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Summary

The principle of maximum likelihood is applied to the joint predic-
tion and estimation of a future random variable and an unknown param-
eter. We assume dependence between present and future, and the
approach is non-Bayesian. Our principal application is to the prediction
of higher order statistics from lower ones in Type II censored random
samples. Some simple criteria for existence and uniqueness of the pre-
dictor are given for this situation and the methods are illustrated with
several examples.

1. Introduction

Prediction of future events (or estimation of events which have
occurred but were unobservable) on the basis of past and present know-
ledge is a fundamental problem of statistics, arising in many contexts,
and producing varied solutions. Some recent works on the subject in-
clude Faulkenberry [5], Lauritzen [12], Aitchison and Dunsmore [1], and
Hinkley [7].

With certain exceptions, point prediction problems have been solved
by least squares or more general projection methods and their precision
is most often measured by mean square error (MSE). Bayesian methods
have been used to a considerable extent to obtain prediction intervals
by means of predictive distributions and predictive likelihood functions.
An important limitation has been that the quantity to be predicted is
usually assumed to be independent (conditional on the parameter) of
the observed data. Obviously, there often exists a dependence between
that which is to be predicted and the data on which the prediction is
to be based.

It is our intention in this paper to expound the classical method
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of maximum likelihood as a device for predicting future observations
in a framework where present and past are generally assumed to be
dependent. Even if they are independent, reasonable predictors may
result, but it is possible to construct examples where they do not.

The principal application which we will make of the method out-
lined in this paper is to prediction of higher order statistics from the
lower ones in Type II censored random samples (cf. Kaminsky [8]).
Some simple sufficient conditions for the existence of a unique maxi-
mum likelihood predictor will be given. A somewhat expanded version
[11] of the present paper is available from the Institute of Mathemati-
cal Statistics, University of Umed, 901 87 Umed, Sweden.

2. Definitions and notation

Let X7"=(X,, X;,--+,X,) and Y*=(Y,, Y, --,Y,) denote random
vectors with joint pdf f(x,y; B) indexed by the parameter e 2. If
X and Y could both be observed, f would correspond to the usual
likelihood function of 8. The problem here will be to predict the
unobservable (either future, or past and missing) value of Y, having
observed X. As indicated above, we shall generally assume that X

and Y are dependent. Thus, viewed as a function of y and B, we
define

Ly, B;x)=f(x.y; B ,

to be the predictive likelthood function (PLF) of y and 8. (Lauritzen
[12] and Hinkley [7] independently gave different definitions for related
problems. Hinkley’s predictive likelihood for example, is based on the
pdf of X given the minimal sufficient reduction of (X, Y)).

Suppose Y*=#(X) and S*=u(X) are statistics for which

L(y*, B*; x)=sup L(y, B; x) .
.8

We call Y* the maximum likelihood predictor (MLP) of ¥ and B* the
predictive maximum likelihood estimator (PMLE) of 8. - The PLF is not
a predictive distribution. That would take the form p(y|x) (cf. Aitchison
and Dunsmore [1]), the parameter having been eliminated once its prior
distribution is specified. Nevertheless, our use of L seems natural to
us and as we will see in the examples, the results are reasonable.

Remark 1. Notice that if 8 is known, an MLP for Y is also a
mode of the conditional distribution of ¥ given X=x. In Section 3,
we will discuss conditions on the underlying pdf itself which guarantee
the existence of a unique MLP for Y.
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3. Some results for order statistics

Let X,<X,<-.--=<X, denote the order statistics of a random sample
of fixed size » from a population with pdf f(z; B), (x, B) € D=[a, b] X
2; 9 a k-dimensional interval. Assume further that f is positive and
continuous on D, vanishes outside D, has continuous first partial deriv-
atives in « and B, and that the associated cdf, F'<1 on D. In life-
testing and survival analysis, it is common to take a as finite (often
zero) and b as infinite. In that case we take the interval to be [a, ).

We consider prediction of X,, having observed X, X;,---, X, (1=7r
<8<m). The PLF of X, and B is

L(xu ,B; Lyye ey xr)zc';ljl'fj[F:_Fr]s—'_lf:[l_Ft]"_'

(0=z<-.-=x,Zx,), where f,=f(x;; B), F;=F(x,; B) and c=n!/[(s—7r
—1)l(n—s)!].

