APPROXIMATIONS TO THE DISTRIBUTIONS OF ORDERED DISTANCE RANDOM VARIABLES

R.-D. REISS

(Received Mar. 12, 1984; revised Nov. 12, 1984)

Summary

In the present note we give short proofs of asymptotic theorems for the distributions of extreme and intermediate ordered distance random variables. Moreover, a quick goodness-of-fit test is proposed which is based on a single intermediate ordered distance random variable.

1. Introduction

Let X_0, X_1, X_2, \cdots be independent random vectors with values in the m-dimensional Euclidean space R^m . Denote by P_0 the distribution of X_0 . Moreover, let X_1, X_2, \cdots have a common Lebesgue-density f_0 . It is clear that for every norm $\| \|$ on R^m and every fixed point $x_0 \in R^m$ the random distances $||X_i-x_0||$, $i=1,2,\cdots$, are independent and identically distributed with the common distribution function $F(x_0, r) = \int_{B(x_0, r)} e^{-rx} dx$ $f_0(x)dx$ for $r \ge 0$ where $B(x_0, r) = \{y : ||y - x_0|| \le r\}$ is the ball with center x_0 and radius r. Hereafter, V(r) denotes the volume of $B(x_0, r)$. have $V(r) = K_m r^m$ where e.g. $K_m = \pi^{n/2} / \Gamma(n/2+1)$ in the particular case of the Euclidean distance with Γ denoting the gamma function. Let $Z_{k:n}: R^n \to R$ be defined by $Z_{k:n}(x) = z_k$ where $z_1 \leq \cdots \leq z_n$ are the components of $x=(x_1,\dots,x_n)$ in the nondecreasing order. Then the kth nearest neighbour distance is defined by $Z_{k:n}((\|X_i-x_0\|)_{i=1}^n)$. More generally, we define $R_{k:n} = Z_{k:n}((\|X_i - X_0\|)_{i=1}^n)$ as the kth ordered distance random variable. The asymptotic distribution of $R_{k,n}$ has been studied by several authors (see e.g. Dziubziella [1] and Mammitzsch [6] and the references given there). The proof of Dziubdziella is based on a limit theorem for exchangeable random variables. Mammitzsch was able to give a different proof without a boundedness condition on f which was needed by Dziubdziella. We shall generalize the result of Mammitzsch

Key words: Ordered distance random variables, approximate distribution, gamma distributions.

530 R.-D. REISS

which is given here as Corollary 2.2 and shorten the proof considerably.

2. Asymptotic theorems

Our main result will be proved under the following two conditions on $k \equiv k(n)$, f_0 , P_0 and certain standardizing functions $r(\cdot, n)$:

CONDITION A. $k(n)/n \rightarrow 0$ as $n \rightarrow \infty$.

CONDITION B. For P_0 almost all x_0 :

$$F(x_0, r(x_0, n)n^{-1/m}) = V(r(x_0, n)n^{-1/m}) \cdot f_0(x_0) + o(k(n)^{1/2}/n)$$

as $n \to \infty$, and $r(\cdot, n)$ is measurable.

If $k(1), k(2), \cdots$ is a bounded sequence then Condition B is fulfilled for every f_0 being continuous. Finally, let L_k denote the distribution function of the gamma distribution with parameter k; that is, $L_k(x) = 1 - \exp(-x) \sum_{i=0}^{k-1} x^i/i!$ for $x \ge 0$.

THEOREM 2.1. If the Conditions A and B are fulfilled then

$$P\{n^{1/m}R_{k(n):n}{\le}r(X_0,n)\} = \int L_{k(n)}(V(r(\cdot,n))f_0)dP_0 + o(1)$$
 ,

PROOF. Fubini's theorem implies that

$$P\{n^{1/m}R_{k(n):n} \leq r(X_0, n)\} = \int P\{n^{1/m}Z_{k(n):n}((\|X_i - x_0\|)_{i=1}^n) \leq r(x_0, n)\} dP_0(x_0).$$

