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Summary

The problem of selecting a subpopulation from a given population
IT is to be, on the basis of measurements of members of 7, achieved
by choosing those members of I who satisfy the standards determined
by a given selection criterion and rejecting those who do not.

Since the optimum selection depends on the unknown parameter of
the probability distribution of I7, it is here considered how to construct
a decision function from the space of subsidiary sample having infor-
mation on 4 to the space of selections. Thus the existence of Bayes
and minimax decision functions under the constraint defined by the
selection criterion is proved. A necessary and sufficient condition for
a decision function satisfying the constraint to be a Bayes decision
function is also obtained.

1. Introduction

The problem of selecting a subpopulation from a given population
have been studied by Birnbaum and Chapman [1], Cochran [3], Raj
[10], and the others. A common feature in the selection problem treat-
ed in their works may be described in the following way. Consider a
population /7 whose members may be identified by realized values of
a random variable (z, ) distributed according to a probability distribu-
tion P, with an unknown parameter 6 (wherein the form of P, is known).
Values of y characterize members of the population I7 more suitably
than those of = but they are to appear in the future (and cannot be
measured at the time of selection). On the other hand, each value of
the variable z is observable at the time of selection and distributed
according to a known marginal distribution. Thus selecting a subpop-
ulation II’ of individuals from I7 must indirectly be achieved on the
basis of observed values of # under a eriterion given in connection with
y and the parameter 4. This situation may be seen, for instance, in
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personal selection, choice of a sire for breeding, and testing of materials.
In personal selection, each value of x represents an applicant’s score in
an admission test for an establishment and each value of y is to appear
as his achievement score after his entrance to the establishment. To
get a feeling of this matter, we present here the selection criterion
introduced by Cochran [3]. Let f,(x, %) be the joint frequency function
of I with its marginal frequency g(x) assumed to be known, and «
some constant satisfying a condition 0<a<1. Let ¢ be a measurable
function such that 0<¢(x)<1. We shall call such a function ¢ a selec-
tion (see [1]). The problem is to select a subpopulation 77’ with a den-
sity (¢/e)f which maximizes

(L.1) | v6@)s (. Wfedady

under the constraint

(1.2) | @i wdndy (= o)g@dz) =

Thus, this problem requires us to find a selection such that the mean
value of ¥ becomes maximum in /I’ selected under the constraint that
the size of II’ is fixed to the given fraction @. We shall call such a
selection optimum (see [1]). In his paper, “construction” of a prefer-
able selection as a substitute for the optimum selection is also consid-
ered on the basis of a subsidiary sample, since the optimum selection
depends on the unknown parameter 6.

In the present paper we consider a statistical decision theory of
selections on the basis of a supplementary information on the joint prob-
ability distribution P, of 2 and y. We regard the term “ construction”
introduced by Cochran as a decision function from the space of these
sample to the space of selections. In his paper it is insisted that any
rule for constructing a best sample index can not be found (see Section
9 in [3]). This statement shows that it is difficult to find the optimality
of each “construction” of a selection. On the contrary, our method
provides a solution of the problem as to how we establish the optimal-
ities of these decision functions. In this context our purpose is to ob-
tain a necessary and sufficient condition for a decision function under
the constraint to be a Bayes decision function.

We show, in Section 2, a fairly general formulation in order to
discuss simultaneously the selection criteria introduced by the several
authors as stated at the beginning. Each of the selection criteria is
there obtained by specifying the form of a finite sequence {¢(y, 6);
1=0,1,---, m} given in connection with a constraint and an objective
function (see (2.2) and (2.3)). In Section 3 we demonstrate the exist-
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ence of Bayes and minimax decision functions satisfying the constraint
(in Theorem 3.1 and Theorem 3.3). We further present a necessary
and sufficient condition for a decision function to be such a Bayes de-
cision function (in Theorem 8.2), using a Lagrange multiplier method
in topological linear spaces (see [5]).

2. A decision theoretic approach to the construction problem of
selections

Let (¥ X4, AXB) and (8, 4) be measurable spaces standing for a
sample space and a parameter space, respectively. Let P={P,: 0 €8}
be a family of probability distributions on (XX, AX B) each of which
has a known common marginal distribution P* on (X, ) (not depend-
ing on 6). Let P denote the marginal distribution of P, on (¥, 3).
Let R denote the real line. Let @ be the family of all ./-measurable
functions ¢ on X such that 0=¢(x)<1 for every x € X. A member
of @ is called a selection and @ is called the space of selections. The
probability distribution of the subpopulation II’ selected by a selection

¢ is defined as [¢(x)/e]P,, where azg x,qs(x)P’(dx). Let ¢; (¢=0,1,---,

m) be given real-valued functions on 4 x@ which are B x 4-measurable
and P,-integrable for each 6 €. Let

@D 0 9=\, o U P, 1) ,
@, ¢)c6x0, (1=0,1,---,m).

