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Summary

It is well known that in experimental settings where v treatments
are being tested in b blocks of size k, a group divisible design having
parameters i,=1,+1 and whose corresponding C-matrix has maximal
trace is both E and MV-optimal among all possible competing designs.
In this paper, we show that under certain conditions, the E and MV-
optimal group divisible block designs mentioned in the previous sen-
tence can be used to construct E and MV-optimal row-column designs
to handle experimental situations in which heterogeneity is to be elim-
inated in two directions and where v treatments are being tested in b
columns and k& rows. Examples are given to illustrate how the results
obtained can be applied.

1. Introduction

Block designs are used for experiments where it is important to
eliminate heterogeneity in one direction. However, in many experi-
mental situations, the position that an experimental unit occupies with-
in a block can also affect observed responses. When this happens, row-
column designs can often be used to eliminate heterogeneity in two
directions. The row-column designs considered here have bk experi-
mental units arranged in a rectangular array of b columns and &k rows
such that each unit receives only one of the v treatments being studied.
This paper gives some optimal row-column designs which can be con-
structed from some well known optimal block designs.

Let d denote an arbitrary row-column design such as described
above. Observations y,,, obtained after applying the mth treatment
to the unit occurring in the nth column and pth row are assumed to
follow the usual three-way additive model, i.e.
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Ymnp=n~+But7pFmnp » 1=m=v, 1=05d, 15psk,

where a,=the effect of the mth treatment, 8,=the nth column effect,
rp=the pth row effect and e,,, is a random variable with zero expec-
tation. All observations are assumed to be uncorrelated and have the
same variance ¢’. M,=(m,;) and N,=(n,,) are used to denote the
treatment-row and treatment-column incidence matrices, i.e., m,,; gives
the number of times treatment i occurs in row j and m,, gives the
number of times treatment 7 occurs in the jth column. The coefficient
matrix of the reduced normal equations for estimating the treatment
effects in d can be written as

1.1  Cy=diag (ra,: -, 7ar) —(1/E)NaN; — (1/0) M, M; + (1/bk) B, R

where A’ denotes the transpose of a matrix A, r; represents

the number of times treatment 4 is replicated in d, R,=(74, "+, 74,
and diag (74,--+, 7s) is a vXv diagonal matrix. C,, the C-matrix of
the design, is known to be positive semi-definite with zero row sums.

v
In a row-column design a linear combination 3] c,a; of the treat-
i=1

ment effects is said to be estimable provided there exists a linear com-
bination >} >} > a,;¥.:;: of the observations such that E (3] ; > @i jiYige)
i f k 1 k

v v
=>)¢ea;. A treatment contrast is any linear combination 3] c,; of the
i=1 i=1

treatment effects where ﬁ‘, ¢;=0 and it is well known that an estimable
i=1

function of the treatment effects in a row-column design must be a
contrast. Any row-column design in which all treatment contrasts are
estimable is said to be treatment connected, e.g. see Eccleston and
Russell [6]. Alternatively, a row-column design is treatment connected
if and only if its C-matrix has rank v—1. Henceforth, D(v,b, k) de-
notes the class of all treatment connected designs having v treatments
arranged in b columns and %k rows.

With each row-column design d € D(v, b, k) we associate the block
designs dy and d, with incidence matrices N; and M,, respectively, i.e.
dy is that block design which can be obtained from d by treating the
columns of d as blocks and ignoring the row effects whereas d, is that
block design which can be obtained from d by treating the rows of d
as blocks and ignoring the column effects. When all the entries of N,
are 0 or 1, we say d, is a binary design. NN/ is called the concur-
rence matrix of dy and its entries are denoted by A%;,;. If d, has N,N;
with all of its diagonal entries equal to one value and all of its off-
diagonal entries equal to another value, then d, is called a balanced
block design (BBD). A binary BBD where v>k is called a balanced
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incomplete block design (BIBD). We call dy a group divisible (GD) de-
sign with two associate classes and parameters p", ¢, Y, and 2y if
the treatments of dy can be partitioned into p" disjoint sets of size ¢"
such that if treatments ¢ and j occur in the same group, 23,=4},
whereas if treatments ¢ and j occur in different groups, 2%;=47. If
dy has all of its treatments replicated bk/v times, then the dual of dy,
denoted by d, is the design whose incidence matrix is N;,=Ni. While
the definitions given in this paragraph have been presented in terms
of dy, parallel definitions do exist of course in terms of dy. The co-
efficient matrices of the reduced normal equations for estimating the
treatment effects in d, and d, are, under the appropriate two-way
model,

Ci=diag (Ta1,* * *» Taw) — (1/E) N, Ni
1.2) and
C¥=diag (Ta1,* * 5 Tao) —(L/D) MM .

