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Summary

In the present note we give short proofs of asymptotic theorems
for the distributions of extreme and intermediate ordered distance ran-
dom variables. Moreover, a quick goodness-of-fit test is proposed which
is based on a single intermediate ordered distance random variable.

1. Introduction

Let X, Xi, X;,--- be independent random vectors with values in
the m-dimensional Euclidean space R™. Denote by P, the distribution
of X;,. Moreover, let X, X;,--- have a common Lebesgue-density f,.
It is clear that for every norm || || on R™ and every fixed point x,¢ R™
the random distances || X;—,|, ©=1, 2, -+, are independent and identi-

cally distributed with the common distribution function F(w,, r)=SB( X
1‘0,1’

Sfou@)dz for r=0 where B(x, r)={y: ||y—x||<r} is the ball with center
2, and radius r. Hereafter, V(r) denotes the volume of B(x,, r). We
have V(r)=K,r™ where e.g. K,=="*/I'(n/2+1) in the particular case
of the Euclidean distance with I denoting the gamma function. Let
Zyn: R*— R be defined by Z,..(x)=z, where 2,<---<z, are the compo-
nents of x=(x,,---, «,) in the nondecreasing order. Then the kth near-
est neighbour distance is defined by Z...((| X;—|);-,). More generally,
we define R;..=Z,.((|X;—X;|)}-,) as the kth ordered distance random
variable. The asymptotic distribution of R,.. has been studied by sev-
eral authors (see e.g. Dziubziella [1] and Mammitzsch [6] and the re-
ferences given there). The proof of Dziubdziella is based on a limit
theorem for exchangeable random variables. Mammitzsch was able to
give a different proof without a boundedness condition on f which was
needed by Dziubdziella. We shall generalize the result of Mammitzsch
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which is given here as Corollary 2.2 and shorten the proof considerably.

2. Asymptotic theorems

Our main result will be proved under the following two conditions
on k=k(n), fi, P, and certain standardizing functions (-, n):

CONDITION A. k(n)/n—0 as n— oo.
ConpITION B. For P, almost all x,:
F(y, (@0, n)n~™)=V (r(:, n)n~"")-fo(@0) +0(ke(n)"*/n)
as n—oo, and 7(-, ) is measurable.

If k(1), k(2),-- is a bounded sequence then Condition B is fulfilled
for every f, being continuous. Finally, let L, denote the distribution
function of the gamma distribution with parameter k; that is, L.(z)=

l—exp(—2) fz;:j x*fi! for x=0.
THEOREM 2.1. If the Conditions A and B are fulfilled then
P{n'" Ry .n=1(Xo) m)} =S Ly V(r(-, ) fo)dPot+0(1) ,
PROOF. Fubini’s theorem implies that
P{n''™ Rym n=1(Xo, )} =S PRY™ Zigenr o (| X — 2o]|)i1) S (20, 1) }APo(o) -

Thus, in view of Lebesgue’s dominated convergence theorem it remains
to prove that

P{nY™ Zr (| Xe— 20| )i<) S 7(@0; 1)} = LV (r(%0, 7)) fo(%)) +0(1)

for those x, which fulfill Condition B. By [7], Theorem 2.1, or [8],
Theorem 2.6, and by the probability integral transformation and simple
straightforward calculations we obtain

P{n"™Zyr (| Xy — 20|)i=1) S (0, 7))

= Ly (nF' (24, 7(20, 1)/1"™))+0(1)

= L (V(1(%o, 1)).fo(%0) + (K (1)) +0(1)

= Ly (V (1(®0, 1)) fo(0))+0(1) .
The easiest way to prove the last relation is to apply the inequality
| L(t)—P((t—k)/E*) | < Ck~"* (see [8], page 540) where C>0 is a universal
constant and @ denotes the standard normal distribution function. The
proof is complete.
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From Theorem 2.1 we derive the Theorem in Mammitzsch [6] as
a special case.

COROLLARY 2.2. If r and k are fixed and P, 18 absolutely contimu-
ous with respect to the Lebesgue-measure then

P{n"Ry, <7} = | L{V(r)f)dPutol1) .