For given numbers a,- -, @, and for each fixed 6 ¢ &, we shall denote
by C, the constraint imposed on ¢ € ® which is expressed as

2.2) (0, §)<e; (or =a) (i=1,--+,m).

Further, we shall, for each 4, denote by ®(C;) the subset of all selec-
tions satisfying the constraint C,. We assume that @(C,) is not empty.
Then, under the constraint C, the minimization of the objective func-
tion defined by

23) 20, 8)= | 4., oy #18, W) P, )

comes into question. Hence we consider:

DEFINITION 2.1. A selection ¢, will be called optimum, if ¢, satis-
fies, for each 60¢®, the constraint C, and the equality z,(0, ¢)=inf
{ro(0, ¢)|¢p € O(C;)}. We shall arbitrarily take one of these optimum
selections and denote it by ¢} as a particular version.
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We here consider the optimum selection ¢ as a function of (x, 0)
which becomes a selection whenever 6 is fixed. Though the existence
of an optimum selection can be proved under some regularity conditions
(see [1], [3], [10] and [9] as specified cases), we do not discuss it for
brevity. We shall only assume in the next section that there exists
such an X A-measurable optimum selection ¢j.

We next consider the construction problem of selection when 6 is
unknown. We take the mth product space (X XJ)" associated with
the product (X B)* as the space of subsidiary samples s distributed
independently of x and denote their combination by (S, U). Let P} de-
note the nth product of P, which stands for the probability distribu-
tion of s when 6 is “true”. Let E, denote the expectation with re-

spect to P;. Let ® be the space of all X% -measurable functions é
on xS such that 0<d(x, s)<1. Further, let #(C) be the subset of
all ¢ satisfying the constraint C defined by either

(2.4) E 70, $)Sai+Ba(0)  (1=1,---,m)
or
(2-4') E,; (6, $)=ai+ﬁin(0) (7;=1, cee,m)

for all 6 € @ where each B, is a A-measurable real-valued function on
@ with the property that B, (6)—0 (n—oo) for every 4. Here E,7(9,

$) is, for every 0 €8 and for every be &, expressed as

@5 Bt D=\, |, o 90 08(@, )PAd(z, 4)PIES)
(6=0,1,---,m).

We assume that $(C) is not empty.

Each element (-, s) of & is regarded as a (non-randomized) deci-
sion function from S to @ standing for the construction of a selection
when a sample s is given. Here, since L is convex-linear in ¢ as is
seen in (2.6), it is sufficient for this formulation only to consider non-
randomized decision functions (see [4]). On the other hand, @ can be
regarded as a decision space. The loss function L of ¢ €@ is defined
by

(2.6) L@, ¢)= S o xay P O(@)Pd(z, ¥))
- Squ; ooy, 0)¢F (@) Pd(x, ), 0€B.

Hence the risk function r of ¢ ¢ @ is, under (2.5), defined as
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70, $)=E,L(@0,4), 0¢8b.

Example 2.1. Let X=R? Y=R and 6 be an open set of R*.
Let A, B and 4 be their Borel s-algebras, respectively. As m=1, let
&y, 0)=1 and ¢(y, 0)= —y/ay, where 0<a;<<1. Then, we have the cri-
terion expressed by (1.1) and (1.2) in the previous section: Under the
constraint

@7) 70, 9)=| . @) P (o) =01

consider how the objective function

2.8) w0, 9)=—|

$(x)
ExY yTpo(d(xr Y))

is minimized.

If a sample s€ S is given, then for a decision function § satisfying
E,7,(0, §)=a, the risk function (8, §)=E, [z4(8, §)—ru(0, ¢¥)] becomes a
measurement examining how ¢ is good. In other words, we set 8,.(0)
=0 in this case.

Example 2.2. Let X=R*, Y=QR, and 6 be an open set of R’
Let A, B and 4 be their Borel s-algebras, respectively. Here 6=(4,,

0w), where 0u,=(0---, 0,,) and 6, stands for the mean S g y Py (dy).

As m=2, let ¢\(y, )=1, ¢y(y, )=(y—0,)a; and ¢\, y)=(y—0,—as)*ay,
where 0<a;<1.

Then we have a selection criterion: Under the constraint defined
by

70, 9= . #(@) Pdm)=a,,
(2.9)

w0, 9= 000 22 Plz, Y=,

a

consider how the objective function
(2.10) w0 9=\ ., o WOt 22 Pd(a, )
Xxqy a,
is minimized.
This problem requires us to find a selection such that the variance
of y becomes minimum in the subpopulation /I’ selected under the con-
straint that the size of II’ is fixed to the fraction «, and the difference

between the mean of y in /I’ and the mean of ¥ in the original pop-
ulation 7 is fixed to the given number «;.
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3. On Bayes and minimax decision functions

We first consider Bayes decision functions under the following con-
ditions:
(Al) Each value P(FE), Ee€ AX B, is A-measurable in 6.
(A2) There exists a regular conditional probability distribution P#'* on
(Y, B) given x such that for every 6 and for every P,-integrable
real-valued function f on XX the equality

g ey @ P )=\ .\, 7@, 9)Prdy|)P(dn)

holds and P}*(B|x) is, for each fixed B, X A-measurable.
Using (A2), we write

3.1) 7@, 0):8@ oy, OPIdy|2), (2, 0) € XxO
(=0,1,---,m).
Evidently, each ¢, is 1 X A-measurable. Hence, r; can be expressed as

B2 w0 9=\, F@ OB@PR)  (i=0,1,0,m).

