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1. Introduction and summary

Let X,, 1=1,2,.--, n be a random sample of size n from a p dimen-
sional multivariate normal distribution with mean vector x and covari-
ance matrix X,. Let Y,, 1=1,2,-..,n be a random sample of size n
from a p dimensional multivariate normal distribution with mean vector
¢ and covariance matrix J3,. Assume the X-sample and Y-sample are
independent. Consider the problem of estimating the common mean
vector u. Let

X=3X/n, Y=3Y/n, A,=3X-X)(X.-X),
AV=E(Yi_?)(Yt—?)’ y S;=A4,/(n-1), S,=4,(n-1),
3;=3,/n, and 2;=3%,/n, S;=8S,/n, S;=8S,/n.

When p=1 a good deal is known about this problem. In that case
if %,, 2, are known then the estimator

1.1) Ty =(3y X+ 2:Y)/(Z:+3y)

is unbiased and has smaller variance than either X or Y uniformly in
(¢, 25, 2,). When p=1 and J, and X, are unknown then

1.2) Tz=(S7)? + SE?)/ (Sz+Sy)

is unbiased and has smaller variance than either X or Y as long as =
>10. This latter result is due to Graybill and Deal [5]. Brown and
Cohen [2], Cohen and Sackrowitz [3], Khatri and Shah [7] also displayed

unbiased estimators with smaller variance then X and sometimes smaller

than X and Y simultaneously as long as the sample size exceeded some
specific integer. See Bhattacharya [1] for an update on this problem.
When p>1 and 2, and X, are known consider the unbiased esti-
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mator
1.3) Ty=3y(35+35) " X+ 3 Z:+ 35) 7Y,

which reduces to 7, when p=1. It can be shown that the covariance
matrix of Ty, 2'p, is such that (3:—2;) and (25—23;,) are both positive
definite. When 3, and 23, are unknown it is logical to study the un-
biased estimator

(1.4) Ti=5,(Ss+8;) " X+ 8:(S:+8;) 'Y ,

and determine whether, and for what =, are (3;—2;) and (2;—27)
positive semi-definite for all (2, 3,). The surprising result in Section
2 is that neither 33;—J3; nor (3;—2;,) is positive semi-definite for all
(2, %) for any ». Evaluating unbiased estimators by the same ecri-
terion i.e. by their covariance matrices, analogues of estimators in
Brown and Cohen [2], Cohen and Sackrowitz [3], Khatri and Shah [7]

and others are also shown mot to be better estimators than X. We
call these negative type results. In Section 3 the criterion of evaluat-
ing unbiased estimators by their covariance matrices is discussed.

2. Negative type results

By way of notation we say a covariance matrix Y is positive semi-
definite (p.s.d.) by writing ¥=0, is positive definite p.d. writing 3 >0,
and is not p.s.d. by writing Y#0. Consider the class of estimators

(2.1) Ty=X+ A,S;Ay(S;+ B,S,B,)'C(Y—-X) ,

where A,, A,, B,, B,, C are nonsingular matrices of constants. Note
that when A,, A,, B,, B,, C are the identity then 7; is the analogue
of the estimator of Graybill-Deal; when A,=al, A,=B,=B,=C=1I, T;
is the analogue of Brown-Cohen; when B,=cl, A,=A,=B,=C=1I, T; is
the analogue of Khatri-Shah. Hence all the analogues are special cases
of the general form T:.

THEOREM 2.1. The difference 3;—2; %0 for dll (2., 3,).

Proor. We give the proof for p=2 since it will be clear that if
p>2 a similar but more detailed argument will work. First note that
from (2.1)

(2.2) 53— Zp,= 3:—E A,S;A(Ss+ B.S;B))'C3,
—E 3,C/(Ss+B.S,B) " AiS; A!
+E A,S:45(S;+ B.S;By) ' C(Z5+ 25)
. C'(Ss+ BiS,B) " AlS, AL .
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Now let

AISEA2=(1/n)U=(1/n)< 1 “ﬂ), (Sz+BlsgB2)"=nV=n<v“ ”ﬂ),

u
o1 Ug Var Vg2

= (ll’n) (ailpz‘:z’ax’\) ’ 217 = (l/n) <a?71‘0”‘:1’101’z>

Ta Y2

i) o) (B0 W)
n . H - . . ’
asp o b b

i=1,2, C= (Zu ZZ) G=UVCS,, H=UVC(Z:+3,)C'V'U". From (2.2) 5
21 22

_215¢0 if

(2.3) Eh,>2Egy

and consider the case where p,=p,=0. Also let A,~=<

for any (2, 3,) where hy, and g, are elements in the first row- first
column of H and G respectively. Straightforward multiplication en-
ables (2.3) to be written as

(2.4)  E{[(z,+a3)/n]lcu(vvy+uisva)+ Car(Uns V1 + Uy V) I
» +[(0%, 4 73,) /] [Cra(Un V11 +UssV0) + Con(Uny Vi + UpsV2) [P}
>2E (U;I/ ) [11(UnyV1s ~+ UigVy1) + Cor (U V1z + UgaVss)]

Let X,=(Xy, X»)', Yi=(Yu, Y2,

Wiao=(Xy— X0y, Wiy=Tu—To,, i=12.