3.1. The parameter known

We will briefly examine conditions under which a unique MLP for
X, exists when B is known. Notice that by the continuity of f and
F, L converges to zero both as x, tends toward z, from the right and
as z, tends toward b, from the left. Also, L>0 on D. This means
that if there exists a unique solution, x¥, of the likelihood equation
dlog L/ox,=0, then X must be the unique MLP of X,. Now, this
likelihood equation may be written as

dlogL _ ~[fl  (s—7r—=1) m—s |_
(1) T—f‘{f+ F,—F, l—F,] 0.

Notice from (1) (or from the Markov property of order statistics) that
when B is known, the MLP of X,, if it exists, is a function of X, and
the known value of B.

We consider three cases separately :
(i) r+1<s<n, (ii) s=n and (iii)) s=r+1.

Case (1). r+1<s<n: In this case, the function
s—r=D/(F,—F,)—(n—s)/[(1—F})

(viewed as a function of z, on [z,,b)) is continuous, decreasing, con-
verges to +oo as x, approaches z, from the right and converges to
—oo as x, approaches b from the left. Thus, from the likelihood equa-
tion (1), we see that a unique MLP for X, exists if

f'If*=—0(1/f)ox
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is non-increasing on [z,, b).

Remark 2. The following is a list of some common pdf’s for which
the above conditions are satisfied: exponential; gamma with shape
parameter =1; Weibull with shape parameter =1; logistic; normal;
half-normal; Student’s ¢; Cauchy; Pareto; and power function (i.e.
F(zx)=2", v=1, 0<2<1; v=1 gives the uniform distribution). If f is
a PF;, ([3], p. 76) density for which f’ exists, then 9(1/f)ox is non-
decreasing. Hence for such densities, a unique MLP for X, exists.
The converse is not true since the Cauchy is not a PF, density even
though it produces a unique MLP for X,.

Case (ii). s=m: By similar reasoning, we find that a sufficient
condition for the existence of a unique MLP for X, is that f'/f? de-
crease to —oo in addition to the other conditions already assumed.
This added condition is met by all the distributions listed in Remark 2
with the exception of the power-function family. That the condition
S'/f* decrease to —oo is not necessary for the existence and unique-
ness of an MLP is nicely illustrated by the uniform distribution (cf.
Example 4.2).

Case (iii). s=7r+1: Again by reasoning similar to that in Case
(i), we find that a unique MLP for X,,, exists if f'/f? is decreasing
on [z,, b) and if f//f,=2(n—r—1)/[1—F,]. That these conditions are not
necessary is again illustrated by the uniform distribution.

Another justification for maximum likelihood prediction of order
statistics is the fact that in the case were X, and X, are sample quan-
tiles, with r/n and s/n converging to =, and =, respectively, with in-
creasing 7 (0<m<m<1), maximum likelihood prediction and best
(minimum mean square error) unbiased prediction of X, are equivalent
in large samples. This follows from the joint asymptotic normality of
X, and X,.

3.2. The parameter unknown

If, as is expected in practice, the parameter is not known, the PLF
may be maximized by standard means (if a maximum exists) and the
MLE of X, determined along with the PMLE of S.

Remark 3. If f is a location-scale parameter family, so that f
takes the form

f(m;/:,ﬁ)=%—g(”;") :

and if 4 and B are assumed known for the moment, then in the sample
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quantile situation mentioned above, the asymptotically best predictor
of X, takes the simple form

(2) X/=X,+(1-p) p+u—u*-p)-p

(Kaminsky and Nelson [10]), where p=[(1—=,)/(1—m;)1g(u,)/9(us), ==
G(u,) (¢=1,2) and where G'=g. Now, it is often the case that explicit
expressions for the PMLE’s of unknown x and B are unattainable. An
alternative to numerical solution of the likelihood equations is to sub-
stitute any reasonable estimates p’ and g’ into (2). The MSE of X/ is
then known once the variances and covariances among X,, g’ and g’
are known. For example, substituting the asymptotically best linear
unbiased estimates of ¢ and 8 (eg. Chapter 4, [14]) in (2) produces the
asymptotically best linear unbiased predictor of X, (Kaminsky and
Nelson [10]).

4. Examples involving order statistics

Example 4.1 (The exponential distribution). Consider a random
sample of size n from a two-parameter exponential population with pdf
S(@; o, B)=1/B) exp {—(x—p)/B}, x=p, p real, $>0. For the sake of
brevity, we will cover only the case of unknown scale parameter B,
and without loss of generality, we take p=0. The case when both
parameters are unknown is handled with little added difficulty. The
log PLF of X, and B is proportional to

—(r+1) log ()~ {2 &+ (n—s+1)s)
+(s—r—1) log {exp (—=,/8)—exp (—=,/B)} .