Let ¢ be a prior probability distribution on (@, 4) with the property

that for each 4, ¢, is P®xé&-integrable and B,, is &-integrable. Then,
the Bayes risk function 7(¢, #) of $ is expressed as

3.3) e, §)= S 70, $)&(dh)
={, {5 | 8@, 0¥z, 9P<(d)Pr @syecdo)
|, | 9o, O1()P(d0)e(0) -
Since the second term on the third expression in (3.3) is a constant,

it is sufficient for Bayes decision functions to consider minimizing the
first term independently of the second term. Hence, we write

Gy #ed=| [ |, P 0de, 9P EnPidsas) .

We here define, under (A1), the probability distribution P? on (S X
6, UxA) by

(3.5) PrE)= Sa S (APid9)E@0),  EeUxd,

where 2, denotes the indicator function of Ee U x 4. Let P* be the
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marginal probability distribution on (S, U) generated by P?. We also
assume :

(A3) For Pr there exists a regular posterior probability distribution

&(-|s) on (8, 4) given s such that for every Pr-integrable real-
valued function f on Sx6

L5676 OP2d(s, )= | 16 0)F@019)Pds)
=, |5 76 oPraso) .

Since each ¢ €d is JAxXU-measurable, (3.4) is, under (Al), (A2) and
(A3), rewritten as

(3.4) #6, D)=, s o 96, 5)P(dx) P(ds) ,
where
(3.6) Fo(@, )= Se I, O)FdB|s), seS.

To confirm the existence of a Bayes decision function, we further
assume the following conditions.
(A4) Each of the s-algebras ./ and & has a countable number of gen-
erators.
(A5) The parameter space @ can be topologized by a topology <(8) for
which the following properties hold :
1° The first axiom of countability holds.
2° The family 4 contains the Borel s-algebra.
3° The measure & is regular and ¢(E)>0 for every non-void
open set E of 6.
4° For each 0 ¢ 6

(3.7 sup |P,(E)—P(E)|—0  (6'—0).
EeAx3B

5° For each ¢ and for each fixed ¥, ¢y, #) is continuous in 4.
Further, for each 6 ¢ @ there exists a neighborhood V(6) of
6 and a positive-valued function K, on ¢ which satisfies

(3.8) loy, 0)|=Kfy) (1=0,1---,m)
for all (y, 6') € Y X V() and is P}-integrable uniformly in 6’ €
V(6) in the sense that

3.9) lim SK . ) PHdy)=0

Cc—00

uniformly in ¢’ € V(6).
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6° For each %, B, is continuous in 4.

LEMMA 3.1. Under the conditions (A2) and 1°, 4° and 5° of (A5),

each E, 7,0, $) (¢=0,1,---, m) is, for each fixed § € ®, continuous in 0
as a real-valued function of 6.

PrOOF. We first show that each z,(0, #) is, for each fixed se S,
continuous in §. Because of (Ab) 1°, it is sufficient for the proof to
show that for each s, for each 6, and for each sequence {6,} converg-
ing to 6, the sequences {r,(6:, ¢)} converge to z,(f, ¢) as k—co. Now
let s be fixed. There exists a probability measure @ on (¥, B) such
that for each 0, (k=0,1,2,-.-) P} is dominated by Q (see Appendix in
[7]). We denote by dP,/dQ (k=0,1,2,---) the Radon-Nikodym deriv-
ative of P} with respect to @. From (3.7) it follows that

(3.10) sup |P¥B)—P¥(B)|—0  (6'—6).
Be 3

On the other hand, we have by (A5) 5° and the Lebesgue convergence
theorem (see [11], for instance) that for each <

(3.1 [ 1940, 00—, BIPYAN 0 (6—c0).

Further, we have by (3.10) and (A5) 5° that for each 7 and for each
e>0 there exists a constant ¢>0 such that

612 |, ot 0]| L L2 |qay)

ST

<[, K@PL+ | K@)Pydy)

)
of | 4 4P
dQ  dQ

holds for large k. Hence, it follows from (3.11) and (8.12) that
(3.13)  |r6x $)—7i00, P
= || ey @45 08, 9P, (A, 9)

[ g 9402 808, P, (A5, )|

Sm(y,o,,)IldP* 4% | qay)

Q(dy)

Qdy)<e

+(o/ 16w, 00— 9w, 00 Padn) >0 (ko).
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Thus, (0, ¢) is, for each fixed s ¢S, continuous in 4.
We here notice that the convergence shown in (3.13) is uniform in
s€S. Also we have by (3.7) that

sup |PXD)—P;(D)|—0  (6'—0).
DeU

Therefore, by the similar method to deriving (3.13) we can also have
that for each §ed

Es, (01 $) > Eg 700, )  (k—o0).
Thus this result completes the proof of Lemma 3.1.

