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MEASURES OF LOCATION IN THE PLANE
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Summary

There are many possible candidates for measures of location of
asymmetric probability distributions. This difficulty is compounded for
multivariate distributions. It is the purpose of this paper to charac-
terize the set of all possible measures of location for a given bivariate
probability distribution. A closed, convex region in the plane will be
constructed, any point of which is a reasonable measure of location.
Reasonable here refers to the invariance of the region under certain
transformations and order relations. The size of this region can be
used to characterize the degree of asymmetry that a distribution pos-
sesses.

1. Introduction

1.1. Review of the univariate case

A random variable X is said to be symmetric about a point 6 ¢ R
if X—0~—X+46. If X has distribution function F, this is equivalent
to F(x+0)=1—F(—x+6), vexeR. It is clear that in this case, the
only reasonable measure of location for X is §. In the case X is not
symmetric, many points may serve as location parameters. Doksum
[2] characterizes this set of location parameters and establishes some
important results concerning it. He uses three different methods to
construct a set, any point of which can serve as a measure of where
a given distribution is located on the line.

Doksum’s first method is to approximate a given distribution funec-
tion F as closely as possible from above and below with a symmetric
distribution function. The respective points of symmetry 8, and 8, of
these two approximating distributions are then used to define the loca-
tion interval [@, 05].

The second method is to consider the set of location parameters
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for F'; that is, the points which satisfy the four location axioms given
by Bickel and Lehmann [1].

Let X be a random variable with distribution function F. Then
2(F) (or p(X)) will denote a measure of location for F' (or X) if p(F)
satisfies the following four axioms:

(ul) F(x)=G(x), v implies p(F)=<p(G)

(u2) peX)=au(X), va>0

(u3) p(X+b)=p(X)+b, vbeR

wd) p(—X)=—p(X).

Doksum defines a location parameter to be the real-valued location func-
tional 4. (defined on &, the class of all distribution functions) satis-
fying axioms (ul)-(u4) for all F' with finite support. Let D denote
the set of all real-valued location parameters .. Then for a given dis-
tribution function F,

Ly={0F: 6.€ D, 0, exists}

is taken to be the location set for F.

The third method involves the use of the function of symmetry.
In the case of symmetry, there exists a unique constant ¢ such that
X~—X+260. This property can be generalized to any distribution (not

necessarily symmetric) by letting 6 be a function for each F. If F
denotes the distribution function of —X, then X~ —X+420 implies
F(z+20)=F(x), ve. In general, take 6.(x) such that F(x)=F(x+
26 (x)), or more precisely, 20(x)=sup {6: F(x)<F(x—26)}, for x in the
support of F. We can solve this last equation for #,(x) to obtain the
function of symmetry

ap(x>=§[x—F-I(F(w»1 ,

for x in the support of F. The range of 0,(x), R(67)={0r(x) for x in
the support of F'} can then be taken as a location set for F.

Probably the most significant result of Doksum’s work is the equiv-
alence of these three methods of constructing a location set. He proves
the following theorem :

THEOREM. (a) If F is increasing and continuous on its support,
then the closure of the location set Ly equals the location interval [0r, 0 5].
(b) If F is increasing and continuous on its support, then the closure
of the range of 0z(-) equals the location imterval [85, 0]

1.2. Statement of problem and summary of results

It is the purpose of this paper to extend Doksum’s results to mul-
tivariate distribution functions. The bivariate case will be emphasized
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due to the ease of geometric interpretation. Multivariate generaliza-
tions are then easily obtained.

By an approach analogous to that used in the univariate case, a
well-defined, closed, convex location set will be obtained, any point of
which would be an appropriate measure of where the given bivariate
distribution is located in the plane. It will be shown that this region
depends on the distribution function only through its marginal distri-
bution so that the bivariate case can actually be reduced to the uni-
variate problem.

Section 3 briefly describes a possible application of the location re-
gion. The size of the region can be used to characterize the degree
of asymmetry of a distribution. A measure of asymmetry for stand-
ardized random vectors is given.

2. Construction of the bivariate location region

2.1. Method 1: Approximation by a symmetric distribution

Given a bivariate distribution function F, we wish to construct a
symmetric bivariate distribution function H, and then use H to ap-
proximate F' from above and below. It is thus apparent that an or-
dering of distribution functions is needed. This can be done as follows :

DEFINITION. Let X=(X,, X;)’ and Y=(Y,, Y;)’, where “prime” de-
notes transpose, be two random vectors with distribution functions F
and G respectively. We say X is stochastically smaller than Y iff

F(x)=G(x) , vxeR.

While it is possible to construct H by methods somewhat analogous
to those used in the univariate case, this is not necessary. Rather
than extend the univariate results to the bivariate case, it is possible
to actually reduce the bivariate problem to a univariate one. This will
be done by way of the marginal distribution functions. It will be
shown that the boundaries of the location region depend on F' only
through its marginals.

