Ann. Inst. Statist. Math.
37 (1985), Part A, 461-472
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Summary

Asymptotic properties of the mean integrated squared error (MISE)
of kernel estimators of a density function, based on a sample X,---,
X,, were obtained by Rosenblatt [4] and Epanechnikov [1] for the case
when the density f and its derivative f’ are continuous. They found,
under certain additional regularity conditions, that the optimal choice
h,, for the scale factor h,=Kn~° is given by h,=Kmnm™* with K, de-
pending on f and the kernel; they also showed that MISE (k,,)=0(n"**)
and Epanechnikov [1] found the optimal kernel.

In this paper we investigate the robustness of these results to de-
partures from the assumptions concerning the smoothness of the density
function. In particular it is shown, under certain regularity conditions,
that when f is continuous but its derivative f” is not, the optimal value
of @ in the scale factor becomes 1/4 and MISE (&,)=0(n"%*); for the
case when f is not continuous the optimal value of a becomes 1/2 and
MISE (h,)=0(n""%). For this last case the optimal kernel is shown to
be the double exponential density.

1. Introduction

Let X,,---, X, be independent, identically distributed random vari-
ables with density function f and let

— 1 i x_Xg —
(1.1) == Su(E5E) . —eo<o<en

be a kernel estimator of f. Rosenblatt [4] and Epanechnikov [1] (see

Key words and phrases: Density estimation, mean integrated squared error, optimal kernel.
* Supported by the Natural Sciences and Engineering Research Council of Canada under
Grant Nr. A 3114 and by the Gouvernement du Québec, Programme de formation de
chercheurs et d’action concertée.

461



462 CONSTANCE VAN EEDEN

also Rosenblatt [5]) studied the asymptotic behaviour of the mean in-
tegrated squared error (MISE) of f,; they found the optimal value of
h,, the asymptotically minimum value of MISE and the optimal kernel,
assuming, among other regularity conditions, that w is a density sym-
metric around zero and that f has two continuous derivatives. Nada-
raya [3] extended the results of Rosenblatt and Epanechnikov to the
case where f has s (8=2, s even) derivatives with f* bounded.

In this paper the results of Rosenblatt and Epanechnikov are ex-
tended to the case where the density f and its derivative f’ are not
necessarily continuous; a bounded density, symmetric around zero, is
used for the kernel and it will be shown, under certain additional reg-
ularity conditions, that, with h, the asymptotically optimum value of
h,, MISE (h,;)=0(n"**) if f is continuous and f’ is not continuous, where-
as MISE (h,,)=0(n""%) if f is not continuous. Expressions for lim n**

n—sco

MISE (h,y), respectively lim »n'? MISE (h,,), in terms of w and f will be

given; further it will be shown that the double exponential density is
the optimal kernel for the case when f is not continuous.

Section 2 contains the conditions on w and f, as well as some pro-
perties of, and some examples of, densities f satisfying these conditions.
The main results are given in Section 3; a sketch of the proofs of these
results is given in Section 4. Full details of these proofs can be found
in the technical report by van Eeden [6]; this report is available from
the author on request.

2. The conditions on w and f
The kernel w will be assumed to satisfy

Condition A.

w is a bounded density, symmetric around zero with 0<Si: tw(t)dt < .
The density f will be assumed to satisfy

Condition B.

1. f has k (k=0) points of discontinuity a,<---<a,; at each of these

points f has a left-hand and a right-hand limit and f(a;)#f(a}), i=1,
oo, k.

2. For each i=1,...,k+1, the function g, defined on [a,_,, a;] by

flaiy) if v=a,_,
gi(x)=4 f(x) if a1 <x<a;
f(ay) if x=a,,
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where ay=—o0, a,,;=o0, has, except at the points by< .-+ <by, (L,20,
a1 <by, bat<a,), a derivative g,. At each of the points b,,- -, bu‘, g
has a left-hand and a right-hand derivative; gi(b7;)#gi(d%;), 7=1,---, L
and

v
9(Y)—g(x)= S, gi(w)du , o Sr<ysa;.