DEFINITION 3.1. Let (2, 4) be a measurable space associated with
a o-finite measure x. Let B(Z) (for short, B) be the real linear space
of all p-essentially bounded g-measurable real-valued functions on Z,
and let L(Z) (for short, L) be that of all p-integrable real-valued func-
tions on &£. We denote by (B, L) and J(L, B) that weak topologies
(see [2] or [6] for the general definition) on B(Z) and L(Z) which are
both determined by the natural paring

(314) fr0)=\, f@o@udz), feB geL.

In other words, (B, L) (or I(L, B)) is the weakest topology (see [2]
for its existence) among topologies on B(Z) (or L(Z)) each of which
makes, for every g e L(Z) (or f € B(Z)), the mapping (-, g) from B(Z)
(or (f, -> from L(Z)) to R continuous.

We now pair the real linear spaces CV/,=B(X X S) and V,=L(X¥
X&) by the bilinear functional defined in (3.14) with respect to the

probability measure P=x P*. We assign the topology I(CV,, CV,) to CV/,.
Let §={g: gV, 0=d(x, s)<1 for P=x P —a.e.(z, s)}.

LEMMA 3.2. Assume the conditions 2°, 3° and 4° of (A5). If ¢,
and §, are two versions of the same member of @, that is, §(x, 8)=d(z,
s) for P*xPr—a.e. (z, 8), then for every 0 €6

i(x, 8)=gy(x,8)  for P*XPr—a.e.(x,8).

PrOOF. Let N={(z, s)|di(x, s)# &y, 8)}. Suppose that there exists
some 6, € 8 such that (P*XP;)(N)>0. Then it follows from (3.7) that
there exists a neighborhood V(6,) of 6, such that for every 4 ¢ V(4,),
(P*x P})(N)>0. Hence, as 2° and 4° of (A5) imply the 4-measurability
of (P*X PJ)(N), it follows from (3.5) and (A5) 2° and 3° that

(P*x P")(N)= g S Twwo(P* X P7) (d(2, 8))€(d0)

xXxS
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> Sm (PP PR (N>,

where Xy., denotes the indicator function of the set Nx#, and the
proof is complete.

By Lemma 3.2 each E,z,4, ¢) (=0, 1,---, m) is well-defined for all
$ € ® when ¢ is replaced by ¢ in (2.5). Hence we denote by $(C) the
set {$l$€¢7’ Ey 70, g)Sa;+Bi(0) (or =a;+B:i(0)) for all 6€6 (i=1,2,
e, m)}.

As }We have seen the A-measurability of PA(E), E € U, in the proof
of Lemma 3.2, we here notice that (Al) follows from (A5) 2° and 4°.
Therefore, if (A5) is assumed, then we can dispense with (Al). We
now have:

THEOREM 3.1. Under the conditions stated in (A2) through (AS5),
there exists a Bayes decision function $. € 9(C) minimizing #&, §) under
the constraint C defined by (2.4) or (2.4).

PROOF. From Lemma 3.2 it follows that for each @ ¢ & there ex-
ists a $€ed such that E,7.0, §)=FE,7(0, ) and #@, §)=#, $) hold,
where #(&, §) is defined by (3.4) if in the expression ¢ is replaced by
$. Therefore, it is sufficient for the proof to consider @ as a substitute
for & in the formulation of the problem. Also, let &(C)={¢ 1§ €0,
E, 70, ¢)Sa;+ Bin(0) (or =a;+ B (0)) for £—a.a.d (1=1,2,---, m)}. Clear-
ly, 5(@’)(:«3(6’). We show that its converse also holds. For each g¢
&(C) let O(F)=1{6|0€O, Eyr (0, §)>a;+Bu(0) (or #a+B.(0) (i=1,2,
--+,m)}. Then, it follows from (A5) 6° and Lemma 3.1 that 6(¢) is
open with respect to I(@). Therefore, (A5) 2° and 3° and the defini-
tion of &(C) imply that 6(§) is empty, and hence &(C)cP(C) as well.
Thus, we can consider the minimization of #(§, §) under the constraint
C instead of C.

_ We now regard each E.z(-, é) (i=1,2,..--,m) as a mapping from
@ to L(O, A) with respect to the probability measure £&. The conditions
(A2), (A3) and (A5) imply that for every h;e B(@) with respect to ¢

|, @ o0, gre@n=\ . [ n05, 0E@s19)]|d@ 9P(anPds)
holds and Se h(0)@(x, 0)€(d6|s) is contained in CV, as a function of (x, s).

