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Summary

A method of estimating the degree of differencing of an ARIMA
process is proposed. This is based on fitting an AR model to the orig-
inal and to each differenced series and calculating the residual sum of
squares. As an application, we suggest an identification method of an
ARI (p, d) process combining our method of estimating the degree of
differencing with Akaike’s Information Criterion.

1. Introduction

A stochastic process w, is called an ARIMA (p, d, q¢) process if it
satisfies

H(B)V ‘w,=6(Be, ,
where B is the backward shift operator such that Bw,=w,_, and
#B)=1—¢—---—9,B?, 6(B)=1—6,—---—6,B*,

V is the difference operator, Fw,=(1—B)w, with Véw,=F(V*‘w,), and
where e, is a sequence of independent normally distributed random
variables with means zero and variances ¢:. We assume that ¢(B) and
6(B) have all the roots outside the unit circle and have no common
roots.

The time series modeling strategy developed by Box and Jenkins
[7] consists of model identification, model estimation, and diagnostic
.checks. In their procedure model identification, that is the determina-
tion of the order (p, d, q), is an important problem. The main purpose
of this paper is to propose a method of estimating the degree of dif-
ferencing d.

For this problem, there seems to have been only a small amount
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of literature published. Box and Jenkins suggested to estimate d by
visual examination of the sample autocorrelations and their method
depends on subjective judgement. Anderson ([3], [4], Ch. 12) discussed
this problem by adopting § as an estimator of the degree of differenc-
ing, when the sample variance of 3th differenced series attains its mini-
mum at §=48. These methods are useful in some cases, however there
seems to have been hardly anything known about the statistical pro-
perties of these methods because of the nonstationarity of ARIMA pro-
cesses. On the other hand, though Anderson’s method determines the
degree of differencing automatically, it misleads to overdifferencing in
some cases as is remarked in Anderson [3], [4]. Overdifferencing of
the ARIMA process implies a transformation of the series to a non-
invertible ARMA process, which causes some difficulties in estimation
and prediction.

Thus we shall propose a new method to avoid overdifferencing.
Hereafter we assume that the possible degrees of differencing are bound-
ed by some known number D. Let {w,, w,---, w;} be observations
from an ARIMA (p, d, q) process. Let 6i(3) be the residual sum of
squares obtained by fitting an AR (k) model to F’w,. That is, it satisfies

5i(d)=min > (V”wt—fk_} ﬁiV’w,_,-)Z/(T—k—a) .
By t=k+3+1 . d=1
Next let ¢i(3) be the mean square error of prediction of F’w,,, given
VPw,, .-+, PPw,. Then it can be expected that as k— oo, gi(d) converges
to ¢! most rapidly at d=d. 43(3) can be viewed as an estimator of
0}(0). Thus we shall construct an estimator of d based on g(d).
Let 8 be the value of 8 which minimizes

1(8)— £ (8)51(0)/g(k) ,

0<d3<D, where f(d) is an arbitrary strictly increasing function of o
and g(k) an arbitrary function satisfying

lkim klg(k)=0, and g(k)>0.

In this paper, we shall show that § is a consistent estimator for d un-
der some conditions on the parameters if & and ! are sufficiently large
and fixed. f(8) is introduced to avoid underdifferencing since the re-
lation,

p—lim 6}(8)=p—lim ¢}(d)=d? ,
T —co T =0
can occur for finite k¥ if ¢=0 and d<d, as is shown later. However

if f(3) is too large, our method may mislead to overdifferencing. Hence
a3(0)/g(k) is added since
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p—lim 3;(3)—ot=0iO0(1/k) ,  0>d,
T —o0

which will be shown later, and 4}(0) can be an estimator of o2 if I is
sufficiently large.

In Section 2, the asymptotic behavior of our estimator is discussed.
This is based on the asymptotic distribution of the sample covariance
matrix of an ARIMA process given in the Appendix, which is a gen-
eralization of the results obtained by Hasza and Fuller [10].