Further f’ is integrable.
3. For each pair (i, j), ©=1,---,k+1, j=1,.--,l,+1, the function g,
defined on [b,,_y, b;;] by

gi(bf;-1) if x=b,;_,
94(®)=4 gi(®) if by <w<by
gi(b3) if z=b,,,
where by=a,_, and b, ,=a,, is absolutely continuous and g/, is continu-
ous almost everywhere. Further Si:lf "(w)|dx<co and g; is bounded.

The following Lemmas 2.2 and 2.3, needed for the proofs of the
main results, give some properties of densities satisfying Condition B.
Lemma 2.1 is needed for the proofs of the Lemmas 2.2 and 2.3.

LEMMA 2.1. If G(x), —co<x< oo, 18 absolutely continuous and G
and G' are integrable, then

@ 6@=|"_Gwdy —co<a<o

(2.1) and
(b) G(x) is bounded .

Proor. (a) The absolute continuity of G(x) implies that
@.2) G(a:)—G(y):S: Gy  —oco<y<s<oo .
Further, the integrability of G and G’ and the absolute continuity of
G imply (see the proof of Lemma 1.2.4.a of Hajek and Sidak [2])
2.3) G(x)—0 as x—+oo.

The result then follows from (2.2) and (2.3).
(b) The boundedness of G follows from (2.8) and the fact that G is
absolutely continuous, and hence of bounded variation, on finite intervals.

LEMMA 2.2. i) For each i=1,--., k+1 the function g, is absolutely
continuous on [a,_;, a;] and bounded. ii) For each pair (i, j), 1=1,---,
k+1, j=1,.--, 1,41, the function g,, 18 bounded.
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ProoF. For the absolute continuity of g, see Hajek and Sidak ([2],
Theorem 1.2.1). For 2=2,-..,k the fact that g, is bounded follows
from its definition. For =1 and for ¢=k+1 the boundedness of g,
follows from Condition B.2 and Lemma 2.1. For all but the pairs (1=
1, j=1) and (i=k+1, j=l,+1) the fact that g,; is bounded follows
from its definition. That g,, and gu41,,, +1 are bounded follows from
Lemma 2.1 and Condition B.3.

Note that Lemma 2.2i) implies that f is bounded, which implies
that f is square integrable. Further, Lemma 2.2ii) implies that f’ is
bounded and Condition B.3 implies that f” is bounded and square in-
tegrable. Also, each of the functions f, f/ and f” is continuous almost
everywhere. If k=0 then f(x), —co<x<o0, is, by Lemma 2.2i), ab-
solutely continuous and if k=0, [,=0 then f'(x), —coc<x<o0, is, by
Condition B.3, absolutely continuous.

Now let

s=far)—fal) i=1,---,k

(2.4) _ .
Atj=f,(bi_j)_f’(b:’j) 'b=1"',k+1, .7=1)"'sli+1
and
k k41 bt
(2.5) =318, 4=3 3 4
i=1 i=1 j=1
then

LEMMA 2.3. If the demsity f satisfies Condition B then
(2.6) 3>0 or 4>0 or S” (")} dz>0.

ProOF. It is sufficient to prove that
@.7) (0=0, 4=0}= {"" {f"@}dw>0.
To prove (2.7) first note that

2.8) {9=0,4=0}= {k=0,1,=0}= {f(x), —0 <2< 0,
and f'(x), —co<x<oo, are absolutely continuous} .

Then, by Lemma 2.1 and the fact that f, f/ and f” are integrable,
one obtains that {4=0, 4=0} implies

2.9) f@)= S_w (S; f”(z)dz)dy ,  —w<z<loo.

Finally, SN {f"(%)}*de=0 contradicts (2.9) because f is a density.
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The following are some examples of densities satisfying Condition B.
1. The normal, logistic and Cauchy densities satisfy Condition B with

k=1l,=0, 3=4=0 and S”’ ")) dz >0,
2. the double exponential density f(x)= (1/2)@""| —oco L x< o0, satisfies
Condition B with k=0, [,=1, =0, 4>0, S {f"(x)}dx>0,
3. the density