Hence, E.z,(-, §) is a continuous mapping. Since (A4) implies that o
is sequentially compact (see Appendix in [7]), it follows from the con-
tinuity of E.z(-, #) and the closedness of the set {k|h € B(@), h(6)<

a;+Bin(0) (or =a;+Bi(0)) for £—a.e.8} that &(C) is also sequentially
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compact.
Similarly, we can see that #(¢, -) is continuous when we regard it

as a mapping from @ to R. Thus, there exists a #: € #(C) minimizing
#(&, ), which gives the assertion of this theorem.

To obtain a necessary and sufficient condition for a decision func-
tion to be a Bayes decision function, we apply Theorem 2 [5] to our
problem. For convenience, we here present this theorem as the fol-
lowing lemma (the notions stated there will be defined immediately
after the description of the lemma):

LEMMA 3.3 (Isii [6]). Let ¥ be a monempty convex set of a real
linear space, and W be a locally convex limear topological space preor-
dered by a closed convex cone C. Let f be a concave mapping from ¥
to W satisfying the conditions that
1°  f becomes C-upper semicontinuous when X 18 equipped with some

topology T (X) and
2° there exists a meighborhood V of the origin of I such that the closure

of the set f~'(V+C) is compact with respect to T ().
Let g be a real-valued upper semicontimuous concave functional on X
with respect to I(X).

If the set {z|f(x) € C} is not empty, then the following proposi-
tions hold: 1)

(8.15)  sup{g(x)[e e X, f(x) e C}= inf sup {g(x)+w*(f(x))},
w*eCtreX

where C* is the conjugate cone of C.
2) A point =z, satisfying f(wx,) € C attains the supremum of the left-
hand side of (3.15), if and only if there exists a sequence {w}} of mem-
bers w} (1=1,2,.-.) of C* satisfying

w¥(f(2,))—0,
{[g(@o) +wi¥(f ()] — xsggc [9(x)+wH(f(x))]}—0,

as l—oo.

We here define the notions used in Lemma 3.3 in the following
way :

1) C induces a preordering relation < on 9¥ such that w,<w, if and
only if w,—w,eC. A preordering on a space 9 is a binary rela-
tion < on 9 satisfying (a) u<wu for all w €9, (b) u<v and v<w
imply u<Xw for u,v, we 9. A preordering induced by a cone C
is a partial ordering if and only if CN(—C)={0}.

2) A mapping f from ¥ to 9 is said to be concave with respect to
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the preorder induced by C, if #,, ;€ X and 0<2A<1 imply Af(x)+

A=) f ()= f(az+ (1 —2),).

3) In 1°, f is called C-upper semicontinuous if for each open set W
of 9, f\(W—C) is an open set of . W—C denotes the set
{w—clweW and ceC}.

We now consider applying Lemma 3.3 to obtaining a necessary and
sufficient condition for ¢, € @(C’) to be a Bayes decision function. Under
the same formulation as that in the proof of Theorem 3.1, we can also
replace & and &(C) by @ and &(C) and regard a;+B(-)—E.z(-, §) and
#(¢, ) as a continuous convex-linear mapping from ® to L) and a
continuous convex-linear mapping from & to R, respectively. Further,
since @ is sequentially compact, the Eberlein-Smulian theorem (see [6],
pp. 810-315 [6]) implies that & is relatively compact with respect to the
topology < (CVy, V). 3

We first consider the case where C is defined by E,7,(0, §)<a;+
Bin(6) for £—a.a.d. In the mth product space L™(8), the set K™ de-
fined by {(ky,-- -, kn)|k: € L(B), k(0)=0 for é—a.e.f (i=1,---,m)} is a
closed convex cone. Therefore, replacing X, W, C, f and g by &,
L, xm, (al+.31n(')_E- 7y(+s &)’ Ty am+ﬁmn(')_E- Tm(*s ‘;)) and —7(¢, 6)1
we can see that the conditions assumed in Lemma 3.3 are all satisfied.

Let L™ and K™ denote the conjugate space of the product space
of L™(®) and the conjugate cone of A™ with respect to the product
topology of L™, respectively. For each k* € ™ there exists a mem-
ber (hy, by, -+, h,,) € B such that k,(0)=0 for é—a.e.d (i=1,---,m) and

(8.16) k*(ky, - - -, km)=§ Se k{(0)k(6)&(d0)
for every (k,---,k,) € L™. Hence, denoting for each ¢

R, 5)=|, (O, 0F@0]5) ,
(3.17)

B = h(0)latB(0)1E(d0)

we have by the conditions (A2), (A3) and (A5) and (3.17) that
(3'18) k*(al+ﬂln(0)—E0 71(0’ $)! ] am+ﬂmn(0)—E0 Tm(ai 9;))
== | O\, ;7. 0, 9P Pids)E(d0)

+31, (et Bu@) ()

=3 SxXS Ue h(8)&(x, 6)E(d6| s)]
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X §(x, s)P”(dx)P_"(ds)-i-é A
= =3 [ s P, 0w, PP + 53T

Further, (3.15) is, in this case, expressed as
(8.19)  inf[#&, §); 8 H(C)]
=sup H xS {{/x;o(w, s)+§ hO(x, s)} " P=(dx)P(ds)

— VR (b, -, ha) € B™, h(6)20
for ¢—a.e.l (1=1,2,-.-, m)] )

which stands for the expression of the Bayes risk. Here, the notation
{t(x, s)}~ is defined to be i(z, s) or 0 according to ¢(zx, 8)<0 or t(z, 8)>
0 for P=x Pr—a.e.(x, s).