After d is estimated by §, we have to determine p and ¢. One
method is to apply the order determination procedures proposed by

Akaike [1], [2] or Hannan [9] to Fiw,, since F*w, could be assumed as
ARMA (p, q) if the estimator § is consistent.

In Section 3, we propose another method by combining § with AIC
(Akaike’s Information Criterion) when w, is an ARI(p, d) process. We
regard w, as a nonstationary AR process with the true order k,=p+d,

and let & be the order selected by applying AIC to the original process,

w,. Then we estimate p by 1‘):12—3. It is shown that the asymptotic
distribution of the selected order of a stationary AR process given by

Shibata [12] still holds for k. Hence P is a reasonable estimator of p
if 8 is consistent.

Finally some numerical results are given in Section 4 to illustrate
the performance of the proposed estimation procedure.

Our method intends to determine the degree of differencing d be-
fore considering p and ¢q. Unlike us, Ozaki [11] applies AIC effectively
to estimate (p, d, 9) simultaneously.

2. Asymptotic behavior

Let {e.}i>-.. be a sequence of independent normally distributed ran-
dom variables with means zero and variance ¢. A process w,, defined
for t=—d+1, is said to be ARIMA if Féw,, t=1, satisfies

#(B)V “w,=0(B)e, ,

given the initial random variables w, with Ew?< oo, t=—d+1,---,1, 0.
This indicates that the process »,=F%w, is a stationary ARMA (p, q)
process.

We shall show the asymptotic properties of 3 given in the preced-
ing section as an estimator of the true degree of differencing d. For
this purpose, we have to investigate 42(3). Let 9(x, 1,1) be the linear
space spanned by {x,; 1<t<l} and Pg(z,1,1) the projection into 9(x, 1, 1).
Let W, be the d xd matrix whose (¢, j) element is

T—k
a—t -
‘ZE Py Weray
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and D,=diag (T, T?%--., T% be the diagonal matrix with diagonal ele-
ments, T, T%,...,T¢. Further let W be the dxd random matrix to
which D7'W,D7' converges in distribution as T—o. W will be given
explicitly in Appendix Finally, put

0i=E {2,11— P9(z,1,0)%:.1}* .

Then we have the following theorem about the asymptotic behavior
of ¢i(3) when 3=d.

THEOREM 2.1. Assume that Pr {det W+0}=1.
(i) If a=d, k=d—2, then p—}jm 6} (d)=0%_4s.

(i) If o<d, and k<d—23, then 63(3)/T***~»~! has an asymptotic dis-
tribution Fi(x) with F(0)=0 as T—oo.

Proor. (i) First we put y,=F’w,. Then y, is an ARIMA (p, d*, q)
process with d*=d—d3. Let

Dd-'k=(cd., Lcd., Tty Lk—d‘cd»‘, Lk_d.-HCdt_l, ctcy Lk_lcl cho), y

where L is the (k+1)x(k+1) matrix whose (¢, j)th element is 1 for
1—j=1 and is 0 for +—j+1 and ¢, is the (k+1) component vector such
that

cs':(cn,Oy cx,li ft %y c:,u 01 O’ D) O)I y
and ¢,;, 0<1<s, 0<s=d, are defined by (1—B)'=Zs‘, ¢, .B'. Since {y,,
i=0
Yeers***» Yoz}’ 18 transformed to
@ oy Bemprans VU Y emrarmtr* * oy PYe_rsrs Yei}'»

by D, we have

so)=min 3 lu—380 [(T—(e+0)

By t=k+3+1
. T k—d* k 2

=min 3} {wz— > @ — > aiV"“yz_i} / {T—(k+0)} .
a; t=k+3+1 i=1 i=k—d*+1

Now we put Xr=(%iisr1» Tarsrnr-*+» %r) and Z,=[X;, Y;] where X, is
the {T—(k+9)}x(k—d*) matrix and Y, is the {T—(k+d)} xd* matrix
such that the (i, j)th element of X, and Y, are x;,,,.; and V¥ Yy, 4, P
respectively. Then

