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Summary

The problem is to estimate the mean of the normal distribution
under the situation where there is vague information that the mean
might be equal to zero. A minimax property of the preliminary test
estimator obtained by the use of AIC (Akaike Information Criterion)
procedure is proved under a loss function based on the Kullback-Leibler
information measure.

1. Introduction

Let a p-dimensional random variable X follow a normal distribu-
tion N, (0, I,), where I, is the p-dimensional identity matrix. We wish
to estimate the unknown parameter 6 in the situation where we have
vague information about # that it is equal to zero. We are concerned
with preliminary test estimation, i.e. # is estimated by one of two
estimators according as the hypothesis H;: 6=0 is rejected or accepted.
A familiar preliminary test estimator in this case is given by

0 if | X]|=e
X if [ X]|>e,

1.1) dy(X)=

where |-|| denotes a Euclidean norm. This type of estimator is in-
admissible under various standard loss functions for estimation, because
it is not smooth in X and so is neither a Bayes estimator nor its
limit. Seclove, Morris and Radhakrishnan [6] showed that it is not
minimax for p=3 under the squared error loss function. And for p=
1 and 2, since d(X)=X is admissible and its risk is constant under the
squared error loss function, preliminary test estimators (1.1) cannot be
minimax. However, in our opinion, the problem should be formulated
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as a hybrid problem of model selection and estimation. From this
point of view Meeden and Arnold [4] showed the admissibility of (1.1)
when p=1 under the loss function incorporating a cost of the model
complexity. Nagata [5] showed that the estimator (1.1) with ¢=+2p,
which is determined by AIC (Akaike Information Criterion) procedure
for model selection (see Hirano [1]), is admissible when p=1 and is in-
admissible when p=8 under another loss function which incorporates
model fitting and evaluation of an estimate. This loss function is based
on the Kullback-Leibler information measure and was introduced by
Inagaki [2].

In this paper we will show that when p=1, the estimator (1.1)
with ¢=+/2 is minimax under Inagaki’s loss function. In Section 2
we will describe the loss function, the formulation of the problem and
the result. A proof of the result will be given in Section 3.

2. Formulation of the problem and result

First we shall describe the loss function due to Inagaki [2] based
on the Kullback-Leibler information measure. Let X be a random
variable with p.d.f. (probability density function) f(x:0) € F={f(x: 6);
0 € 8}, where 6 is a parameter space. Suppose that F,={f(x:{);{€6,}
is a model for & and 8, a parameter space indexed by 7, and that {,(6)
is defined by the following equation:

@.1) | log {£(e: 0)/£,(&: C(ON)} Fla: O)d
: =min | log {f(a: 0)/,(w: O}/ @2 0)da .
Inagaki’s [2] loss function has the following form

(2.2) L((k,d), 0, x)=log {f(x: 6)/fi(x: {(0))}
+§ log {£(¥: Cu(0)/f:w: C@)} Fulw: C(0))dy ,

where k(X), d(X) and {,(d(X)) are estimators of the index 7, the un-
known parameter 6 and (,(6), respectively. He introduced the first
term, the log-likelihood ratio, as a smooth loss for the model fitting
and the second term as a loss incurred by an estimate. It is notice-
able that this loss function (2.2) is not always nonnegative, but the
first term is decomposed into the sum of the following two parts, J,
and J,, J, being common to all ¥y and J; nonnegative:

Ju(0)=log {f(x: 6)/f'(=: 6)}

(2.3)
Jik, 0)=log {f*(=z: 0)fi(x: C(6))} ,
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where fx:60)=sup f,(x:{,(0)). The second term is, of cource, non-
T

negative.

Now, let X follow a one-dimensional normal distribution N(4, 1)
with p.d.f. f(x:6). We consider two models, F,={f(x:0)} and &F,=
{f(x:0); 0 €(—o0, 0)}. In this problem Hirano [1] proposed the fol-
lowing preliminary test estimator by using AIC procedure,

0 if | X|=vV?2

2.4 don
&4 (){X if | X|>v2.

This means that the model &, is selected when |X|<+/2, while &, is
selected and the unknown parameter ¢ is estimated as X when |X|>
+/2. Inagaki’s loss function (2.2) becomes

{x*—(x—6)%}/2 if k=0

(2.5) L((k, d), 6, x):{
(d—0)/2 if k=1.

The upper formula in (2.5) denotes a loss accompanied with model fit-
ting and implies d=0 in (2.2), whereas the lower formula is derived
from the second term of (2.2). Under this formulation of the problem,
we obtain the following result.

THEOREM. If the random variable X follows N(0, 1), then the esti-
mator (2.4) 18 minimax under the loss function (2.5).

COROLLARY. Under the same condition of theorem, d(X)=X ts also
minimax but is inadmissible.

A proof of the theorem will be given in the next section.

3. Proof of the theorem

In order to prove the theorem we need the following well known
lemma, which is stated without proof. (See Lehmann [3], Theorem 2.2
in page 256.)

LEMMA 1. Suppose that there exists a class {x.} of distributions
such that the Bayes risk r(r,d,) of the Bayes solution d. of 0 w.r.t. =
converges to some constant r as v tends to infinity. If the risk, R(4, d,),
of d, satisfies that R(0, d))<r for all 6, then d, i3 a minimax estimator
of 6.