Let X=(X,, X,)’ be a random vector with distribution function F,
and let S(F)={x=(x;, %;)’: 0<F(x,, x,)<1} be the support of F. As-
sume F'is continuous and strictly increasing in each argument. Denote
the marginal distribution functions of F' by

Fy(x,)=F(x,, + ), Fy(#)=F(+ o0, 2;) .

Consider the following result:

THEOREM 1. Suppose F and H are continuous bivariate distribu-
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tion functions which have the same support. Let
B={6=(0,, 0;): H(x,—0,, :—0)=F (1, %;), V %y, %3}
B,={6,: 6=(6, 6,) € B}
U={6,: H(x,—0,)=F(x), V}. Then U,=B,.
PROOF. Let 8=(6,, ;) ¢ B. Then
H(x,—6,, 2;—0)=F(x,, @,) , V&, X, .
In particular, for x,=-+oc0, we have
Hyx,—0)zF(2), Vva
= 6,eU,
= B,cCU,.

We now wish to show U,cB,. Assume not. Let 6,¢ U, but 6,¢
B;. Then for each value of #,, there exist x,, #, such that

(%) H(x,—0,, ,—0,) < F(2,, @) .

Case (1). Suppose the support of F' and H is the entire plane. Then
(*) implies there exist x,, 2, such that

H(x,—6,)=H(x,— 6, 0) S F(%,, x;) < Fy(2y) ,
contradicting 6, € U,. This establishes U,c B, and the theorem.

Case (2). Suppose the support of F' and H is bounded (that is, con-
tained in a sphere of finite radius). Then there exists y*<oco such
that H(x,, y*)=H(x,), V %;.

We can choose §; such that for corresponding value(s) of x, (and
2,) which satisfy (%), x, also satisfies

(**) Ly =0;+y*
= xy—0,=y*
= H\(2,—0,)=H(®,—0,, 2,— 0,) < F' (%, ®) S Fy(w,) ,

again contradicting 6, € U, and thus establishing the theorem. It re-
mains only to show that for some #,, there exists x, (and z,) satisfying
(xx) as well as (¥). Suppose the contrary. Assume that for every 6,
the corresponding z, satisfying (x) is always such that

2, < 0, +y* => as f,— —oo, so does z,.
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So take 6, so small that the corresponding x, is no longer in the
support. Then for this 6,, z,, and z,,

F(x,, ,)=0 = H(x,—6,, ©;—0,)<0, a contradiction .
If S={0=(0,, 6;)': H(x,—0,, 2;—0;) < F(2,, x;), V2, X},
Si={0,: 6=(6,, 8;) €S},
S;={0,: 8=(6,, 0,)' € S},
B,={6,: 6=(6,, 6;) € B} ,
Li={6,: H(x,—0,)<F\(), V&},
U,={0,: Hy(x,—0,)=Fy(xs), V s},
and L,={0,: Hyx,—0;)<Fy(x,;), V s},
a similar argument yields
B,=U,, S,=L, and S,=L,.
Let 0§=31;p B, 0}‘*=ir:f S using the component-wise ordering of points
in the plane. Take A to be the rectangular region
A={x: 0¥=<x=0%*}.

Then in the spirit of Doksum’s construction for the univariate case,
A is a location set for F. Some comments are in order:

(1) By the theorem, A is simply the Cartesian product of the
following two intervals:

L=[0s, a-171] and L=[0x, EF,,]
where @0y =sup {0: H(x—0)=Fy(x), v}
[
0—,.k=i1;;f {6: H(x—0)<F\(x), vV} for k=1,2.

Thus, this theorem results in a reduction of the bivariate problem
to a univariate problem by way of the two marginal distributions F;
and F;,.

(2) Clearly, it is desirable to make A as small as possible; i.e.,
approximate F' as closely as possible with some H. Since A=1I X1,
taking H; and H, s.t.

H,:*(u)=—;—[F;‘(u)+ik-l<u)1 , we(0,1),

for k=1, 2, respectively yields the smallest I, and I, and thus minimizes
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the size of A. Hence any bivariate distribution function H with mar-
ginals H, and H, as defined above is appropriate.

(8) Distribution functions are based on “infinite rectangles” with
sides parallel to the coordinate axes. It is natural to wish the location
region independent of the orientation of the axes. To this end, let R,
denote the linear transformation representing a counterclockwise rota-
tion of the plane through an angle a. Let F, denote the distribution

function of ¥Y=R,(X) with corresponding marginals F.,, and F,. F,

and F,, will denote the distribution functions of —Y; and —Y; respec-
tively. For each a€(0,2r], let H, and H,, be distribution functions
whose inverses are given by

H,;‘(u)=-;— [Fo+Fiw)],  we(,1)
for k=1,2. For each a € (0, 2r] construct the region A, as in Theorem
1. (See Figure A) Then the region given by
A= N R_,(A, is a location region for F'.

ae(0,2z]

X2

x1

Fig. A. Diagram of a typical location region A, for the distribution
function F, for a €(0,2x].