1+2 —-1=5250

f(w)={

l1—2x o=x=1
satisfies Condition B with k=0, [,=3, 8=S+m {f"(x)}*dx=0 and 4>0,
4. the uniform density f(x)=1/2, —1§x§_;, satisfies Condition B with
k=2, L=ly=l,=0, >0 and A=S+°° (@)} dw=0,
5. the density -

a+% —1<2<0
2a—1

f(@)=

a—x
0<z<l1
20—1 =T=

where a>1, satisfies Condition B with k=2, [,=1;=0, [,=1, >0, 4>0
and S (f"(2)} dz=0,
6. an example of a density for which >0, 4=0 and S+°° {F"(x)}dx>
0 can be constructed as follows. Let f be a density satisfying Condi-
tion B with k=l,=0. Then S“" {(f"(@)}de>0. Let ¢>0 and let f* be
defined by

f@ for |z|>1

1+2¢
fH@)=

f@)+e <
1120 for |x|=1.

Then f*(x), —co<x<oo, i3 a density; further

Lro-f2

and f* satisfies Condition B with k=2, |,=[,=l;=0, >0, 4=0 and

| @yds=s | @0,
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7. an example where >0, 4>0 and Sw {f"(x)}*'dx >0 is the density

SHt@] 1520
Fa)=
SH+E-171  0sesl

for which k=2, ,=[,=0, ,=1.

3. The main results

The main results of this paper are given in the following Theorems
3.1, 3.2 and 3.3 ; the proofs of these theorems are sketched in Section 4.

THEOREM 3.1. If the Conditions A and B are satisfied then, for
n—oo and h,—0,

(1

Si: wi(t)dt+ % h} {Si: tzw(t)dt} : Si: {f"(x)}dx

n

+o(-E—thi) if 9=1=0
v ]_{[ y-omosfn
MISE (h,)= +°(,,$l +h:) i 20, 450

1

n

o
0

St: wi(t)dt+2h,0 S {S: w(x)dx} 2dy

+o(—th)  if 330,
nh,

When f satisfies Condition B with k=[,=0, Theorem 3.1 reduces to
the results of Rosenblatt [4], Epanechnikov [1] and to Nadaraya’s [3]
result for s=2.

The following Theorem 3.2 gives, for h,=Kn~*, «>0, the asymp-
totically optimum values «, and K, of @ and K, as well as the value of

M,=1im n'~% MISE (Kyn~) .

THEOREM 3.2. If the Conditions A and B are satisfied and h,=
Kn~, a>0, then (a) the asymptotically optimum value a, of a is given
by a=1/5 (if 3=4=0) or 1/4 (af =0, 4>0) or 1/2 (if 6>0). (b) the
asymptotically optimum value K, of K 1s given by
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1/5

[ woaef[ (| ewedd [ ir@ras]|” i 0=a=0

K,

[ "weae/[6a|_{[" w—vwaa]|” i 9=0, 450

SJ: wz(t)dt/ :20 S: {S: w(t)dt} 2dy]}m if 3>0,

(c) the asymptotically minimum value of MISE, MISE (Kyn~), satisfies
lim n'=% MISE (Kyn ")

B %[Y: wz(t)dt] "S[S”’ t?w(t)dt] m[g: { f”(:v)}zdx] Y uf 8= 4=0

-0

1/4

_ %[St wz(t)dt]m[GA S-w{Sﬂ_«. (y—t)w(t)dt}zdy] if 3=0, 4>0

| 2[Si: wz(t)dt]l/z[za S: {S: w(t)dt} 2¢;ly]”2 if 3>0.

As for Theorem 3.1, Rosenblatt’s [4] result, Epanechnikov’s [1] re-
sult and Nadaraya’s [3] result for s=2 are a special case of Theorem
3.2.

If it is known that the density to be estimated satisfies Condition
B, but it is not known whether f, nor whether f’ is continuous, then
the optimal choice for h,=Kmn~ is unknown ; in this case, for any choice
of @ among the values 1/5, 1/4 and 1/2 that is not the optimal choice,
the asymptotic efficiency relative to the optimal choice is zero; that is

lim MISE (Kyn ) =0

)0 K>0, ac {1/5,1/4,1/2}, .
s “MISE (Kn—) >0, ac{1/5,1/4,1/2}, aza,

On the other hand, if «, is known and one uses h,=Kn "% then the
asymptotic efficiency relative to the optimal choice is positive for all
K >0 and is equal to one if a consistent estimator of K, is used for K.
Nadaraya [3] gives such an estimator for the case when d=4=0.