In the case where C is defined by E, (0, §)=a;+ B:.(f) for £—a.a. 0,
we define the cone A™ as the set {0} consisting of the sole point, the
origin of L™ Then, the constraint “h,(6)=0 for £—a.e.f” stated in
(3.16) and (3.19) is eliminated.

Finally we notice that for each function &, ¢ B(6) there exists a
bounded A4-measurable function %} on @ such that k{(6)=h.(9) for £—a.e. 8.

Therefore, we can use k) instead of %, in case of defining A$® and h®
in (8.17) for the expression of the necessary and sufficient condition.
Under this remark, we prepare the following definition for the purpose.

For sequences {h} (i=1,2,--+,m) of _AXxU-measurable and P*x P
integrable real-valued function A% (I=1,2,--:) on XS, let ¢, be a
member of & satisfying

1 if Gu(®, 8)+3 kP, <0,
(3.20) Bu(x, 8)= )
0 if g, 8)+ 3 hP(x, 8)>0
i=1

for P*x P*—a.e. (%, 8). Then the following main theorem is straight-
forwardly obtained from the above-mentioned discussion.

THEOREM 3.2. Assume the same conditions as stated im Theorem
3.1. Then, . € () is a Bayes decision function minimizing #&, @)
in the case where C is defined by (2.4'), if and only if for each i (i=
1,2,--., m) there exist a sequence {h,} of bounded A-measurable func-
tions h, om O satisfying
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g s [ 270 9)| 8o, )P(do)Pr(ds) ~ 31 ip—0

#e 60+ g o [S A0, ) |6z, 9)P(dr)Pr(ds)
- S Fxs [‘7’0(93, 8)+ § hP(, s)] $u(@, 8)P*(dzx)P*(ds)—0 ,
as l— oo, where each kY and each K are defined by

B9@, )= hu(0)F (2, 0)E0]5)
(3.21)
Bp=| (et 8O} hu(0)2(d0)
(1=1,2,---,m), (I=1,2,--.),
and each §, is the member of & defined by (3.20).

Theorem 3.2 also holds true if the constraint (2.4') is replaced by
(2.4) and if the following condition is added to the “if and only if”
part: For each 7 and for each I, h,(f)=0 for £—a.e.f.

From Theorem 3.2 it directly follows that:

COROLLARY 3.2. Assume the same conditions as stated in Theorem
3.1. Then, an eement §, ¢ @(é) 18 a Bayes decision function in the case

where C is defined by (2.4'), if there exist bounded A-measurable func-
tions h, on @ such that $. satisfies

1 if g, s)+ ﬁ A2, $)<0 ,
(3.22) bz, )= i
0 if g, s)+ b3 rO(2, 8)>0

for P*x P*—a.e.(x, 8) and

m

623 2. @ b 9Pdn)Pds)- 3P =0,

where h® and h® are defined by

B, 9= h(0)dx, 0)Ed0]5)
(3.24)
A = Se [+ Bu(0)]hi(0)E(d0) (i=1,2,- -, m).

In the case where the constraint € is defined by (2.4), the same
assertion as is aformentioned holds, if the following condition is added
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to the “if” part, that is, the condition of the functions &, : k,(0)=0
for é—a.e.f (1=1,2,---, m).

We next consider minimax decision functions. The condition (A5)
is, in this case, replaced by:
(A5') Some distance can be assigned to @ such that 6 becomes a sep-
arable metric space satisfying the conditions 2°, 4° and 5° mentioned
in (A5).

We obtain the following result by the same method as stated in

Theorem 5.1 [8], since E,r,(8, §) are, for each $, continuous in 4 as is
seen in Lemma 3.1.

THEOREM 3.3. Assume the conditions (A2), (A4) and (A5'). Let £
be the family of all prior probability distributions whose supports are
finite subsets of 6.