Zj L]
respectively where X and x? are independent X’ variables with (n—1)
degrees of freedom. Straightforward multiplication now yields the
following :

Note > (X,,—X,)* and zi‘, (Y;—Y,)? can be written as oz Xz, and oy X;
i

2.5)  wy;=afafPez Xz +aPailo, 0., Wi oW,

+afPasfe, ., bX Wi o Weo+aPaPer 2z,  §=1,2.
Similarly derive v,/4, v,/d, vy/4, and vy/d
where

(26)  A=[02, +bPHP03, L+ 500y, 0,, 53 We W,
+ 80600y, 5 Wiy, Wy, +OPBP01]
[0, +BPOD0 1, + P00y, 5 W W,
+80600,,0,, 53 We Wi+ B08003,15]
(02,2, 3 Wi W, + 006003, 26, +-60600,,0,, 53 We W,
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b0, 0, 3 W, Wi, +DP0D2 2 |
* [02,00, 35 Wi o\ Wi o, + 00603 X5, +630P0, 0y, E Wiy Wiy,
+B00D0,,0,, 3 Wi Wy, +BPBD0325,] -

Now let ¢, —0 and note from (2.5) and (2.6) that
2.7  uy—afaPdal X, , Up— aPaPa Xz,

(2.8)  4—4,=[bPbP0; X} +b0P0, 0, S W, W,

+bPbPa,,0,, 53 Wy W, +UPBDL 1,
- [0, 12,4 P00 2, 4 bPbDa, 0, 5 W, W,
+bPbPay,0,, 53 W,y W, + 000003251

— [$PbPa 1, 4+ D0, 0, 5 Wiy W,
+PbPa,,0,, 53 Wy, W, + 000002, ]
[b(l) (Dale;l_l_b(l) g)a”la.vz 2 Wt Vlm "
+b{Db gg)"vl"n Wy W, —I—b“)b(”a,,z?(?;z]

29)  wyvutuuvn— (0PaPL T [01, 2+ BPP 1,
U0, 33, 53 Wi W 60020, 0, 53 Wo W,
+ b0 2,1 — aPaPol 12 [BPbD G} X3 +bPbDa, 0, 53 Wiy W,
+b0000,,0,, 52 Wy, Wiy, 596003, 2,1} 4,

(2.10) uuv,2+u12v22—>{aﬁ?ag?agzﬁz[bf}’bg’ailx;l+b§§>b§§’a,,la,2 2 W;,,,le,,,z
+60620,,3,, 5% Wy Wy, + 506003131
+a§§’a§§’%2%i,[b“’ oy Xy, + 0000, 0y, I W, W, ,,
+b0°b5Pay,0,, 35 Wiy Wy, + 6008003, X5 11 /4,

Now observe that if ai+0, using (2.9) and (2.10) we see that the right

hand sides of (2.4) tends to zero as o,—0 while the left hand side

tends to a positive number. Thus in this case the theorem holds.
If a=0, then since A, is nonsingular a{’+#0. In this case

(2.11)  wy,=afafe; Xz +aPasPe, 0., I W, o W, s, .
Now let g,,=0:’—0, then

(2.12)  uyvy+upvy—{(aiPa E?aleil+a‘” ﬁ)azlo‘:, W lez,zz)
- [BPbPa X, +bPbPa, 0, 5 Wiy W
YYD, 0y, 53 Wi Wi +DPUDGL ]
— (AP0 1, + 000, 0, 3 W, W)
[b“)bg)a,lle-i-bm 3)0',10‘, P W’,,,lW,,,,z
+b(l) g)gvlayz 2 m,v,sz'i‘bm g)avgx?ﬁ]}/dz ’
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(2.13)  uyvp+unvn=—(aPaPor Xi +afPalo, 0., 33 W, . W, )
- [bPbPay X, + 6Dy 0y, 33 W, Wiy,
+bPbPay, 0y, 33 Wey Wy, +000000, %51
+(aPaPar X3 +afPaiPo, 00, 23 Wi o Wi z)
- [6PbPa} X5 40500 a, 0y, 35 W, Wy,
+000Pa, 0y, 33 Wey Wy, +00500, 15,1} 45

where 4, is the same as 4, except terms involving ¢, and o, are omitted.
Note that (2.12), and (2.18), and ¢,,=¢}’—0 imply that the right hand
side of (2.4) tends to zero at the rate ¢/ whereas the left hand side
tends to zero at the rate ¢;. This implies that parameter points exist
for which (2.4) holds and thus the theorem is proved.

To prove the next negative result we need
LEMMA 2.2. E(X—p|¥—X)=—34(3:+3,) (Y- X).
PrOOF. The proof is straightforward and omitted.