Finally, the optimal kernel, that is the kernel w that minimizes

My(w)=1lim n'~* MISE (Kyn~%) ,

n—oo

depends on the unknown density only through «,. For the case where
3=4=0, it is well-known (see Epanechnikov [1]) that the optimal kernel
is given by w(t)=(3/4)(1—t?) if t?<1. The following Theorem 3.3 gives
the optimal kernel for the case when 4>0.

THEOREM 3.3. If the Conditions A and B are satisfied and 3>0
then the optimal kermel is given by w(t)=(1/2)e™""!, —oco<t< 0.
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We have been unable to find an optimal kernel for the case when
=0, 4>0.

The following Table 1 gives, for several kernels, the asymptotic
efficiency, e(w), of the kernel w as defined by

Miy(wy)

=)

where w, is the optimal kernel. The kernels used in Table 1 are the
same as those used by Epanechnikov [1]; he gives, in his Table 1, the
values of [e(w)]™** for the case where 6=4=0.

Table 1. Asymptotic efficiencies e(w) of
the kernel w

w 8=4=0  3>0

3

—a-m st 1 .940

L cost it1=Z 1.000 945

2 =73 : :

1—[t| <1 .989 .968
1 —t2

et —oo<i<o .961 .974

1

- t)<1 .943 .866

1 —ltl

—z—e —o<LtL o .802 1

4. Proofs of the theorems in Section 3

In order to simplify the notation the index % on h, will be omitted.
For the proofs of the theorems in Section 3 the following lemmas
are needed. The proofs of these lemmas, which are straightforward
but lengthy and tedious, are omitted ; they can be found in van Eeden

6.
LEMMA 4.1. If the Conditions A and B are satisfied then
@y |7 et f@yds
=1 S+°° w(t)dt—2 S“" f@) S“’ w(t)f (v —thydtdz
nh J-= n J-w —o

+2 17 p@s+ 2L [ i e —t)— fadt] do
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LEMMA 4.2. If the Conditions A and B are satisfied then
+oo +oo +oo
(4.2) 13518 f(a:)g w(t) f(x—th)dtdx:S_ Fi@)ds .

The following three lemmas are needed to obtain the behaviour of
(see (4.1))

[0 wo -t — st ao

as h—0; the first two of these lemmas give Taylor series-like expan-
sions for functions f satisfying Condition B; if k=[,=0 these expan-
sions are Taylor series expansions.

LEMMA 4.3. If f satisfies Condition B then, for b, _<x<b,, by,
<x_th<btja’ léjlélt‘l—ly 1§j2éli+1y i'—_l,' vy k+1

(4.3)  f(m—th)—f(x)+thf'(®)—h S (t—3)f"(x—sh)ds
(i) 0 if 11=7,

Jo—1
(ii) Zj (b,—z+th)d, if 51<Js
=n

J1—1
(iii) -3 (by—x+th)d,,  if §:>7: -
—J2

LEMMA 4.4. If f satisfies Condition B then, for bi 5,1 <2 <by 4,
btzjz_1<x'—th<btzjzi 1§jl§ltl+1: 1§J‘2§l¢3+1, 1§"'1§k+1, 1§%§k+1’
?:1#:1:2,

(4.4) f(x—th)—f(x)+thf'(x)—h? S: (t—s)f""(x—sh)ds

g+l ig-1 L +1

( i ) rg (btlr_m'l'th)dtlr +’ 2 Z‘ll (brr’_x'l‘th)drr'
=7, =

=i)+17
Ja—1

ig—1
+3} Gyt — 310, if i<i
r=1 B=1y

i+l -1 141

(i) — _zj‘, (b, —x+th)dy,— X3 > (b, —x+th)4,,.