Then, the following properties hold :

1) inf supr(, )= inf sup 7§, f)=sup inf 7, §).

ged(C) 9¢6 ged(C) €8 £€5 ged(0)
2) If inf sup 7(0, §)<oo, then there exists a minimax decision func-
g;E(D(C) 0eb

tion @, € O(C) such that $, satisfies
(0, §)= inf sup (6, ) .
§ed(C) 0<8
3) Selecting a subfamily E' of & which consists of a countable number
of elements, $, can be expressed as a Bayes solution in the wide sense
relative to 5'.
Example 3.1. Let us consider Bayes decision functions under the

formulation in Example 2.1. Under the condition (A3), let &(- |s) be a
regular posterior probability distribution on (8, 4) given s with respect
to P~ A A

Considering the decision function $(x, s)=a;, we can see that 9(C)

is not empty. Further, since ¢,(x, §)=1 and ¢, does not depend on
z € X, (3.18) is, in this case, expressed as

(8.25) k*[a,—E,7,(6, $)]
=a. | @@ | 1O |, 180, 9P Prds)e(d0)
=a | noeEn-( ||, mOEas19)]

X §(x, 8)P*(dw)P(ds) ,
where h, € B(®) (I=1, 2,---). Therefore, writing

@2)  h@=a| noEdl,  W=a| woxd,
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we can reexpress (3.25) as

»_ 1

o S o x5 18, )P*(dx) P (ds) .

(3.27) k*[e,—E, (6, $)1=h

On the other hand, let 5 be the regression function of y on « defined
by

(3.28) e 0)=Sq, yPP(dy|z), 0¢H.

Then, (3.6) is, in this case, rewritten as

(3.29) oz, s)=:lS (@, 0)E(d0]8)= —L5(x, 5) ,
o L4 oy

where

(3.30) 7, 9= 7@ 0F@s]9) .

Thus, by (3.27) and (3.29) we can reexpress (3.19) as
(8.31) sup [—#(¢, §); $€O(C)]

=int [{. o2 [7(s, 5) RO P(d)P(ds)

oy

+h®: k€ B(@)] .

Here, the notation [t(x,s)]* is defined to be t(z,s) or 0 according to

=z, 8)=0 or t(z, s)<0 for P*x P —a.e.(x,s). Hence, considering (3.31)
into account, we obtain by Theorem 3.2 the following result. A nec-

cessary and sufficient condition for ¢, ¢ ﬁ(é’) to be a Bayes decision func-
tion is that there exists a sequence {k;} of bounded A-measurable func-
tions &, on 8 satisfying

)
a JXxS

k() 8)P*(da) Pr(ds)— R —0 ,
(3.32) 7} Sxxs [7(@, 5)—R$>(s)1e(x, 8)P=(dx)Pr(ds)

—’i" S o s (@ 8)—RE(8)]* P*(dz) P(ds)—0
as l—oo.

Example 3.2. In Example 3.1, let XXY=R*XR, 0p=(00, 0y, -,
8,) be a vector consisting of real numbers 6, and ¢; (i=1,- - -, q) some of
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q 2
which is not zero, P}'*(dy|x)=(1/v2r0) exp [(—1 [26%) (y—OO—ig 0iw‘> ]

dy with a positive number 6, and P® be a nonsingular normal distri-
bution N(0, %), where ¥=(g,;) is known.
The selection ¢ defined for every x by

1 if 6,+33 0.2 h(0),
i=1
(3.33) (@)= q
0 if 0.,—}—?:,“ 0.2, < h(0)

is optimum, where for every 4

(3.34) WO)=o(6)¢ " (1—a)+0, with a(6)=4/ >} o.,0.0,

i,J=1

and 7! denotes the inverse function of the normal distribution fune-
tion ¥ with the mean 0 and the variance 1. We here restrict the
parameter space ® to the one defined by 6=6,X80,, 6,={0|0w="(00,
01,00+, aq)y 0<a;<0,<b; (2=0,1,---,9)} and 02={0(2)'0<C<log 0p<d},
where a;, b;,, ¢ and d are given constants Also, let the prior distribu-
tions of 6, and log 6, be those as are locally independent and uniform
on 6, and 6,, that is, &,(df,)ocdfy, on 8, and &,(d6y)oc(1/0)d0; on 6,
respectively (see [12]). Using matrix notations, we obtain by [12] that
the joint posterior distribution of 6, and 6, is expressed by

(3.35) &(d(fey, Oery) | 8)ochS" exp [—#{(n—q—l)d%
[©)]

+Q(0(l)’ é(l)! X,X)}]d(ﬁ(l)’ 0(2)) ’ 0"'—"(0(1)1 0(2)) € 9 ’

and the marginal posterior distribution of 4, is

(3.36) £.(dfcy|8)oc[1+Q(Bcrs Oery X' X)/{(n—q—1)02}1 b ,
Ou, € 6,

where
Loay v
s=(X,y)= c
1 %y s - %gn Yn
éu):(X'X ) X'y, A?a)={(’!I—Xém)’(?/'—Xé(n)}/(n—q -1,
QO by, X' X)=(0y—0ep) - X' X+ (By—Bpy) -

According to Corollary 3.2, we here find a Bayes decision function
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P € @(C) for £€=¢,X&;,. Since the marginal posterior distribution of each
component 6,—f, with respect to & may be expressed in terms of a
univariate t-distribution with n—qg—1 degrees of freedom (see [12]), it
follows from Example 3.1 that in this case

A a4 A
(3-37) ;7'(46, 8)=0o+‘§ 0,;93‘
for every (x,s). Since 7 is bilinear in (1, %,---,2,) and (@, 8,,---,8,),

except a difference by P null function there uniquely exists a function
h(s) on S satisfying

(3.38) P(dx)=a,

S {z; 7(x,8)>1(8)}

for every s. In fact, it follows from (8.37) and (3.38) that &(s) can
be expressed as

(3.39) hs)=6T'(1—a)+0, with &(s)=+/ 31 04,
=1
for every s. Thus, in this case, the decision function ¢, defined by

1 3 0emziEerti-a),
(8.40) i, 8)= .
0 if géi(s)xt<&(s)w'"(l—al) , (%, 8) e XXS,

is a Bayes decision function contained in &(C).