Thus, in view of Lebesgue's dominated convergence theorem it remains to prove that

$$P\{n^{1/m}Z_{k(n),n}((\|X_i-x_0\|)_{i=1}^n) \le r(x_0,n)\} = L_{k(n)}(V(r(x_0,n))f_0(x_0)) + o(1)$$

for those x_0 which fulfill Condition B. By [7], Theorem 2.1, or [8], Theorem 2.6, and by the probability integral transformation and simple straightforward calculations we obtain

$$\begin{split} P\{n^{1/m}Z_{k(n):n}((\|X_{t}-x_{0}\|)_{t=1}^{n}) &\leq r(x_{0}, n)\} \\ &= L_{k(n)}(nF(x_{0}, r(x_{0}, n)/n^{1/m})) + o(1) \\ &= L_{k(n)}(V(r(x_{0}, n))f_{0}(x_{0}) + o(k(n)^{1/2})) + o(1) \\ &= L_{k(n)}(V(r(x_{0}, n))f_{0}(x_{0})) + o(1) \ . \end{split}$$

The easiest way to prove the last relation is to apply the inequality $|L_k(t) - \Phi((t-k)/k^{1/2})| \le Ck^{-1/2}$ (see [8], page 540) where C > 0 is a universal constant and Φ denotes the standard normal distribution function. The proof is complete.

From Theorem 2.1 we derive the Theorem in Mammitzsch [6] as a special case.

COROLLARY 2.2. If r and k are fixed and P_0 is absolutely continuous with respect to the Lebesgue-measure then

$$P\{n^{1/m}R_{k:n} \leq r\} = \int L_k(V(r)f_0)dP_0 + o(1) .$$

PROOF. Condition A is trivially fulfilled. Moreover Condition B can easily be verified by making use of the fact that Lebesgue a.a. x_0 are Lebesgue-points of f_0 (see e.g. [2], page 276).

When proving Corollary 2.2 in a direct way one can apply Theorem 2.8.2 in [3]—with $\gamma = m$ and $d_n = (K_m f_0(x_0)n)^{-1/m}$ —in place of the results in [6] and [8].

Our Theorem 2.1 generalizes the result in [6] with respect to the following two aspects: Firstly, k(n) is not necessarily fixed but may also go to infinity as $n \to \infty$ and, secondly, since it is not supposed in Theorem 2.1 that P_0 is absolutely continuous we include in our considerations e.g. the case of the nearest neighbour distance.

Under the Conditions A and B we obtain at once from [8], page 540, that

$$P\{n^{1/m}R_{k(n):n} \leq r(X_0, n)\} = \int \Phi((V(r(\cdot, n))f_0 - k(n))/k(n)^{1/2})dP_0 + o(1).$$

If r is fixed then it is clear that the result is degenerate in the sense that the right-hand side converges to zero. If $r(x_0, n) = [(k(n) + tk(n)^{1/2})/(K_m f_0(x_0))]^{1/m}$, then

$$P\{n^{1/m}R_{k(n):n} \leq r(X_0, n)\} = \Phi(t) + o(1)$$
.

We remark that Condition B can e.g. be verified under Lipschitz or differentiability conditions on f_0 (see also Section 3). In the special case of P_0 being a Dirac-measure at x_0 one obtains an asymptotic theorem for the k(n)th nearest neighbour distance. In the case that f_0 has second partial derivatives such a result is indicated in [4].

3. Extensions and a quick goodness-of-fit test

Throughout this section let P_0 be a probability measure with Lebesgue-density f_0 , and h is a uniformly bounded function with $\int h dP_0$ = 0. Moreover, X_0, \dots, X_n are iid random vectors which have a common Lebesgue-density $f_n = f_0(1 + h/k(n)^{1/2})$. Thus, for $h \equiv 0$ we have the situation of Section 2 in the case that X_0, \dots, X_n are identically distri-

532 R.-D. REISS

buted with distribution P_0 . Denote by $F(x_0, n, \cdot)$ the distribution function of $||X_0-x_0||$; that is, $F(x_0, n, r) = \int_{B(x_0, r)} f_n(x) dx$.