2.2. Method II: Axioms of location

Let 8x=6, be a candidate for a measure of location for . Desired
properties of 8, are:
(Bl) 6x=<60y whenever X is stochastically smaller than Y. (The
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component-wise ordering of points in the plane is being used here to
define 8x=<0y).

(B2) 6ox=08x, v orthogonal transformations O.

(B3) Ox+a=0x+a, Vac R

(B4) 6Osx=S60x, v positive definite symmetric transformations S.
We will call 8. a bivariate location parameter if it satisfies (B1)-(B4)
for all F' with finite support. Let D denote the collection of all loca-
tion parameters .. For given F, define the location set Lr={0,: 0. ¢
D, 6, exists}.

2.3. Method III: Function of symmetry

A distribution function F' is symmetric about a point 8 if (X;—26,,
X,—20,) ~(—X,, —X;)’. Thus, we can extend this idea to nonsymmetric
distributions by paralleling the univariate approach marginally. Hence,
the bivariate function of symmetry in direction « is given by

_ (2[5~ F(F ()] i
0 (x)= ( /2 [z P Fr (wz»]> . a€(0,2r].

Now 6y (x)=0r (2, ,)’ and if we let x,=F; (u), x,=F;'(v) for u,ve
(0, 1/2], we have

—g. (') _ (A2)[Fi(w)+ FiJ' (1 —u)]\ st (m ()
Or (x)=0r, <F,;‘('v)> - ((1/2) [Fi'(v) + Fi'A—v)] > - <m,vh('v)> ’
using Doksum’s notation .

Define 6% =inf{m; (u): 0<u=1/2},
0%} =sup {my (u): 0<u=1/2},
0%, =inf {m;, (v): 0<v=1/2},
0%} =sup {my, (v): 0<v=1/2} .

Then for B,,={x: <zzln> =x= (gfg})}, the location region for F is B=
F2n
N _R_.(B.).

F
a€(0,2x]

THEOREM 2. Let F be continuous and strictly increasing in each
argument. Let A be the location region for F obtained via Method 1,
B the location region for F obtained via Method III. Then A=B.

ProOOF. Using the previous notation, for each a € (0, 2r] we have

6% =sup B,
=(sup B.., sup B;,)
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=(sup U,,, sup U,,) (by Theorem 1)
=(sup {0,: H,(x,—0)=F. (), Vai},
sup {0;: H, (%:—05) Z Fou(%2), V a})
=(inf {mr (u): 0<u=1/2}, inf {m;, (v): 0<v=1/2})
(by a result due to Doksum for the univariate case)

;(0§1a9 a}k'za)' *

Similarly, %*=(0%¥, 0%%). Hence, A,=B,, for each a € (0, 2z] implying
A=B.

THEOREM 3. If F is continuous and strictly imcreasing in each
argument, then the closure of the location set L, equals the location re-
gion A obtained via method 1.

ProoF. Let 8.: F—R’ be a functional satisfying (B1)-(B4). We
will show 8, € A. For each a€ (0, 2], H,(x—6) is symmetric about 6.
Also,

H(x—8)=F,(x), vx and v@ ¢ B,

H((x—-6)<F.(x), vx and v@ ¢S,
=0, <0, v0cB, and 6, =0, v0¢cS,. (Axiom (Bl))

Hence, 0% <6, <6%*, implying 6,_c A,

= 0y =0rx=R.0x¢c A, (axiom (B3))
= 0,=0xc R_.,(A,), Yae (0, 2x].
== 0F € n R—a(Aa)

a€(0,27]

== LFCA.

Conversely, we will now show for @ € A, there exists a functional 4.:
F— R® satisfying (B1)-(B4) such that #=6,. Let 6 ¢ A be given.
=60ecR_,(A,) for all ¢€(0,2z]. Hence, Theorem 2 implies that for
every a € (0, 2r], there exists u(e) € (0, 1/2] such that

_p (mr (u(e)
0_R_.,<m% ) o /2))> . vae(0 2.

This function # is called the direction function for F. Its existence
allows us to characterize any point in A. If F is strictly increasing,
u is unique. Clearly,  is periodic with period 2r. Hence, u can be
assumed to be defined on all of R. Actually, the existence of u is all
that is required in the following argument. This is guaranteed by
Theorem 2.
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Claim: 0F=<Zi ;EZE?Z)Z))) is the desired functional. Clearly =80,

since 0=R_a<m" (u(e)) > for all a€ (0, 27] and so in particular for
mp,(u(a+3r/2))

a=2r. We must show this #,=80x satisfies axioms (B1)-(B4). First

note that since any symmetric positive definite matrix S can be writ-

ten as S=0'DO where O is orthogonal and D=diag {d,, d,} with d,>0,

d,>0, axiom (B4) could, without loss of generality, be replaced by

(B4’)0DX:DOX fOI' D=diag {dl, dz}, d1>0, d2>0 .