Example 3.3. In Example 2.2, let X XY=RX R, 04=0;, P} (dy|x)

=71§_E— exp [——;—(y—ﬂl—ﬁzx)z]dy, and P*(dx)= Jlé; exp {——‘g—]dx. Fur-
ther let #=6* U6, where @+ and @~ are the sets of all 4 (¢ R?) satis-

fying the following inequalities, respectively :

(3.41)  6:>0, 6> —(a)/¢T @), 0:,>(a)/p(T ' (1—a)),
(3.42)  6:<0, 6,<—(@)/¢T @), 0:<(a)/¢pFT'(1—a)).

Here ¢ denotes the density function of N(0,1?). Let & be the closure
of &. In this case, every indicator function of a bounded interval is
contained in &(C,) if and only if #e® (see [9]). However, if 4 is a
boundary point of @, then the selection problem falls under the trivial
case. In other words, if 6,=0, then every ¢ satisfying 7,(0, ¢)=¢, is
optimum. If 6,0 and @ is a boundary point of 8, then &(C,)={g,} or
{¢s}. Here, ¢, and ¢, denote the indicator functions of (—oo, a] and
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[b, ) such that P*(—oo, a])=P*([b, ))=a;, respectively. Therefore
we define the parameter space by 6.

A selection ¢, € #(C,) is optimum (see also [9]), if and only if ¢,
satisfies

1 if z,(0)<x<xy(0),
0 if x<x,(6) or x>xs(0)

(3.43) (@) =

for P*—a.e.z and for every 6 ¢ 6, where x,(6) and z,(f) are the real
solutions of

(3.44) (&, 0) =1+ (0,2 — ) — hy(8) — ho(0)z=0 .

Here, h(6) and hy(f) are uniquely determined as the real functions
satisfying

U(xx(0))—T(x1(0))=01 ,
0[P (2,(0))— p(x(O)]s=c,, €O

We take one of these optimum selections and denote it by ¢5.

We now consider decision functions ¢ in . We take as a prior
probability distribution & a truncated normal distribution on 6. We
can obtain the form of the posterior probability distribution £(df|s) with
its mean § and covariance matrix V:('b,,) by the same method as the
one stated in [9]. Considering that the decision function ¢} is standard,
we set that £,,(0)=0 and

(3.45)

Bin(O)=E, (0, ) — = —a+6, E, [(6,+0,—0,)/0,]

for every 6¢€6.
Hence, under the constraint that E,z,(8, §)=a, and E,z,(0, d)=a,+
Be(8), we consider the Bayes decision functions minimizing the Bayes

risk #(0, §). The function @y(z, s) defined in (3.6) is, in this case, ex-
pressed as

(3.46) Go(®, 8)=1+(Bx(8)x — ) + Dy (8)as? .
To apply Theorem 3.2 to this case, we define the functions

(3.47) Eux, 8)=1+(B(s)x— ) +Dyy(8)a*— h{P(s) — hSP(8)
(l: 1 , 2, .e )

on ¥ XS, where each kY (i=1,2) has the form
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hP(s) = Ss ha(0)E(d0|5) ,
(3.48)
hP(s) = Se 0.hu(6)EdOls)  (=1,2,--")

for some bounded A-measurable function k, on &. We also consider
the decision functions ¢, € @(C’) satisfying for P*x P*—a.e. (z, 8)

1 if &,(s)<ax< Zu(8) ,

(3.49) sz?z(x,s)={ o A
0 if a<ul) or a>du(s), (=12,

where #;,(s) and &,(s) are the real solutions of the equations
(3.50) Llw, 8)=0  (I=1,2,--).
We finally define for k() and h,(f) given in (3.48) the constants

Eg%):al Se hu(o)g(da) ’
(3.51)

Bp=a |, o+ BuO(OFED)  (=1,2,--).

Thus we obtain by Theorem 3.2 the following result in this case:
A decision function ¢, ¢ 03((:’) is a Bayes decision function, if and only
if there exist sequences {hy} and {hy} of bounded A-measurable func-
tions %, and h, on O, respectively, satisfying

(3.52) S o x5 PO +RP(E)x1de(, 8)P=(dw) P(ds) — [P +hP] -0 ,

(3.53) L, 8)de(x, 5)P(dx)P(ds)

Siii’xS

— S o i@ )P, 5)P(d)Pr(ds)—0 ,

as l— oo,
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