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Summary

This paper is concerned with the randomized solution for the esti-
mation of the multinormal mean by two or more Bayesians. The opti-
mum rule is found by maximizing the Kalai-Nash product in the case
when randomization is necessary. It can be considered as an extension
on the work by Weerahandi and Zidek [2], [3].

1. Introduction

Weerahandi and Zidek [3] consider the solution to the problem of
estimating the mean 6 of a multivariate normal population by two
Bayesians if the posterior density of # for the ith Bayesian is multi-
variate normal with mean 6, and covariance matrix 3;,. Assuming a
utility function

U0, 6)ocexp [—%(0—9)’W;‘(0—5)]

for the ith Bayesian where # is the estimate, W, and 3, are given p.s.
matrices. The expected utility for Bayesian 4 is

.1 UD)=E [U0, 8)1=exp [~ (0.~0Y 47(0:~0)|
where A,=W,+23;. The authors, referred to above, gave the random-
ized solution for 4,=4, and @,=a, where «; and a, are defined in the

Kalai-Nash product

1.2) P(a):[s U,(é)ad(é)]“‘[g m(é)ad(é)]"’, ata=1, ¢=0
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and ¢ is the randomized rule. They also gave the solution if a,#a,
and A,=A4,. If A,#4,, no explicit formulae are given for obtaining the
randomized solution but results which will be of some potential value
are given.

We will consider in this paper the randomized solution in general
for the two Bayesian case and will also consider the problem of more

than two Bayesians. Let S={(U(é),-- U.@)); ¢ R*} and S denote
the convex hull of these points. B is the set of all Pareto-optimal
points of S, and is a subset of the boundary of S denoted by 9S. If

S=+S the optimal solution will be randomized. (yVeerahandi and Zidek
[2], [8)). If U,@) is maximized with respect to 8, keeping U,(f) (5 #mn)
fixed, the estimator

(1.3) éj=11—1<_/1;10"+:§3‘ z,A;lo,)
=1

with A=<A;‘+7;V:_‘: 211;1) and 4,20, i=1,-.., »n—1 is obtained, where 2,,

«+, A,_, are the Lagrange multipliers. This estimator yields the Pareto-
optimal set of utilities,

4 B={U@), i=1,+,m; b=27(470.4+ 5 247%0,), 220} .

The Kalai-Nash product (Nash [1], Weerahandi and Zidek [2]) is defined
as

(1.5) PO=TIUO, Sa=1 a20, i=1,,n.
It can be shown by completing the square in the exponent of P(),

that among the nonrandomized rules in the n Bayesian case, the value
of § that maximizes P(f) is: Choose with certainty the action

A n -1/ n
(1.6) 0=(; a‘A,") (; atA;‘t?i)
=1 =1
which is a weighted average of 4,, 1=1,---,n. It is clear from (1.6)

and (1.4) that the point which maximizes (1.5) is an element of B. If
S is not convex, the optimal solution lies on the boundary S and ran-
domization is necessary so that (1.6) is no longer optimal (Weerahandi
and Zidek [3]). In the next section we will examine the randomized
solution for two Bayesians and a result that will be needed is, in gen-
eral, the derivative

dU,6) _ _; Ui |
dUl(ﬁj) Ui(al)

1.7
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2. A general randomized solution for bi-Bayes estimates of
the multinormal mean

We will denote Uy(f,) by U(a) in this section. We assume that
the set S of all feasible 2-tuples is not convex and that (Uy(1,), Uy(4,))
€ B and (Uy(2,), Uy(4,)) € B are any two points that belong to B. De-
fining Bayesian ¢’s expected utility as 3U(2,)+(1—3)U,(4y), 1=1, 2, if
the decision rule is 34, it means that randomization is permitted and
any point on the line segment joining (Uy(4,), Ux(4))) and (U(2s), Ux(2s))
is feasible. Maximizing the Kalai-Nash product

P(@)=TT DU+ (L — U]

with respect to 3 then gives

@.1) 3= aU(2) [U(4) —Ui(29)] +sU(2) [Un(41) — Un(43)]
[U:(20) — U(2)][U1(2)) — U(2,)]

The problem is to find the two points

(U(4), Uy(2))  and  (Ui(2s), Uy(4s))
and therefore the optimal randomized rule 8* such that
P(3%¥)=sup {P(3), 8 randomized} .

It is clear that these two points must be the tangent points of the
tangent line

U(2)=9(3)Uy(2)+¢(2)

to B; where
_dU(2)
(2.2) g(l)—m'
—_, 0%
=—2 T.0) (from 1.6)
and
(2.3) c()=Uy(2)—g(A)U\(2) .

Since there must be two 2’s, say A, and 4, for which g(4,)=g(,) and
¢(4)=c(2;), a way to find these A’s will be to plot g(2) and ¢(2) for 2=
0 and the point of intersection of the graph will give the two 2’s. If
S is convex there cannot be two points in @B which yield the same
tangent line (see Figure 1), and the graph of g(2) against ¢(2) for 1=0
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does not intersect, which means that randomization is not required.
The procedure will be illustrated by an example.

Example 2.1. Let

01=[g], 02=[1?5], Ar=21,, A=1,.

Then B looks as follows:

U2(A)
(U1(41), Uz(A1))

Tangentline U2(A)=g(A) Ui(A)+c(A).

(Ur(Az2), U2(A2))

.....——"
o o o -

Ui(A)

Fig. 1. B=((Ui(2), Uz(R): 6,=A"(A710:+24510;), 220}
S=((U«(8), U8)), 6 € R?}.

In Figure 2 g(2) and ¢(1) are plotted for various values of A.

c(a)
1.08}
1.4 ———=——==
A0

1.00f
0.96 1 1 1 1 ] I 1 1
—-0.96 -0.92 -0.88 -0.84 -0.80 —-0.76 -0.72 —0.68 —0.64

g(2)

Fig. 2. Plot of g(4) and ¢(2) for 220.

From Figure 2 we obtain the approximate values of ¢ and g at the
point of intersection and from that determine the original values of 2,
say 2, and 2, that yielded those ¢ and g values. By additional ecalcu-
lations and linear interpolation more accurate values are obtained. These
are given in the following table:
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Table 1.
1 9(2) c(2) Ui(2) Usx(2)
21=1.8416 —0.782 1.04 0.8623 0.3660
2:=0.0593 —0.782 1.04 0.0745 0.9819

From Table 1 it follows that

A __[0.2135} 9 _[0.8939}
0.3203. ’ 1.3409. °

4y T

The two Bayesians have to randomize between these two estimates by
solving for 8* from (2.1). It they agree on a;=a,, it follows that

0%=0.7498 .

Hence the optimal randomized rule is to estimate 6 by 5;1 with prob-
ability 0%=0.7498 or by 6, with probability 1—¢*=0.2502. The value
of the Kalai-Nash product at d* is

P(6%)=0.5882.
If we compare this with the Kalai-Nash product at the optimum non-

randomized estimate

5*:(;;2), say, calculated from (1.3) we get P(f*)=0.5818,

which is smaller than P(3*). The expected utilities for the two Bayes-
sians corresponding to the optimum nonrandomized estimate 6*, are
U(6*)=0.6969 and U,6*)=0.4857 where for o* they are from Table 1:

U,(3%)=0.8623(0.7498) +0.0745(0.2502) = 0.6652
Uy(3*)=0.3660(0.7498) +0.9819(0.2502) =0.5201 .

Bayesian 1 is on the average doing better by not randomizing but to
choose 6* where Bayesian 2 will gain by randomizing. The Kalai-Nash
of course, is a maximum if the randomized rule is chosen.
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