As the reader may verify, this function has a unique maximum relative
to z, and B8, for any s such that r+1<s<n. Interestingly however,
when s=r+1, the maximum occurs on the boundary of the region
where L is positive. The MLP and PMLE are

X.*=X,+B*-q ’ ﬁ*=Tr/(r+1) ’

where g=log [(n—7)/(n—s+1)], and where T,, the well-known total time
on test of all n items up to time z,, is equal to

T,=§‘i X,4+n—mX, .

The mean square error of X* is

MSE (X;*)=8"{du(r, 8)+di(r, 8)+[r/(r+1)lglg—2d\(, 9)]} ,
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where d,.(r, s)=j=§:+1 (m—74+1)™ (m=1, 2).

Now, X;* is a biased predictor of X, and g* is a biased estimator
of B. These biases are E (X,—X}*)=p{d\(r, s)—rq/(r+1)} (see Table 1)
and E (8—p*)=p/(r+1) respectively. An interesting problem would be
to determine conditions under which the MLP is unbiased. We will
compare X;* with the best unbiased predictor of X, (notice that it is
also linear),

X=X, 4 g¥*d(r, s) .
Its MSE is
MSE (X}*)=g*{dy(r, s)+d3(r, s)/r}

(cf. Kaminsky and Nelson [10], and Kaminsky [9]), where g**=T,/r=
(r+1)p*/r is the best linear unbiased estimator (BLUE) of 8. We have
made extensive numerical comparisons between the MSE’s of X* and
X¥* for assorted values of 7, s and » and we have found the follow-
ing. Evidently, the ratio

EFF (X, X**)=MSE (X*)/MSE (X;*)

tends to be near unity if s is near 2r; less than unity if s<2r or if
s is near n, and greater than unity if 2r<s<n. In other words, the
MLP is sometimes better, sometimes not as good, and sometimes about
the same as the best unbiased predictor. A small table illustrating
these observations is given below. In the sequel, we will call the above
ratio the efficiency of XF* relative to X *,

Table 1. Efficiency and bias for the MLP for assorted 7, s and #.

r s n EFF BIAS (X*/B)
3 6 15 0.9986 0.1375
15 17 40 0.7111 0.0434
2 9 10 1.2642 0.7937
10 12 100 0.7333 0.0122
10 20 100 0.9998 0.0213
10 50 100 1.0721 0.0670
500 1020 2000 1.0000 0.0017

Example 4.2 (The uniform distribution). Consider a random sam-
ple of size n from a uniform distribution with pdf f(z;p)=1/8, 0=
<B. The log PLF here takes the form

log L=log (constant)—s log (8)+(s—r—1) log (x,—x,)
+(n—s)log (1—=,/p) .
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It is not difficult to show that for any s satisfying r+1<s<n, a unique
MLE and PMLE exist for X, and B respectively (when s=r+4+1 or =,
the unique maximum occurs on the boundaries of the region where L
is positive). We have

X¥=sX [(r+1), p*=nX,/(r+1)
and
MSE (X})=3s(s—r+1)f/[(r+1)(n+1)(n+2)7] .

For the sake of comparison, the best linear unbiased predictor (BLUP)
of X, is found to be (cf. Kaminsky and Nelson [10])

X *=sX [r.
We omit the derivation. The BLUE of 8 is
B*=(n+1)X,/r

(Sarhan and Greenberg [14], p. 389). Straightforward calculations lead
to the MSE of Xjx**

MSE (X;**)=s(s—r)g/[r(n+1)(n+2)]
and so the efficiency of X* relative to X** is
EFF (X}, X;**)=(r4+1)(s—7)/[r(s—r+1)] .
It is clear that
>1 if s>2r,
EFF (X*, X}*)< =1  if s=2r,
<1 if s<2r.

Thus, as with the exponential distribution, the MLP can be better than,
as good as, or not as good as the BLUP of X,.

5. Other examples

Example 5.1 (The Poisson process). Let {N,; t=0} be a homo-
geneous Poisson process with arrival rate 1/8, and let {X;; 7=0,1,2,
.- -} be the associated arrival process (with X;=0). As before, we wish
to predict X, from the first » arrival times X, (j=1,2,---, 7). By ex-
ploiting the independence and identical exponential distributions of the
interarrival times X,—X,_, (=1, 2, 3,--), it is not difficult to deduce
the PLF of X, and 8. It is
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e e )= (&—%,) " exp (—x,/8)
L(xn /9; &y, ’ xr) ﬂ']’(s—-’r)

0<z,<wx,. If s=r+1 and B is unknown, the unique MLP and PMLE
are found to be

X¥=sX,/(r+1)
and
p*=X,[(r+1),

the maximum occuring along the boundary x,=z, in the special case
when s=7r+1.
Both X* and g* are biased. The biases are

E (X:_Xs*) =8ﬁ/(’l‘+ 1)
and
E (8—p*)=8/(r+1) .

