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Summary

It is shown that a normal probability density can be characterized
as a limit of conditional probability densities of i.i.d. uniform random
variables.

1. Introduction

Recently the normal probability density function (p.d.f.) appears in
the answer of a conditional limit problem. If we let X, X;,--- be i.i.d.
random variables with the common p.d.f. g(x) that satisfies certain re-

gularity conditions, then the conditional p.d.f. of X, given i—ng:o’
tends to a p.d.f. of the form

1.1) fi(w)=e(2) exp (—Ax")g(x) ,

where 4 and ¢(2) are determined by the equations
(1.2) sz(x)dx=1 and Sxm(x)dxmh

The limiting p.d.f. fi(x) is the normalized product of a normal p.d.f.
¥z exp (—22%) and the initial p.d.f. g(x). This theorem has been pre-
sented by Vincze [13], Bartfai [1], Lanford [8], Tjur [10], Zabell [14],
Vasicek [12], and Van Campenhout and Cover [11] under various kinds
of regularity conditions. A type of the regularity conditions of the
initial p.d.f. g(x), which is named Zabell’s conditions, is summarized in
Van Campenhout and Cover [11], p. 485. Another possible choice of the
conditions is the same as those of the local limit theorem. (See, e.g.,
Feller [4], pp. 488-491.) The purpose of this paper is to obtain the
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normal p.d.f. ¢(x; g, 6¥)= ~/21_ exp {—é—(x—‘uﬂ as an answer of the
o ag

conditional limit problem. There are two candidates for the initial p.d.f.
g(x) that yield a normal p.d.f. as the limiting p.d.f. fi(x). One is that
the initial p.d.f. g(x) itself is a normal p.d.f. Then the limiting p.d.f.
fi(x) is normal by (1.1). However this case doesn’t arouse any interest
to statisticians. The other is that g(x) is uniform over (—oo, c0). Then
the limiting function f,(x) does possibly become a normal p.d.f. Unfor-
tunately the uniform function over (—oo, c0) is improper and doesn’t
satisfy the regularity conditions. In this paper we will overcome these
deficiencies and obtain a normal p.d.f. as a limit of conditional p.d.f.’s
of uniform random variables.

2. The theorems

Two theorems will be presented to construe a normal p.d.f. as a
limit of conditional p.d.f.’s. Even though the two theorems can be
combined into one, Theorem 1 is separated from Theorem 2 because of
its own interest.

The first theorem will show that the conditional p.d.f. of Y, given

n
—1-2Y§=az, where Y,,Y;,---,Y, are i.i.d. uniform random variables
n i=1

with mean 0 and variance n¢%3, can be interpreted as that of Y; given

n
1 N Y?=¢?, where Y,,Y;,---,Y, are i.i.d. normal random variables with
n i=1

mean 0 and variance o*.

THEOREM 1. Let Y, Y,,---, Y, be a sequence of i.i.d. random vari-
ables with uniform probability denmsity

_ 1
(2'1) gn(y)— 20¢W I(—«G,w/i)(y) ’

where ¢>0. Then the conditional p.d.f. of Y, given %iiY;“:az 18 the
i=
same as that of Y, given %iY}:a* where {Y,: 1=Sj7<n} 18 a sequence
=
of i.1.d. mormal random variables with mean 0 and variance o°.

ProOF. Let Y,Y;:--,Y, be ii.d. random variables symmetric
about zero with p.d.f. f(y). If we define Z, Z,,---, Z, by

Z1=Kv i=1’ 2,0, m—1,

and
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=_1.. E ,
n i=t
then the joint p.d.f. of (Z,, Z,,---, Z,) is
(2.2) h(zy,- -+, 2)=F(2) - f@u-) (M2, — 21— - - - —23 1))

- Nz, —2i— .2 )7V,

If z,=d% then |z,|<oyn, 1=1,2,---,2—1. Thus the p.d.f. in (2.2) be-
comes

h(zly ey Zpny 02)
{ 2oy n)(no*—2i— - —2;,)7V", if f(¥)=9.)
@) et =2 ) e, i f@) = 0, oY) .