These matrices are called the C-matrices of d, and dy, respectively,
and possess the same properties as C;.  Dy(v, b, k) (Dy(v, b, k)) will hence-
forth denote the class of all dy(dy) corresponding to d € D(v,b, k) and
consists of all connected block designs having v treatments arranged
in b(k) blocks of size k(b). For each dye€ Dy(v,b, k) (dy € Dy(v, b, k))
there are many corresponding designs in D(v, b, k) as there are many
orders in which treatments can occur in blocks. Using [-] to denote
the greatest integer function and tr A to denote the trace of a matrix
A, we also employ the following notation throughout the sequel:
For >0 a positive number,

R"(z)=(x—b[z/v])([z/v]+1)'+ (b—x+blx/v]) ([=/v])’
R*(z)=(x—k[z/v])([z/v]+1)*+ (b—2+k[z/v]) ([x/v])*
(1.3) r=[bk[v]
A¥=[(rk—R"(r))/(v—1)]
A*=[(rk—R*(r))/(v—1)]
Dy(v, b, k)={dy € Dy(v, b, k) such that trC¥ is maximal}
Du(v, b, k)= {dy € Dy(v, b, k) such that tr C¥ is maximal} .

With regard to Dy(v, b, k) and Dy(v, b, k), it follows from the results
of Jacroux and Seely [13] that

Dy(v, b, k)={dy € Dy(v, b, k)
such that n,;=[k/v] or [k/v]+1 for all ¢, 5}
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Dy(v, b, k)= {dy € Dy(v, b, k)
such' that m,;=[b/v] or [b/v]+1 for all 4, 5} .

For d e D(v, b, k), let 2z49p=0<2;<2s<---=<2;,., denote the eigen-
values of C;, z5,=0<2<-..-<2Y,., the eigenvalues of CY, and 2%=0
<zE<-..<Zz¥,, the eigenvalues of C¥. Following Cheng [1] or Magda
[15], we can write

(1.4) Co=Ci —(1/0)M(I,— (1/k)J ) M2
=G4 — (L/k)Ny(I, — (1/b)45) N
=C7+Ci—diag (ray, -+ -, 7o) +(1/k)R.R;

where I, denotes the nxn identity matrix and J,, the mXxn matrix
of ones. Since M (I,—1/k)J.)M; and Ny (I,—(1/b)J,,) N, are positive
semi-definite,

(1.5) zu=<2Y; for i=1,--.-,v—1 and z,=<z¥ for i=1,.-..,v—1.

The optimality criteria considered here for selecting optimal designs
in D(v, b, k) are the E and MV-optimality criteria. The E-optimality
criterion was introduced by Ehrenfeld [7]. This criterion chooses those
designs d € D(v, b, k) such that z, is maximal and is equivalent to find-
ing those designs which minimize the maximum variance among all
least squares estimates obtained for treatment contrasts of the form

i‘, c;a; Where é c¢i=1. The E-optimality criterion is appropriate to use
i=1 i=1

in experimental settings where it is desired to estimate all treatment
contrasts with as much precision as possible. However, in many ex-
perimental situations, the primary interest of the experimenter is not
to optimally estimate arbitrary treatment contrasts, but rather to op-
timally estimate the differences in the effects that the treatments under
study have on the various experimental units. In terms of estimable
functions, this leads to the need to be able to estimate all treatment
contrasts of the form a;—a; with as much precision as possible. Con-
trasts of the form «;—ea, are called elementary treatment contrasts or
elementary treatment differences. We shall call d € D(v, b, k) a mini-
mum variance design and say d is MV-optimal in D(v, b, k) if the maxi-
mal variance with which it estimates elementary treatment differences
a;—a, is minimal among all designs in D(», b, k).