CONDITION B'. For P_0 almost all x_0 :

$$F(x_0, n, r(x_0, n)n^{-1/m}) = V(r(x_0, n)n^{-1/m}) f_n(x_0) + o(k(n)^{1/2}/n)$$

as $n \to \infty$, and $r(\cdot, n)$ is measurable.

Thus Condition B' reduces to Condition B if h=0. Using the arguments of Section 2 we obtain

THEOREM 3.1. If the Conditions A and B' are fulfilled then

$$P\{n^{1/m}R_{k(n):n} \leq r(X_0, n)\} = \int L_{k(n)}(V(r(\cdot, n))f_n)dP_0 + o(1).$$

For testing the null-hypothesis f_0 define the critical region

$$C_{\alpha,n} = \left\{ k(n)^{1/2} f_0(X_0) \left| \frac{K_m n}{k(n)} R_{k(n):n}^m - \frac{1}{f_0(X_0)} \right| > c(\alpha) \right\}$$

where $\alpha \in (0, 1)$ and $c(\alpha) = \Phi^{-1}(1 - \alpha/2)$. Roughly speaking, the critical region is defined by means of a density estimator which is evaluated at a random point. It is straightforward to conclude from Theorem 3.1 that

$$(3.2) P(C_{\alpha,n}) = 2 \left[1 - \left(\frac{\varPhi(c(\alpha) + h) + \varPhi(c(\alpha) - h)}{2} dP_{\theta} \right) + o(1) \right]$$

if $k(n) \to \infty$ as $n \to \infty$ and Condition B' holds for $r(x_0, n) = [(k(n) \pm c(\alpha) \cdot k(n)^{1/2})/(K_m f_0(x_0))]^{1/m}$.

Under the null-hypothesis (that is, h=0) we have

$$(3.3) P(C_{\alpha,n}) = \alpha + o(1) .$$

If $P_0\{h\neq 0\} > 0$ then the right-hand side of (3.2) is asymptotically equal to some number $\beta \in (\alpha, 1)$. This can be proved by using e.g. Anderson's lemma.

Assume that the support $T = \{x : f_0(x) > 0\}$ of f_0 is open and that f_0 and h have bounded second partial derivatives on T. Then Condition B' holds true for every sequence $k(n) = o(n^{4/(m+4)})$ and every h which is uniformly bounded and has the property $\int hdP_0 = 0$. In [5] a sequence of tests was defined which is based on variables of the type $R_{1:n}$. These tests asymptotically attain a rejection probability $\beta \in (\alpha, 1)$ under contiguous alternatives of the form $f_0(1+h/\log n)$ if f_0 and h fulfill certain weak smoothness conditions. Our results show that quick tests of a

better performance can be found if the smoothness conditions on f_0 and h are slightly strengthened.

Acknowledgement

Prof. Mammitzsch kindly provided us with a preprint of his article.

University of Siegen

REFERENCES

- Dziubziella, W. (1976). A note on the kth distance random variables, Zastosowania Matematykai, 15, 289-291.
- [2] Floret, K. (1981). Maß- und Integrationstheorie, Teubner, Stuttgart.
- [3] Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics, Wiley, New York.
- [4] Hall, P. (1983). On near neighbour estimates of a multivariate density, J. Mult. Analysis, 13, 24-39.
- [5] Henze, N. (1982). The limit distribution for maxima of 'weighted' rth-nearest-neighbourhood distances, J. Appl. Prob., 19, 344-354.
- [6] Mammitzsch, V. (1983). On the kth ordered distance random variables, Proceedings of the Third Prague Conference on Asymptotic Statistics (to appear).
- [7] Matsunawa, T. and Ikeda, S. (1976). Uniform asymptotic distributions of extremes. In: Essays in Probability and Statistics (ed. Ikeda et al), Shinko Tsushi Tokyo, 419-432.
- [8] Reiss, R.-D. (1981). Uniform approximation to distributions of extreme order statistics, Adv. Appl. Prob., 13, 533-547.