(1) 0:(0)= (X%, — X7 Z,(Z7Z7) " Z1 % Y (T — (k+3)}
= {.i!'r-ir—ié'XT(XI"XT)-lXéir}/{T"'(k'" ")}
— %1 X Pio Por Ply X1 Xp — 287 Y 1 Por Pl X1 %1
+&2 Y7 Py Ye X Y {T—(k+9)}
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where
P =(X7X7)"'X1Y, ,
and
Py ={Y1 Y — Y7 X0 (X7 Xr) "' X1 Y7} "

In (1), it is well known that the first term of the right hand side con-
verges to o;_, in probability as T—oc. Thus we have only to show
that the second term converges to zero in probability as T— 0. Since
this result can be proved for each portion of the second term, we illus-
trate the result for the portion, X;Y,P,,Y};%/{T—(k+3)}. This can
be rewritten as

X1 Y D' (D7r' Py’ D7) ' D7'Y 1 &% [{ T~ (k+9)} .
It is shown by evaluating higher order moments that
XY D7'=0,1) .
Since p—lim X7X;/T=R, where R is the nonsingular matrix with (4, j)th
element g;;al to E z,x,, it is similarly shown that in D;'P D7},
D7'Y7; X, (X7 X,)"' XY, Dr'=0,(1/T) .

In D;'P;'D7', the limiting distribution of D7;'Y.:Y,D;' is that of the
upper-left d*xd* matrix of W in Proposition A.1. Then the result is
immediately obtained by assumption and Corollary 1 of Billingsley ([6],
p. 31).

(ii) In a similar way, we find

a)=min 33 {7y—31ar-y.| (T—(e+2)
= @B V(YY) V1B (T~ (o)}
where
G =" Ysssess PUrsoss, P0rY

and Y, is the {T—(k+d)}xk matrix whose (¢, j)th element is F*-/.
Yrsori-j» Then it follows from Proposition A.1 that the limiting distri-
bution of 5}(3)/T*¢~*-*-! ig the distribution of

/T -1
War—k,ar—x— Wis WasL iy, iWas, x5
where
— ’
War— e =War— 41,00 1r Was—pi2,a-10° * *» Was,ae_z)

and w,, is the (4, j)th element of W, and W,, is the Ix! matrix whose
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(%, 5)th element is w,,,.;. It follows from the assumption that [/
is positive definite with probability one. Then noting that

det Wa_y_ i ke1=War_ g, a0 — Whe, s Wil i, iWas ) A&t Woe_y s

we have the result.

Remark 2.1. If d is given explicitly we can check whether or not
the assumption Pr{det W+#0}=1 in Theorem 2.1 holds by the same
manner as that for Theorem 3.2 of Hasza and Fuller [10]. For example
we can show for d<5 that the assumption holds.

Next we consider the case d=d. Let us put
oi 1 =E V' — Pa(g,1, )V 01} .

THEOREM 2.2. (i) If d=d, then p—lTim &2(a)=a§=ai{1+0(miaxIh,,,l”‘)}
where {h;} are the roots of 0(z~')=0.
(i) If 9>d, then p—lima}(d)=o0},_a=02{1+(3—d)’c*/k+o(1/k)} where

T —oo

c* is a positive constant depending on (¢, -, ¢y 01, +, 0,).
ProOF. Except for the assertion that ¢*>0, all of the results have

already been proved by Grenander and Rosenblatt [8] and Yajima [13].
Now we shall show that ¢*>0. Let us denote

) 12 =0(2)"9(2) -
i=0
And let
D=3 a2 o,  »20,

be the orthonormal polynomials of order v obtained by the Gram-Schmidt
procedure from 1, z, 2% ..., whose inner product is defined by

