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Summary

The distribution of the sum of n independent gamma variates with
different parameters is expressed as a single gamma-series whose coef-
ficients are computed by simple recursive relations.

1. Introduction

The distribution of the sum of » independent gamma random vari-
ables has been investigated in a recent paper, Mathai [2]. This distri-
bution has applications in queueing type problems. For example one
is interested in the total waiting time X,+X;+-- -+ X, where the com-
ponent times may be assumed independent exponential or more general-
ly gamma distributed variables. It also has applications in engineering.
For example the total excess water-flow into a dam is X;+X,+---+X,
where X, represents the ith excess flow at occasion ¢, and the X/’s
may be assumed independent gamma with distinct parameters.

Let {X;}, 1=1,---,n be a set of mutually independent gamma vari-
ates with parameters a,>0 and 8,>0. Then the density of X; is given
by

1.1) fu)=wile™ 5[5l ()],  %,>0

and fy(x)=0 elsewhere. Mathai [2] has given a number of expressions
for the density of Y=X,+X;+:--+ X, including: a) a finite sum re-
presentation by using a partial fraction technique when all the a,’s are
integers, and b) a series in terms of zonal polynomials when all the a,’s
are equal. In the general case in which the «,’s are distinct and the
B/’s are also distinct, the density was expressed in terms of a confluent
hypergeometric function in n»—1 variables (see Mathai and Saxena [3],
p. 163, for a definition of this function).
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In this note it is shown that a variation of Mathai’s method of
inverting the moment generating function, leads to a single gamma-
series for the density and distribution function of Y. It will be seen
in the next section that the new representation is very convenient for
computational purposes since the coefficients are easily computed by
simple recursive relations. Moreover a bound for the truncation error
is readily obtainable.

2. The exact density of Y

Since the X,’s are independent, the m.g.f. (moment generating
function) of Y is the product of the m.g.f.’s of the X|’s, i.e.

(2.1) M@=l 188
Without loss of generality, assume that B,=min (8,). Application of

the identity

(2.2) 1—-Bt=1—Bt)(B./B)[1—(1—B/B:)/(1—Bit)]
to (2.1) gives,

(2:3) log M(t)=log [C-(1—Ait) "]+ 33 ru(1—Bt)™

where

2.4) C=11 (88

(2.5) n=al—B/B)Tk, k=12,
p=31a,>0.

i

[l
-

The expression is valid for all ¢ such that max|(1—8/8,)/(1—B¢)|<1.

Thus, M(t) can be expressed as

(2.6) MO)=C(1—it) exp (5 ra(1—6)) -
We now let
@7) exp (5 1l -y = 5 01— ity -

Upon differentiating (2.7) with respect to (1—3;t)!, it follows that the
coefficients 4, can be obtained recursively by the formula,
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k+1 .

k+1 12__‘1 %Ttak+l—t ’ k=0’ 17 2’ et

with 3,=1. Thus, on using (2.7) and inverting (2.6) term-by-term we
can obtain a gamm-series representation for the density of Y.

(2.8) Ori1=

THEOREM 1. If {X}, i=1,..-,n are independently distributed as
in (1.1), then the density of Y=X,+---+X, can be expressed as

(2.9) W) =C 33 0l H|[T o+ B, y>0

and 0 elsewhere, where p=§j] a;, C s given in (2.4) and 3, in (2.8).

The distribution function G(w)=Pr (Y<w) is readily available from
(2.9) by term-by-term integration, i.e.

(2.10) Gw)=C 5 0, | eI (o+R)pr Dy .

The interchange of the integration and summation above will be justi-
fied from the uniform convergence which we now establish.
For 1=1,2,---, and b=m?.x (1—B,/B;) we have
28jsn
|nl=jE=l ay(1—Bi/B,)'[i=pb'[i .
Thus, from (2.8) we obtain
k+1
|3e41|=(p/(k+1)) 23 b*10x1-4l,  £=0,1,2,--.

from which it follows by induction that
(2.11) [811| S0 0/ (B +1)!
where (p),=p(p+1)---(0o+k—1), (0)y=1. Hence,

(2.12) 9()=(CB*[T'(p))y* e~/ g (3:/(0)e) (/B

<(CB*/T(p))y*~te V" é (by/B)* k!
=(CBr*|I"(p))yy* ‘e~ v~k

which proves the uniform convergence of (2.9) and justifies (2.10).

For practical purposes, one may use the first m+1, i.e. k=m, terms
of the series (2.10) where m is such that the desired accuracy is at-
tained. (Routines for the computation of the incomplete gamma inte-
gral are widely available, e.g. IMSL MDGAM.) A bound for the trun-
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cation error may be obtained conveniently by using (2.12) as
En (0)=(CB*IT(6) |\ 96>y — Go(w)

where G,(w) is the sum of the first m+1 terms of (2.10) for k=0, 1,
e, m.

It should be noted that the present method is also applicable to
linear combinations of independent gammas or exponentials (by rescal-
ing) and also linear combinations of independent central chi-squares;
single-series representations for the last case are found in Ruben [4]
and Kotz et al. [1].
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