The BLUP of X, is easily calculated with the help of Kaminsky
and Nelson [10]. It is

X=X, +(s—r)p**=sX,|r,

where g**, the BLUE of 8 is
prr=X,r .

The respective MSE’s of X* and X** are

MSE (X;*)=s(s—r+1)g*/(r+1)
and

MSE (X}**)=s(s—1r)gr ,

so that the efficiency of X* relative to X** is
(3) EFF (X;*, X}*)=(s—7)(r+1)/{r(s—r+1)} .

Notice that this expression is identical to that for the uniform distri-
bution (Example 4.2) and so the same comments apply for the Poisson
‘process.

Example 5.2 (Occurrence of record values). Let X, X,, X;,--- de-
note a sequence of i.i.d. random variables with pdf f(x; 8)=(1/8) exp
(—«/B). (The two-parameter case gives very slightly different results,
and is omitted for the sake of brevity.) We call X, an upper record
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value of the sequence provided that X,>max{X,, X;,---, X;;}. Let
L), L(2),- - - denote the indices at which the records occur. That is,
L@1)=1 (by convention), L(n)=min {i; X;> X, .-} (n=2).

The problem is to predict X, having observed the first » record
values X, (/=1,2,---,7). But, it is well-known (see for example
Resnick [18], p. 69; Nagaraja in David [4], pp. 31-32) that the times
between successive records X,.,,—X,_, are i.i.d. with pdf f(z;p) as
above, in the exponential case. In other words, the sequence of re-
cord values constitutes the arrival times in a Poisson process with ar-
rival rate 1/8. Thus, the results of Example 5.1 apply giving the MLP
of X;, and PMLE of B as

X¥on=8X,n»/(r+1)
and
B* = XL(r)/(’r‘l' 1).

The efficiency of X},, relative to X}¥, the BLUP of X,., is again
given by (3).

Example 5.3 (The multivariate normal distribution). Let ¥Y7=(Y7,

J) be a 1xX(n;+n,) (mn=mn,+mn,) random vector with n-variate normal

distribution given by N(g, 2), where Y; is n,x1 (i=1,2), g4 and ¥ are
partitioned in the natural way into g”=(gf, gi) and

=[5 5

Suppose further that g can be written as

= = xlﬂ :|
#=XB=|

where X is nXp (p<n) of rank p, and where 8 is a px1 vector of
unknown parameters. That is, Y= Xp+ e constitutes a generalized linear
regression model of full rank with correlated normal errors. Suppose
that the data consist of ¥, and we wish to predict ¥;. As mentioned
earlier, Y, may equally well represent a vector of “missing values”,
so that the experiment which was to produce all of ¥ may have pro-
duced m, real observations and m, unobserved ones. As is well-known
even without the assumption of normality, the BLUP of Y, is (cf.
Goldberger [6], Whittle [15])

#x= X, 8% + Xy Z5(Y— X, f*) ,
where B8** is the BLUE of 8 based on Y, (Aitken [2]),
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B =(XT 2 X)) XT2HY, .
The MSE of Y is

MSE (Y)=2»p—2, 332+ (X;— 2025 X))
X (X2 X) (X — 2o 23 X)) .

Of course, if we use the normality of Y, it is clear that the MLP and
BLUP of Y are identical, as are the MLE and PMLE of B, since the
quadratic form (cf. Whittle [15], p. 53)

Q=Y—p)" 27 (Y—p)=(Y,— X,8)" 2;'(Y,— X,8)
+Z7(Fpy— 2023207,

where Z=Y,— X,8— 23,2 (Y;— X,B) is to be minimized in both cases.

6. Concluding remarks

We have used the principle of maximum likelihood to derive pre-
dictors of random variables based on past observations. The likelihood
function is maximized relative to variation in the future random vari-
ables as well as to the unknown parameters. We have seen, with the
help of several examples, that the method produces reasonable results.
Yet, there are some questions which remain unanswered at this time.
Under what general conditions can the MLP for Y based upon X be
shown to be unbiased, consistent, or efficient (in the sense of attaining
the smallest possible MSE)? In general, how does the PMLE for 8
compare with the ordinary MLE based on the usual likelihood funection
f(x; 8)? We hope to provide answers to these questions in the near
future.
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