Now let U=(u,;) be an mxn orthogonal matrix with nth row wu,
—(vm,Y¥n, -, 1J¥w). Define Us=3]u,X, so that U~N(0, %)
k=1

for i1=1,2,.--,n—1 and U,~N®n 6, 2,). Similarly define V as nxn
orthogonal matrix and random vectors V,=3}v,Y, and so U, U, V,, V,
are independent for i#j, k#l. Let r be an integer satisfying 6=r=<

-1

n—2 and define sz="'§ U.U, S= 'S\ (UA4V)Ui+V)y. Note S,~W(p,

n—r—1,2,), S~W(p, r, 2.+2,), an;l S, is independent of S. Here W(p,
q, 2) is the Wishart distribution with parameters p, ¢, 3. Consider the
class of estimators

(2.14) T.=X+cSS,(Y—X),

for ¢>0. For p=1 this class of estimators was studied by Cohen and
Sackrowitz [3].

THEOREM 2.3. For any fixed ¢>0 the difference 3;—3; %0 for all
(22 2y).

PROOF. Again it suffices to give the proof for p=2. Apply Lemma
2.2, and use properties of the Wishart to find that

(2.15) Z:—3, =[c(n—r—-1)/n(r—3){(Z.+2,) 2.3+ 3,22, +3,)7'}
—(cYn) E 878,(Z,+ 3,)S,S .

Use an identity from Haff [6] to show
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(2.16) ES'S,(3,+2,)S.S™
=[(n—r—1)(n—7)/(r—2)(r—3)(r—5)]

A{tr (2,4 2) 7132+ 2) 2 N2+ 2)
+(n—r—=1)(n—7)/(r—2)(r —=5){(Z:+ 2,) (2224 2,)32)
(2ot 2) 7+ (e —r—1)/(r—2)(r—3)(r—5)]

ALt 32+ 3Nt (24 3,) 7 213+ 2)7')
+(n—r—1)[(r—2)(r—5)][tr 2(2.+2,)]

(2ot 37334 2) T

Use (2.16) in (2.15) to conclude that 3;—3, =0 if and only if

2.17) 3,3,(2,+3)+(2.+3,)2.2,
>[e/(r—2)(r=B){(n—7)[tr (Z,+3,) 7' 23, + 2,) 2)(2.+ 2)
+(n—7)(r—38)3(3,;+2,) 3, +[tr 2,(2,+ 2,)]
- [tr (3.4 2) 7 22+ 3) +(r—=3)[tr T2+ 2,)3.]} .

In order for (2.17) to hold clearly the element in the first row-first
column on the left hand side of (2.17) must be greater than the ele-
ment in the first-row first column on the right hand side of (2.17). For
the case p,=p,=0 use (2.16) to find that such a condition becomes

(2.18) 20} (03, +0}) >[e/(r—2) (r —5){(n—7)(02 +02) (o2, +03,)
+(n—1)(r—3)d (02 +a})
+[0%,(0%, + 03) + 02,(0%, + 03,) ][0 (o7, + 0},)
+a% (02, + )]/ (02,1 03,)
+(r—3)loz (03, + 0}) + 0%,(0%,+3,)] 0%} -

Fix o, g,,09,, and let o, —oco. It is clear that for any ¢>0 (2.18) is
contradicted.

Another class of estimators studied is the vector W whose ith com-
ponent is

(2.19) W.=X,+a,[82/(S%,+bS;)1(Y:i— X)) ,

where X, and ¥, are the ith components of X and Y, and S;, S;, are
the ith diagonal elements of S; and S;. It can be shown that 2;—2y
20 for all parameter values. To show such a result again we let p=2
and use computations similar to those in the proof of Theorem 2.1 in
writing down 3;—J3,. This time however the correlations p, and p,
will not be taken to be 0, and the various cases for a; and b, are treat-
ed separately. The parameter points for which 3;—3,#0 usually are
when g, —oco. We omit the details.
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3. Remarks on criterion of evaluation

Evaluating an unbiased estimator of a vector of parameters by the
covariance matrix of the estimator has been done before. In fact for
linear models the Gauss-Markov theorem states that the vector of least
squares estimates of the regression parameter vector, B say, is best
among linear unbiased estimators in the sense that its covariance ma-
trix, X; is such that 3;—3,>0 for any other estimator B.

For estimating a vector of parameters a frequent criterion of eval-
uation is the expected sum of squared errors. A weaker criterion is
to look at the vector whose ith component is the expected squared
error for estimating the ith component of the vector. It is weaker
in the sense that an estimator can be admissible by the vector criter-
ion but not by the sum criterion. The criterion here is still weaker
than the vector criterion. For estimating a common mean vector if
the risk function were sum of squared errors, or if we studied the

vector risk then the estimator X would be inadmissible by virtue of
previous work: (See Brown and Cohen [2] and Cohen and Sackrowitz
[4]). However with the covariance criterion the issue of admissibility

of X is unresolved. The difficulty is highlighted in Section 2 of this
paper.

Cohen and Sackrowitz [4] discuss decision theory formulation for
vector risks. Their development is easily extended to accommodate
risks more general than vector risks. The covariance criterion is an
example of a risk that is more general than a vector risk. To apply
the Cohen-Sackrowitz [4] development for such a criterion to be used
for the problem of this paper, the parameter space would be 2=6xH
where 8 would consist of points 0=(g, 5,, 3,) and H would consist of
points & where ¢ would represent a direction in a p-dimesional vector
space.
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