(9, )= {o2/(2m)} S_ 9(e)h(e”)|6(e™) /(e dA .
Then it follows from Proposition 1 of Yajima [13] that
o 2 .
(2) * = M(z m)} lim 8},(k+3—d)fs(k+2—d) ,
where
l
su(l)=§o 7(0)=0ai*,

which converges to ¢;% as [— oo, and
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50)=31 7.0)n(D) -

Therefore c* is independent of (3—d), and we can put d—d=1. First
we show c¢*>0 for ¢=0. Since a,,=0 for v>p,

lim stk)=sh()= {2} 0., (S ac.) 2] -

The relation (2) assures that it suffices to show s,(p)#0. Let s,(p)=0.
Since

oi1=8u(k+ 1)/ {su(k+1)su(k+1)—si(k+1)} ,

with Szz(l)‘—‘io 7(1) (Theorem 1 of Grenander and Rosenblatt [8]), we
have
or-1,1=85(p)=03=0} .

This means that Fz, is an AR (p—1) process. But this contradicts the
fact that Fx, is an ARMA (p,1) process. Hence s;,(p)+#0. Next we
discuss the case ¢#0. Let us introduce the random variables v, such
that ¢(B)v,=e,. Since Fz, is expressed as Fx,=0(B)F v, we get

E{F2,.1—Pawz, 1, k)l et Z E AV Vi1 — POWo, —q+1, k)V Vi)
=0'3{1+cv/k+0(1/k)} ’

in which ¢,>0 since v, is an AR (p) process. Thus the proof is complete.

Remark 2.2. Grenander and Rosenblatt [8] proved in Theorem 5
that ¢*>0 if p=¢g=0 and d—d=1. Theorem 2.2 implies that ¢*>0
still holds for any p, ¢, and 3—d>0.

Now we can clarify the asymptotic properties of our method.
Since ¢ is a nonincreasing function of k, Theorem 2.1 asserts that
lim Pr {§=8} =0,

T —o0
for any k if 3<d. On the other hand, Theorem 2.2 implies that s}
converges to ¢* exponentially as k— oo and ¢;,_, dominates f(3)d?_./9(k)
for sufficiently large k. Hence

lim Pr {5}(2) — f(9)5(0)/9(k)> 6i(d) — f(d)51(0)/g(k)} =0 .

holds for sufficiently large k. However the rates of convergence of o}
and o}, depend on unknown parameters and are not uniform. Hence
the number k satisfying the above relation also depends on unknown
parameters. Accordingly in order to use this method in practice, we
have to assume the following conditions:
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(i) p and q are bounded by known quantities P and @ respectively.
(ii) Let {g;} and {h;} be the roots of ¢(27!)=0 and 8(27")=0 respectively.
Then

where ¢ is arbitrarily given small quantity.
Similar conditions are imposed when we estimate the order of a
stationary process (Hannan [9]). Let us define A (CR”*¢) by

A={(@y, -+ $p 01,0+ +, 00)||gs|S1—¢, 1SIZP, |hi|s1l—e, 151=Q} .
Then we have the following result for 4>d and l=d.
PROPOSITION 2.1. There exist a positive number K such that
ot,-a— S (3)ai_a/g(k) > ot — f(d)ai-d/9 (k) ,
holds for any k=K and any (¢, -, ¢p, 01, -+, 0g) € A.
Proor. First we consider the case of §,=-..-=0,=0. Put

A={(gy, > ¢p)|lg:|S1—¢, 1<i<P} (CR?).

c* is a continuous function of (¢;,---,¢») and its minimum in A is
bounded away from zero since A is a compact set. Now we put

Ek,p,0-d— k["i,a-d —o: {1 +0*(a —d)zlk} ] .

