=S: Wit)dt can be written as

__4
((2i—D)m)*’
of i.i.d. random variables with standard normal distribution (cf. e.g.
Rothman and Woodroofe [20]). Then, from the result obtained by
Zolotarev [20], we have

ﬁ‘, 4,63, where A,= 1=1,2,---, and &, &,--- is a sequence
i=1

log P(+/ 7 >a)=log P(y>#)=—-2—(1+o() ,

where 0(1)—0 as z—oo.
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Thus Condition II in Definition 4.1 is satisfied for a=1/4,=r%/4.
Now we shall check Condition III in Definition 4.1. Let

o=, (ro-f, ) e

Similarly as in the proof of Theorem 4.2, we have that, if 6 € 6,, then
0<b(@)<oo. We prove that T¢/n converges to b*(0) in probability for
every 0 € O\6,. It is easily seen that

R R e

1—s
< (sup (&) Fift)|+ sup SMdsD

0stst

e

Noting that

|, (1 2554 ds)aes | 1240 g5,

we have that (5.1) is not greater than

a5 || B

It is easily seen that
So |Fu®) = Fo$)l go < SUp | F(®)— Fift) X (~log (1~ Xip)

1—s
| +Sl 1-Fys) 4,
X(") 1—8

By Lemma 4.2, we have
sup |F,@t)—F,t)| X (—log (1— X)) —0 in probability .
0sts1

Since X, converges to inf {¢; F,({)=1} in probability,

[ 1= g
X(n) 1—s

converges in probability to zero by Condition B.
Consequently, (5.1) converges to zero in probability and this com-
pletes the proof.
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COROLLARY. If F, satisfies Conditions A and B for every 0 ¢8,
then the approximate Bahadur slope of (T$)? is written as

¢?(8) = ’f: S (F(t) S 1 IF’(S) ds> dt .

Now we calculate the approximate Bahadur slope in the setup de-
scribed in Example 4.1.

Example 5.1. We consider the same situation as Example 4.1, i.e.
6=(0, ) and Fy(t)=t’, 0=<t<1 for every 6c 6. We take (T9)" as a
test statistic. From the corollary of Theorem 5.2, the approximate
Bahadur slope of (T%)" is given by

=2 (o] A=t 0

If 6 is equal to a positive integer m, we can calculate it further. By
integration by parts, we can easily obtain that

62 | (|, 5

1-—
G B8 et
=2 19 i=2 9 +1 i=2 9 (m+1)(2m+1)
m+ 2m+1 2m+1
—2% 242 3 2 2m (5 1)
i= i=m+2 1 m+1 \i=msz ¢

2 m 1 m+141 1
+ tgl i+1<i§r-z 7) )

If we consider in this example the Cramér-von Mises statistic
1
Tov— So WF(8)—t)'dt

as another test statistic, the approximate Bahadur slope c¢°*(6) of

. 2740 —1)*
TCH 1/2 1 tO
(5 s eaual o oy@r+1)
S (Fy(t)—t)'dt (cf. e.g. Wieand [21]).
Values listed in Table 1 are as follows:
c'(0), c*5(6), c%(0) and c°¥(9) are the approximate Bahadur slopes of
T:, TXS, T¢ and TE¥, respectively,

E(0)= ;g?)) is the approximate Bahadur efficiency of T: to T%S,

, since it is generally written as

and

Ey(6)= 053) is the approximate Bahadur efficiency of T¢ to T¢¥X,
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Table 1.

@)  cXS(B)  c%f) () E«6)  Eo9)

[

2  0.2500 0.2500 0.3290 0.3290 1.0000 1.0000

4 1.1736  0.8929  1.1867 1.0966  1.3144  1.0821

6  2.1025 1.3566 1.7933  1.5817 1.5499  1.1338

8 29510 1.6906 2.2208 1.8965 1.7455  1.1710
10  3.7209 1.9423 2.5369 2.1149  1.9157  1.1995
12 4.4235  2.1393  2.7807  2.2747  2.0677  1.2224
14 5.0695 2.2981 2.9748 2.3965 2.2060 1.2413
16 5.6679  2.4291 3.1335  2.4923  2.3333 1.2573
18 6.2256  2.5394  3.2659  2.5697  2.4516 1.2709
20 6.7483  2.6336  3.3782  2.6334  2.5623  1.2828
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