ProOF. Condition A is trivially fulfilled. Moreover Condition B
can easily be verified by making use of the fact that Lebesgue a.a. #,
are Lebesgue-points of f, (see e.g. [2], page 276).

When proving Corollary 2.2 in a direct way one can apply Theorem
2.8.2 in [3]—with y=m and d,=(K,fy(®)n)"/™—in place of the results
in [6] and [8].

Our Theorem 2.1 generalizes the result in [6] with respect to the
following two aspects: Firstly, k(n) is not necessarily fixed but may
also go to infinity as m— oo and, secondly, since it is not supposed in
Theorem 2.1 that P, is absolutely continuous we include in our consi-
derations e.g. the case of the nearest neighbour distance.

Under the Conditions A and B we obtain at once from [8], page
540, that

P{n/" Rynn S7(Xo) 1)} =S DV (r(-, ) fo—k(n))/k(n)'*)dPy+0o(1) .

If r is fixed then it is clear that the result is degenerate in the
sense that the right-hand side converges to zero. If r(z,, n)=[(k(n)+
tk(n)'”)(Knfo(%:))]'™, then

P{nl/mRk(n):n é "'(Xo: n)} = ¢(t) + 0(1) .

We remark that Condition B can e.g. be verified under Lipschitz
or differentiability conditions on f, (see also Section 3). In the special
case of P, being a Dirac-measure at x, one obtains an asymptotic the-
orem for the k(n)th nearest neighbour distance. In the case that f,
has second partial derivatives such a result is indicated in [4].

3. Extensions and a quick goodness-of-fit test

Throughout this section let P, be a probability measure with
Lebesgue-density f,, and k is a uniformly bounded function with Stho

=0. Moreover, X,,---, X, are iid random vectors which have a com-
mon Lebesgue-density f,=fi(1+h/k(n)/?). Thus, for h=0 we have the
situation of Section 2 in the case that X,,..-, X, are identically distri-
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buted with distribution P,. Denote by F'(x,, n, -) the distribution func-
tion of || X,—a,|; that is, F(,, n, 'r)=S ( )f,,(x)dx.

) B(x,
CoNDITION B’. For P, almost all «,:
F (@, 1, 7(2o, m)n™)=V (26, R)NV™) fo(%0) +0(K(m)'*[m)
as n—oo, and 7(-, n) is measurable.

Thus Condition B’ reduces to Condition B if h=0. Using the argu-
ments of Section 2 we obtain

THEOREM 3.1. If the Condittons A and B' are fulfilled then
P Ryrym <(Xo, 1)} =§ LV (r(+, 0)) £)dPy+o(1) .

For testing the null-hypothesis f, define the critical region

K. pn 1

Con= {k(n)mfo(Xo) e B

>o(a)|

where a€(0,1) and c(e)=0"'(1—ae/2). Roughly speaking, the critical
region is defined by means of a density estimator which is evaluated
at a random point. It is straightforward to conclude from Theorem
3.1 that

3.2) P(Ca,,.)=2[1—s ‘p(c("”h)'z* O(c(e)—h) dPo} +o(1)

if k(n)—>cc as n— oo and Condition B’ holds for »(z,, »)=[(k(n)+c(e)-

k() )/ (Knfo(2o))]™. _
Under the null-hypothesis (that is, h=0) we have

(3.3) P(C.n)=a+o(1) .

If Py{h+0}>0 then the right-hand side of (3.2) is asymptotically
equal to some number Be(a,1). This can be proved by using e.g.
Anderson’s lemma.

Assume that the support T={z: fy(x)>0} of f, is open and that
fo and h have bounded second partial derivatives on T. Then Condition
B’ holds true for every sequence k(n)=o(n*™**) and every h which is

uniformly bounded and has the property S hdP,=0. In [5] a sequence of

tests was defined which is based on variables of the type R,.. These
tests asymptotically attain a rejection probability g€ (a, 1) under con-
tiguous alternatives of the form fy(1+h/logn) if f, and h fulfill certain
weak smoothness conditions. Our results show that quick tests of a
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better performance can be found if the smoothness conditions on f
and k are slightly strengthened.
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