A number of results are already known concerning the E and MV-
optimality of designs in classes like Dy(v, b, k), e.g., see Takeuchi [14],
[20], Cheng [2], Constantine [3], [4] and Jacroux [10]-[12]. Here we
consider the problem of determining E and MV-optimal designs in classes
D(v, b, k). The only results known to the author concerning this prob-
lem are those which can be obtained from theorems proven in Kiefer
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[14], Cheng [1] and Jacroux [12]. A generalized Youden design (GYD)
d € D(v, b, k) is a row-column design in which dy ¢ Dy(v, b, k) and dye
Dy(v, b, k) are both BBD’s. Using the results of Kiefer [14], it is easily
seen that a GYD is both E and MV-optimal in D(v, b, k). Cheng [1]
proved that if d* € D(v, b, k) is such that d} is E-optimal in Dy(v, b, k)
and each treatment of d* occurs in each row of d* exactly bjv times,
then C,=C% and d* is E-optimal in D(v,b, k). Jacroux [12] showed
that by augmenting certain types of designs such as those proven E-
optimal by Kiefer [14] and Cheng [1] with additional columns, some
E-optimal row-column designs having treatments unequally replicated
can be obtained. In this paper we derive some further results con-
cerning the E and MV-optimality of designs in D(v, b, k). In particular,
it is well known that if dy € Dy(v, b, k) is a GD design having 2y =2+
1, then dy is E and MV-optimal in Dy(v, b, k). (See Takeuchi [18]).
Here we give some methods for constructing row-column designs which
are E and MV-optimal in D(v, b, k) from designs dy € Dy(v, b, k) which
are GD designs of the form mentioned in the preceding sentence.

2. Main results

In this section, we give our main results concerning E and MV-
optimality. In particular, we give some sufficient conditions for a de-
sign d* to be E and MV-optimal in D(v, b, k) whose corresponding design
d¥ is a GD design having AY=i"+4+1. We note, however, that in any
of the results given in this section, the rolls of d} and d¥ could be in-
terchanged. We begin by proving a lemma which is useful in deriving
our main theorems.

Lemma 2.1, Let d € D(v, b, k) be arbitrary and let ca=3)ca, be a

contrast which is estimable in both d and dy. If var,(c'a) and var,, (c'a)
denote the variances of the least squares estimators of c'a obtained from
d and dy, respectively, then

var, (c'a)=var,, (c'a) .

PrROOF. For d e D(v, b, k), it is easily seen that if c’a=é co; 18 an
i=1

estimable function of the treatment effects, then var,(c'a)=c'C;c where
C; is any reflexive generalized inverse of C,, i.e., a generalized inverse
satisfying C;C,Cq; =C; . Similarly, if c’e is estimable in dy, then var,,
(c'a)=c'CY ¢ where C}~ is any reflexive generalized inverse of C;. Now,
since d € D(v, b, k), d is connected, C, has rank v—1 and one reflexive
generalized inverse of C; is given by
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-1 0

C"=[ dvy ]

‘Lo 0
where C,,, is the principal minor obtained by eliminating the last row
and column of C,. Also, because d is connected, it follows that dy is
connected, i.e., all treatment contrasts c’a are estimable in dy. Thus
C% has rank v—1 and a reflexive generalized inverse for CY is given by

(%" |

where C%,, is the principal minor obtained by eliminating the last row
and last column of CY. Now, from (1.4), it follows that C¥—C, is posi-
tive semi-definite, hence that C%,—C,,, is positive semi-definite and
Ciii—(Ch,,)™" is positive semi-definite. The result now follows since for
any vector c,

¢'Cimezc'(Ciro) e -
We now prove a result which is similar to Theorem 3.1 of Cheng [1].

THEOREM 2.2. Let d* e D(v, b, k) be such that d} is E-optimal in
Dy, b, k). If zp=2%, then d* is E-optimal in D(v, b, k).

Proor. If d} is E-optimal in Dy(v, b, k), then for each dy € Dy(v,
b, k), z,<z}%,. Now, by (1.4), it follows that for any d € D(v, b, k)

zd1§z41§2$x=zdf ,
thus establishing the E-optimality of d* in D(v, b, k).