To prove the theorem we can use {N(0, 7%, r€(0, )} for {r.}.
The Bayes solution of # w.r.t. this class is given by
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0 if | X|=+ 2/(2—a(z))

3.1) d.(X)= {
an)X  if | X|>V2C—a(r) ,

where a(r)=7%(1+7%). See Nagata [5] for this derivation. Noting
that the posterior distribution of 6 given X is N(a(z)X, a(z)) and that
the marginal distribution of X is N(0, 1+7%), the risk of d, is found
to be

3.2) RO, do)=1/2+(1/2) S; (#—2(x—0)) f(w: O)de ,
and the Bayes risk of d, is

v2/(2—a(r))

(3.3)  r(r, d)=a(r)2+(1/2) S {*(2a(r) — a(r)) —2a(x)} f(x)de ,

~v'2/(2~a(r))

where f.(x) is the p.d.f. of N(0, 1+7%). Now we prove the following
LEMMA 2. 7(z,d.) converges to 1/2 as r — oo.

PROOF. Lemma 2 is a simple consequence of the facts that a(z)
—1 as 7 — oo and that

(3.4) |the second term of (3.3)]

< K Sﬁ |*(2a(z) — a(c)’) — 2a(c) | daz
=W ) ’
where K is a positive constant. Note that the right-hand-side of (3.4)
clearly converges to zero.
For the proof of the theorem we have only to show that the
second term of the right-hand-side of (3.2) is non-positive. Putting

(3.5) 00={"_(@'~2—0} exp (~@—0)/2dn,

we shall prove the next lemma.
LEMMA 3. It holds that for all 6 € (— oo, o),
(3.6) 9(0)=<0.

PROOF. Since we can easily show that g(—@)=g(d), we may con-
fine ourselves to the case when 6 ¢[0, o). Furthermore, for 6 ¢ (v 2
+1, o) the quadratic function of the integrand in (3.5) is always nega-
tive in the domain of integration (—+'2,+2). Hence we have only
to prove (3.6) for 6 ¢[0, 42 +1]. Now ecarrying out the integral (3.5)
we obtain
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(3.7 9(6)=(2Z —36) exp {—(¥2 —0)}/2} + (v 2 +30) exp {—(v 2 +06)/2}
+(0—1) Sf;’_ exp (—a%2)ds .

We note that g(0)= —SJi_ x? exp (—2*/2)dx<0 from (3.5) and that g(1)=

exp (—3/2){(¥2 —3) exp v/ 2 +(vV 2 +8) exp (—v2)} <0 from (3.7). We
shall separate following two cases.

Case 1 when 0 €[0,1). We shall show that g,(6)=g(6)/(1—6%=0 for
0 €[0,1). We have

88 00)=Y2- exp(—(/Z-0p/2}+ Y2 oxp (—-(VE+0)2)

e y2)d
—S_ﬁ_o exp (—a*2)dx .
Differentiating (3.8) and simplifying, we obtain,

(3.9) giO)=AO){(—v2 —20+2V 2 6*—06")
+(—v 2 +20+2v/26°+6% exp (—2vV 20)},

where A(6)=20exp {—(¥ 2 —0)}/2}/(1—6%* (>0). Clearly for 6¢€[0,1/
V21, 9(6)<0. Since for 6¢€[1/4/2,1) the expression in the second
parentheses in the bracket of (3.9) is positive and exp(— —2/20)<
exp (—2)<1/5, it follows

(8.10) 91(0) < (A(0)/5)g:(0) ,

where g,(0)=—6+v 2 —80+12v/26*—4¢*. Examining the behavior of
g(0) by differentiating, we can see that it increases in [1/V2,1).
Since gy(1)=6v 2 —12<0, gy(f) is negative in [1/¥'2,1). Hence from
(3.10), ¢/()<0 for 6 €[1/¥/2,1). Now as g{(6)<0 for 6¢€[0,1), g,(0) is
decreasing. Therefore noting g¢,(0)=g¢(0)<0, we conclude that g,(6)<0
for 6 €[0, 1).

Case 2 when 6 € (1, v/ 2 +1]. We shall show that g,(6)=g(6)/(6*—1)
<0 for 6 ¢(1,¥2+1]. Since gy(6)=—g:(d), similarly to (3.9) we obtain,

(3.11) gi(0)=A){(V'2 +20—24 2 6+ 6%
+(V 2 —20—2v/26°—06% exp (—24/ 2 6)} .

Since for 6 € (1, ¥ 2 +1] the second parentheses in the bracket of (3.11)
is negative and exp (—2+ 2 6)<exp(—2v 2)<1/16, it follows

(3.12) gi(0)>(A(6)/16)9.0) ,
where ¢,(0)=17v 2 +300—344/2 6*+156°. Examining the behavior of
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g40), we can see that it has a local maximum at a=(34v2 —+/ 962 /(45
and a local minimum at 8=(34v2 +4962)/45. Since a<1<p<V 2 +1
and g¢,8)>0, g,0) is positive for 6¢ (1,42 +1]. Hence from (3.12),
gi(6)>0 for 6 € (1, ¥ 2 +1], which implies that g,(6) is increasing. There-
fore noting gy(v' 2 +1)=g(v/ 2 +1)/(2+2v 2)<0 (9(v'2 +1) is negative
recalling that the quadratic function of the integrand in (3.5) is always
negative in the domain of integration (—+/2, ¥ 2).), we conclude that
g5(0)<0 for 6 e(1, ¥v2 +1]. Q.E.D.

Our theorem immediately follows from Lemmas 1, 2 and 3. For
the multivariate case (p=2), the theorem would hold if Lemma 3 could

be generalized to the multivariate version of (3.5), i.e. g(0)=S“ 2
x| |“<2p

{z'x—2(x—0)' (x—06)} exp { — (x—0)' (x—6)/2}dx with (pXx1)-vectors, x and
0, which remains still as an open problem.

Corollary is obtained clearly by the facts that the risk of d(X)=
X is 1/2 for all ¢ and that it is equal to or greater than the risk of
dy, (3.2), from Lemma 3.
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