=1g+1 7’

51-1 -1

- (b, —x+th)d,,+ Zi} 3, W 4>,
r=1 n=ty

Now let

4.5) I(x, h)=gi: w(t){f(x—th)— f(x)}dt , —ocoLr <o,

4.6) Gz, b)=h* Si:w(t) S:(t—s)f”(x—sh)dsdt, 0L gL 0o,
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ti+1 S(z-»i,)/n

@7 Hpw, k=3 4, | (byy—x+th)w(t)dt

k+1 bt S(.r—bn-l)/h

+2 Zdrr' _

r=i+l =1

(b, —z+thyw(t)dt ,
btj—1<x<btjr j=1" c %y lt+1! 'i=1, ] k+1 ’

oo

(4.8)  H(x, h)= —:g'i 4, S

i—1 L+l Sw

(b, —x+th)w(t)dt
Y/

(Z—byy

_E E Arr’

r=17'=1

btj—l<x<btjr j=19' ) lt+13 'l;:]-,' ) k+1 ’

(b, —x+th)yw(t)dt ,
)/h

(@b

(4.9) I’,,(a:,h):féd,,{l——W(a:;a")}, a1<w<ay i=1,--, k+1,

: r—a .
(410) Voo, =—3 3 W(2=%),  a,<w<a, i=1- k,
where
(411 Wa={"_wodt, —co<y<oo.

Further let, j=1,---,1,+1, i=1,..., k41,
H,(x, h)=H,; (%, h)+H,;(z, h)
T/.t(xv h)=vv£l(xy h’)+I,t2(x7 h)

(4.12)

then it follows from Lemma 4.8 and Lemma 4.4 that

LEMMA 4.5. If the Conditions A and B are satisfied, then

(4.13) Sf: [St w(t){f (5 —th)— f(x)}dt] dz

{G(x, h)+H,y(x, h)+Vi(=, h)}da .

The following four lemmas give the behaviour, as h—0, of each
of the six terms obtained by expanding the square in the right-hand
side of (4.13).

LEMMA 4.6. If the Conditions A and B are satisfied then

) tzw(t)dt} ’ St (F"(@)} e .

(414)  lim ._}%4_ Sf: Gi(x, hydz = % {S+

LEMMA 4.7. If the Conditions A and B are satisfied then
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@19) tim o\ Hie, o= (2t a0 || w-omirad ay,

léjéli'[‘l: ’(::—_1,- M) k+1 .

LEMMA 4.8. If the Conditions A and B are satisfied then, for 1=
M) k+ 11

1 (%

416 lim " Vi bda=(i+o) | - W)y

-1

LEMMA 4.9. If the Conditions A and B are satisfied then

(4.17) 1390%S:" G(x, W)H,,(@, h)dz

1f-1

—lim L S“‘ Gz, Vi, h)d
h—0 h a;_q
.1 (b

~lim L S H,(z, bV, hyde=0
0 h by

1=5=5L+1, =1, -, k+1.

PROOF OF THEOREM 3.1. From Lemmas 4.1, 4.2 and 4.5 it follows
that, for h—0,

(4.18) MISE (h)=i St" w2(t)dt—-1— Si: fi(x)de+o(h)

2L 16 b+ H e, B+ Vite, Bds

tj—

The theorem then follows from the Lemmas 4.6, 4.7, 4.8 and 4.9 and
from the fact that

k41 byt k+1 Lt

2 > 4y 1—2 2 44=4 and E oL 1—2 d=a.

=1 j=1

PrROOF OF THEOREM 3.2. For the case where d=4=0, the proof
can be found in Rosenblatt [4] for the uniform kernel and in Epanech-
nikov [1] for the more general case of a kernel satisfying Condition A.
The proofs for the other two cases are analogous to these proofs of
Rosenblatt [4] and Epanechnikov [1].

Proor orF THEOREM 3.3. The kernel that minimizes
My(w)=lim n'~* MISE (K,n %)

when 98>0, is the kernel that minimizes

(4.19) S: wiE)dt S“’ (1—W())dy=2 S'” W)t S” 1—Wy)dy .
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By Schwartz’s inequality

420 [Twea| n-wardyz ([T wera- We)dt| =

1
64 ’

with equality if and only if

(4.21) W(t)=aw(t) 0<t< oo for some a>0

or, equivalently, if and only if

(4.22) w(t):%e"‘“' —0<t<oo, a>0.
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