By using the method in Theorem 1 of Grenander and Rosenblatt [8],
we can show that e,,, , converges to zero uniformly in (¢, -, ¢p) €

A and 3<D. Let ¢ be the minimum of ¢* in A. Then since si=g?
for k=P, we have

{0%,0-a—f(3)oi_s/g(k)} — {oi— f(d)ai_o[9(k)}
20t {68 —d) [k erg,s-alk} —oi_o{F(3)— f(d)}9(F) .
Since }Lm k/g(k)=0, the right hand side is positive for sufficiently large

k. Thus we have the result. Next consider the general case.
Let {v,} be a sequence of random variables such that ¢(B)v.=e,.
Then as in Theorem 2.2, we have

0t,0-42 04 {1+¢,(3—a)![(k+Q)+ €rsq,0-2/(K+Q)} -

We have just proved that the minimum of ¢, in A is bounded away
from zero and



ESTIMATION OF THE DEGREE OF DIFFERENCING OF AN ARIMA PROCESS 397

lim 5k,¢’,;_¢=0 y

k—oco

uniformly in (¢, -, ¢5) € A and 3<D. On the other hand,
gi=at{1+0((1—¢)™)},

uniformly in (¢, -+, ¢p, 01, +, 8g) € A. Then the result follows imme-
diately.

Hence § is a consistent estimator of d under the preceding condi-
tions if k and ! are sufficiently large and fixed. However the perform-
ance of § depends on f(8), g(k), k, and I heavily. For practical use,
we shall recommend the following policy to determine these amounts.
(i) In order to choose f(3) and g(k) more easily, we only investigate
f(3) and g(k) of the form f(3)=cd and g(k)=k’ with ¢>0 and B>1.
This restriction is reasonable since ¢%(3—d)*c*/k is of order o%/k.

(i) We can put ¢2=1 without loss of generality since

oi-G-0—01-af (3)/g(k) ,
and
a?c,d—d—ag—df(a)/g(k) ’

are proportional to ¢2. When the difference between a;_;—c(d—J)si_s/
k* and oi—cde?_,/k?, and that between o} ,—c(d+n)oi_./k* and oi—cdai_s/
k? are large simultaneously, 3 has good performance. On the other
hand,

lim (¢},,—0i_;)=0.
k—oo
Hence first we choose the smallest value of ¥’ as k, which satisfy

) 2
0 <01 »

for any (¢, -, @ps 01, +, 0o) € A. After k is fixed, we determine ¢, B,
and ! so that both

alz:—j—(a:_cjag—D/kﬁ) ’
and
(0%, .—cnai_plk?)—ai ,
are as large as possible. Since o}_,=dl_,,
(03 ,—cmal_plk*)—a: >0,
assures

(0} n—cnai_g/kF)—0: >0 .
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The choice of 8 and ! is not so important since we can adjust col_,/k’
by using c.

3. Identification of an ARI(p, d) process

Throughout this section, let w, be an ARI (p, d) process. We pro-
pose a method of determining p and d by using § and AIC (Akaike
[1], [2]). We adopt § as an estimator of d. Next we regard w, as an
AR process with the true order k,=p+d, and, applying the AIC method,
select the order for which

AIC (k)="T log ai(k)+2k , (k=0,1,---,K),
attains its minimum as a function of k¥, where K is a preassigned or-

der and

S)=min 3} {w,— ()W, - — B, YT .

By(k) t=K+1
Let AIC (k):min AIC (k). Then we adopt gi):fc—é as an estimator of
k

p. It should be noted here that log o(k) is an approximate likelihood.
Thus, strictly speaking, the employed AIC is an approximate one. We
have to investigate k to show the asymptotic properties of 5. Then it

is shown that the asymptotic distribution of % for a stationary AR pro-
cess given by Shibata [12] still holds in this case.

PRrOPOSITION 3.1. Let the assumption of Theorem 2.1 be satisfied.
Let w, be an ARI (p, d) process and put

n=S3{{l @iyt  and  q=33[fT{a-a)iyyry],

where a;=p,{Xi>21} and i‘, extends over all n-tuples (ry,---, r,) of mon-

negative integers such that é r«Xi=n. Then

i=1

{ Pi-p+alr-x (p+d<k=K),

lim p, {k=k} =
Toe otherwise .