COROLLARY 2.3. Let d* ¢ D(v, b, k) be such that d} ¢ Dy(v, b, k) is a
GD design with parameters p~, ¢ and AY=iY+1. Also assume that
i) d%e Dy(v,b, k) is a BBD or
il) d¥e Dy(v, b, k) is a GD design with parameters p*, ¢¥=1g" (1=1),
such that the following conditions hold ;
a) lfl= lgu: o =zg{uu7
b) treatments which are first associates in df are also first as-
sociates in df,
) 2% o1—(d" A —q*20[b=2},.
Then d* is E-optimal in D(v, b, k).

PrOOF. By the results of Takeuchi [19], d} is E-optimal in Dy(v,
b, k). If df is BBD, then each treatment must occur in each row of
d* the same number of times, and the result follows by Theorem 3.1
of Cheng [1]. If d¥ is a GD design such as described, it is easy to
verify that the eigenvalues of d* are
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2 =(rk—R*(r)+))[k (occurring with multiplicity p¥(¢¥—1))
23, 01— (@A —q*2A39/b
(occurring with multiplicity v—p*(¢¥—1)—p*(—1)—1)
Zge,0-1=(rk— RB"(r)—(¢" —1)2Y +¢" ")/
(occurring with multiplicity p*(l—1)) .
The condition that 2%, ,—(¢¥2¥—q¥Ai¥)/b=2%, then guarantees that z,,
=z%, and the result follows from Theorem 2.2.
THEOREM 2.4. Suppose d* € D(v, b, k) ts such that d} is MV-optimal
iwn Dy(v, b, k) and nrixajx var, (&,—o‘z,):nilafc varg (@,—a;). Then d* is MV-
# +
optimal in D(v, b, k).

PROOF. Let d € D(v, b, k) be arbitrary. Since d} is MV-optimal in
Dy(v, b, k), it follows by the assumptions of the Theorem and Lemma
2.1 that

max var, (& —@&,) Zmax var,, (&,—a,)
i#] i+
=max var (&;—a;) =max var, (e;,—a,) ,
it i#j
hence that d* is MV-optimal in D(v, b, k).

COROLLARY 2.5. Suppose d* € D(v, b, k) is such that d} satisfies the
conditions of Corollary 2.3. Also assume that

i) dfe Dy(v,b, k) is a BBD or

il) d¥e Dy(v, b, k) 18 a GD design satisfying the conditions of Corol-
lary 2.3. Then d* is MV-optimal in D(v, b, k).

Proor. If d¥ is a BBD, it follows from the results of Cheng [1]
that C,.=Cj%, hence that z,,=z2%,. On the other hand, if d¥ satisfies the
conditions of Corollary 2.3, from the proof of the corollary, it is seen
that z,,=2%,. So in either case, we have that

Zg=2gn=(rk—R"(r)+7)[k .

From Raghavarao [17], the previous equality and Lemma 2.1, it follows
that since d¥ is a GD design with parameters Ay =21Y+1,

2/zf, =max vary (&, —a;) Smax var, (—a,)<2/zs .
i*j i#J

Now, by the results of Takeuchi [19], d¥ is uniquely MV-optimal in
Dy(v, b, k). Thus d* satisfies the conditions of Theorem 2.4 and the
corollary follows.

We now give several examples to illustrate the results given in
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Corollaries 2.8 and 2.5.

Example 2.6. Consider the class of designs D(6, 9, 4) and consider
d* € D(6, 9, 4) having treatments assigned to rows and columns as fol-
lows :

112 335 2 46
P 2 211433 635
4 6 5 416 5 3 2
5 4 6 5 6 1 4 2 3

Then d¥ is a GD design having parameters p¥=2, ¢"=3, 2’=3 and 1Y
=4 and d¥ is a GD design having parameters p¥=2, ¢¥=3, 1¥=10 and
A¥=8. It is also easy to verify that z,,=22,=21/4 and that 2}, ,—
(g¥A¥—q¥2¥)/b=(24/4)—(3(10)—3(8))/9=16/3>21/4. Thus d* is E and
MV-optimal in D(6, 9, 4) by Corollaries 2.3 and 2.5.