That @, satisfies (B1), (B2) and (B4') follows immediately now from the
univariate axioms, (as applied marginally to F'), because these axioms
represent component-wise operations.

Second, any orthogonal transformation of the plane is either a ro-
tation of the plane, or a reflection of the plane about the x,-axis fol-
lowed by a rotation. But if T is a reflection of the plane about the
x;-axis, then, again @rx=T0x by the univariate axiom (U4).

Hence, it is necessary to show only that

Or,x=R,0x

where R, is a rotation of the plane through an angle 8. Let G be the
distribution function of R,X. The direction function v for G is then

v(e)=u(a+8) , va € (0, 27)

where % is the direction function of F.
Now 8 € A,

— mg, ()
— 0=k _"<mgh(v(a+31r/2))> » Ve

_p (me, (w(a+p))
- 0_R‘"<m02,(u(a+ﬁ+3n/2))> v

In particular,

—f — mol(u(ﬂ))
Orx=0= (maz(u(ﬁ+3n-/2))>

_ <mp,p(u(ﬂ)) >
M, (W(8+37/2))
=R50 X .
Thus as in the univariate case, all three methods yield essentially the
same location region in the plane.
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3. Application—a measure of asymmetry

Intuitively, it is clear that the larger the location region, the more
F deviates from symmetry. It is possible to apply a concept from con-
vex analysis to characterize the degree of asymmetry in F.

To be specific, assume that F' has bounded support and has been
standardized so that each component random variable has unit variance.

Let L, denote the closure of the location set for F. Then L, is a
compact, convex set in the plane. Let u be a unit vector in R:. De-

fine the width of L, in the direction perpendicular to u to be the dis-

tance between two parallel supporting lines of L, both of which are
perpendicular to u. Denote this quantity by W(u). Thus, W(-) is a
mapping from unit sphere S(0, 1), centered at the origin (in R? in this
case) to the nonnegative real numbers. We have the following result
in its multivariate generality :

THEOREM. The width function for a momempty, compact set S in
R* is continuous on S(0, 1).

COROLLARY. If S is a nonmempty compact set in R* (n>1), then its
width function W assumes a minimal value in some direction u, and a
maximal value in some direction w,. If W(u,)<W(u,), then W assumes
every value intermediate to W(u,) and W(w,). If n>2, W assumes every
value intermediate infinitely often and at least once in the plane of u,
and u,.

Thus, W(u) is a measure of how far F deviates from symmetry in
the direction perpendicular to u. W(-) contains all the information
necessary to describe the asymmetric nature of F. There are three
cases;

(1) Wu)=0, vue S(0,1) iff F is symmetric about a point.

(2) W(u)=0 for exactly two values u,, u; € S0, 1), u,=—u, iff F

is symmetric about a line perpendicular to u,.

(3) Wu)>0, vueS(0,1) iff F is asymmetric in every direction.

Let ¥* be the class of all standardized distribution functions on
R* with bounded support, and let C[S(0, 1)] be the class of continuous
functions on the unit circle S(0,1). We then can define a mapping
from * into C[S(0, 1)] in which each distribution function F' is map-
ped into its width function W;. On C[S(0,1)] we can use the follow-
ing metric: For F, G e G*,

AWy, Wo)=max {| Wx(u)—Wa(u)|: ueS(O,1)},
Let F°e S* be any distribution symmetric about 6 € R.. Then Wge(u)
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=0. For any Fe §*, we can thus measure “how far” F'is from sym-
metry by

d(Wre, Wr)=max {|Wre(u)— Wr(u)|: uecSO,1)}
=max {Wg(u): ue€ S0, 1)}
=diameter of L.

Thus, there is some justification in considering the diameter of L, as
the measure of asymmetry of F.

4. Conclusion

The construction of a location region in the plane has been accom-
plished by reducing a bivariate problem to a univariate problem and
then applying the results Doksum has obtained for the univariate case.
This may be done by considering the univariate marginal distributions
in Section 2.

These same procedures can be applied to the general multivariate
case. Thus, with the same definition of stochastic ordering extended
to n-dimensional random vectors, hyperrectangles can be constructed
by forming the Cartesian product of the ranges of the marginal sym-
metry functions. By then considering all orthogonal transformations
of the random vector, an analogous averaging can be done to obtain
the location region.

The extensions to higher dimensions of the width function and or-
dering of distributions are also apparent. It is clear that there is still
much work to be done in both of these applications.
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