The conditional p.d.f. of Z, given Z,=¢* is, in both cases,
(2.3) S . S MZy v vy 2oy, 67)d2ye -dz,,_,/g .. g h(2yy++ oy 2oy, 62y - -d2,_y
=S- . S (no*—2t—. .. —2z2_))"Vidz,- - -dz,,_l/
S. : S (Mot —i e e+ - —22_ ) Vidz,- - -d2,_,

. 2 —(n—2)/2 i n n—1
=) (g r(3R)

The last equality holds by

. S A—ai— - —x})da,- - -dxp=7r"’+"/2/1“<—p-2‘"1) ,

Sz}+---+z},51.
(see Equation 4.632 of Gradshteyn and Ryzhik [5]). Q.E.D.

Theorem 1 can also be proved by Chernoff’s tilting technique [2],
which is useful to generalize Theorem 1 to other univariate cases (Van
Campenhout and Cover [11]) and multivariate cases (Choi [3]).

It can be easily shown that the conditional p.d.f. of Y, given

n
-]‘-Z‘,Y?=a2, where Y,,Y,,---,Y, are i.i.d. normal random variables
n i=1

with mean 0 and variance o, tends to the nonconditional p.d.f. ¢(y,;
0, 0*). Thus, Theorem 1 implies that the normal p.d.f. can be con-
structed as a limit of conditional p.d.f. of i.i.d. uniform random variables.
However, if n— oo then the initial p.d.f. g.(y) in (2.1) tends to an im-
proper density. To avoid the improperness of the uniform density over
(—o0, ), we’ll define a double array of uniform random variables {X,,:
1<555n, n=1,2,-.-}.
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THEOREM 2. For each n (=1) let X,,, Xpn,- -+, X be a sequence of
i.4.d. uniform random variables with p.d.f. g.(x). Then the conditional
pd.f. of X, given % éle’,,=a2 tends to the mormal p.d.f. with mean 0
i=

and variance ¢ as n— oo,

ProoF. Theorem 1 has shown that the conditional p.d.f. of X, =

given %5"31 X,,=d* is Equation 2.3. Applying Stirling’s formula to the
i=

equation gives us that the conditional p.d.f. tends to the normal p.d.f.

with mean 0 and variance ¢* as n— oo. Q.E.D.

It is worth mentioning that Theorem 2 can also be proved by the
local limit theorem.

3. Some comments
If f.(x) is defined by
3.1) SFa(x)=c(n) exp { — A(n)x*} I_,vz,.v(®)

where c¢(n) and i(n) are determined by the constraints
3.2) g fuz)dz=1 and Swa,.(x)dx:o’,

the p.d.f. f.(¥) minimizes the Kullback-Leibler [7] mean information
for discrimination between f(z) and g.(), i.e., D(f; gn)=S f(@) In {f(x)/
g.(x)}dx, among the p.d.f.’s satisfying the constraints

3.3) S f@dz=1 and S 2 f(@)dz =o' .

(Sanov [9].) Therefore the p.d.f. f,(x) is said to be closest to the ini-
tial p.d.f. g.(x), in the Kullback-Leibler sense, among the p.d.f.’s satis-
fying the constraints (8.3). It can be easily calculated from the equa-
tions in (3.2) that lim A(n)=(2¢%! and lim ¢(n)=(2r0%)""?, i.e., lim fi(x)

=¢(x; 0, ¢%). Thus we may roughly say that the normal p.d.f. ¢(z;0,
o*) is the closest density in the Kullback-Leibler sense to the limit of
p.d.f’s of the uniform random variables {X,|n=1,2,---} among the
p.d.f.’s satisfying the constraints (3.3).

A uniform p.d.f. is the maximum entropy p.d.f. without any re-
strictions, and the normal p.d.f. ¢(x;0, ¢*) is the maximum entropy
p.d.f. subject to the constraints E(X)=0 and E(X*)=¢? which corre-
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sponds to %é‘,‘XFO and i—g){?:a’, respectively. (Kagan et al. [6],

p. 410.) Thus Theorem 2 looks like a natural result.
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