Comment. The process of constructing designs which satisfy the
conditions of Corollaries 2.3 and 2.5 is relatively simple. To begin with,

let d} € Dy(v, b, k) be a GD design having parameters 2¥=1"+1. Now,
arrange treatments within the blocks of d} so that all treatments which
are first associates occur in the same rows of d* the same number of
times and such that the resulting GD design d} satisfies the conditions
of Corollaries 2.3 and 2.5. For example, if b is a multiple of v, then
arrange the treatments within the blocks of d} so that each treatment
occurs within each row of d* exactly (b/v) times. That treatments can
be arranged in blocks in this manner can be proven using arguments
similar to those given by Constantine [56]. Using this technique, the
author has been able to find row-column designs satisfying Corollaries
2.3 and 2.5 for a number of parameter sets v, b and k. Given below
are parameter sets for which the author has constructed designs satis-
fying Corollaries 2.3 and 2.5 for values of v, b and k¥ where b is not a
multiple of v:

v b k v b k v b k v b k
4 10 2 6 69 2 9 21 3 12 9 8
4 22 2 6 99 2 10 25 2 14 49 2
4 34 2 6 14 3 12 54 2 15 25 3
4 46 2 6 9 4 12 16 3 16 36 4
4 58 2 8 18 4 12 20 3 18 81 2
4 70 2 8 4 2 12 40 3 18 48 3
6 9 2 8 52 2 12 9 4 20 100 2
6 39 2 8 12 4 12 30 4 20 25 4
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v b k v b k v b k v b k
20 16 5 30 25 6 40 72 b 56 64 7
21 49 3 35 49 5 42 49 6 56 49 8
24 80 3 36 81 4 48 64 6 63 81 7
28 49 4 40 100 4 54 81 6

Comment. Hoblyn, et al. [9] and Freeman [8] considered some types
of row-column designs of which those satisfying Corollaries 2.3 and 2.5
are special cases. Using the notation of Hoblyn, et al. [9], d € D(v, b, k)
is an X:YZ design where X, Y and Z may be any of the letters O-
standing for orthogonal, T-standing for totally balanced or P-standing
for partially balanced, and X describes the type of block design ob-
tained by considering rows as treatments arranged within columns
whereas Y and Z describe the types of block designs that d, and dy
are, respectively. Thus the designs satisfying Corollaries 2.8 and 2.5
and those given in the previous table are O: PP designs. However,
Hoblyn, et al. [9] and Freeman [8] did not investigate any of the de-
signs which they considered in terms of optimality. Freeman [8] gives
a catalogue of some useful O: PP designs, some of which are E and
MV-optimal by the results given here. The reader is referred to Free-
man [8] for additional information on other types of O: PP designs.

An interesting aspect of the E and MV-optimal row-column designs

described in Corollaries 2.8 and 2.5 is that while a GD design d¥ € Dy(v,
b, k) is uniquely E and MV-optimal in Dy(v, b, k) (see Takeuchi [18]),
there may exist more than one design in D(», b, k) which satisfies both
of Corollaries 2.8 and 2.5 as the next example illustrates.

Example 2.7. Consider the class of designs D(4, 16, 2) and consider
d¥ € D(4, 16, 2) and df € D(4, 16, 2) having treatments assigned to rows
and columns as follows:

d*_[1111343422223434]
*—

2342111134342243

2342311134342443

d*—[1111143422223234]
2 — .

Then d¥, and d¥, are both GD designs having parameters p¥=2, ¢"=2,
A¥=2 and A¥=3. However, df, € D,(4,16,2) is a BBD and dj, € Dx(4,
16, 2) is a GD design having parameters p¥*=2, ¢¥=2, 1¥=34 and 1¥=

30. It is also easy to verify that d¥ and df have minimal nonzero
eigenvalues equal to 5 and that
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Zae, 01— (@21 — " 23)[b=6—(2(34) —2(30))/16=11/2>5 .
Thus both d} and df are E and MV-optimal in D(4, 16, 2).

Comment. While both the designs d¥ and d} given in the previous
example are E and MV-optimal by Corollaries 2.8 and 2.5, d¥ is prob-
ably the one that would be used in practice since it can be shown that
it is better than d} under a number of other optimality criteria such
as the A and D-optimality criteria. So if more than one design exists
in a given class D(v, b, k) which satisfy Corollaries 2.3 and 2.5, other
optimality criteria can be used to select a single design for usage from
among the competing E and MV-optimal designs.
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