PrOOF. By the same argument as that for ¢3(3) in Theorem 2.1,
we can show that
ai(k)=0,(T**"%"),  k<d,
and
p—}iméi(k)wi_d, kzd.
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Thus the assertion is easily shown if k<p+d. Next consider the case,
kzp+d. Define {8;; 1=i<p+d} by
p+d

1- 2 Biz'=(1—2)"¢(2) ,
and A(k) by

B(k)=(ﬂl’ Bas ey Bk), ’
with 8,=0 for i>p+d. Let

B(k)= {B,(K), Ba(ke), - - -, BuF)}'

and By(k)=pi(k), - -, Bu(k)=B.(k) be the values that minimize

with the minimum ¢*(k). Now let us put z,=F%w, and
Do(k)= (b1 $2,°++» $1)'
with ¢,=0 for ¢>p and let
B(k)={i(k), $k), - - -, Be(R)Y ,
where &,(k)=¢y(k),- -, go(k)=¢(k) are the values that minimize

with the minimum gi(k).
We shall show

{ok+1)/ai(k)} — {ai(k+1—d)ae(k—d)} =0,(1/T) ,  kzp+d.

Since #, is a stationary AR (p) process, the assertion follows from Theo-
rem 1 of Shibata [12]. Direct calculation shows that

o2 (k+1)/62(k) =1 — B (+ 1) {82(R)/5%(K)}
F(k+1—d))aik—d)=1—F2,_o(k+1—d) {8k —d)/5}(k—d)} ,
where

R . -1 l 2
s0)=min 3 fw—2b0Owwd [T,
b‘(l) t=K i=1
and
. . T-1 l 2
§()=min 3} {wz-t-‘?:: bi(l)xt—wi} /T .

by () =K

By the same argument as that for ¢%(l) and a}(l), we can show that
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p—lim 80)=0l_.,
and
p-—lTigxa #h=a.
Thus it suffices to show that
Bra(o+1)=FLio(k+1—d)+0,1/ T) .
Since
p—lim 8(k)/o%(k) =p—lim &(k- d)/7i(k—d)=1,
noting the fact,
Fr1-ak+1—d)=0,1/T) ,
for k=p+d, (Anderson [5], Sec. 5.6.8), we have
|oe(k+1)/a%(k) —Gi(k+1—d)/ai(k—d)|
<18+ 1) — Ghii_alb+1—d) | {83(K)/52()}

+ @iri-a(k+1—d)|8i(k)/54(k) — 8k —d) /a3 (k—d)|
=0,(1/T) .

Let us put Z,=[X,, Y;] where X, is the (T—k)x (k+1—d) matrix and
Y, is the (T—k)xd matrix whose (¢, j) element are wxy,,; and F¢-’
Wg_r+a-1+1-; TeSpectively. Define e, by

eT=(6K+1r Cri2° " "y er)l .
Then we have
(3) Blle+1)—p(k+1)

=D,§ k((XII‘XT)-IXT/'eT +P1TP2TP1,TX1/'eT_PlTPZTY{'eT)
! —PgrPI,TX;'eT +P2TY;'eT

(4)  $k+1-d)—0k+1—d)=(X7X;)"Xser ,

where D, , and P, i=1, 2, are defined in the same manner as those
in Theorem 2.1. All the elements except for (X;X,)'Xje, in (3) can
be shown to be at most of order 1/7T in probability by the same argu-
ment as those in Theorem 2.1. Since ¢,,=(—1)% (8) and (4) imply

Biii(k+1)=@2,1 ok +1—d)+0,(1/T) .
Thus we have the result.

It follows from Proposition 3.1 that

lim Pr {§=d, f)=p} =DPldx-pt+a) »

T —o0
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A

since 8 is a consistent estimator of d. Hence p is a reasonable esti-
mator of p.

Remark 3.1. (3) also holds for k=p+d—1. Accordingly, (8) im-
plies that the asymptotic distribution of T'*{3(k)—p(k)}, k=p+d, is
the degenerate k-dimentional normal distribution with zero mean vec-
tor and covariance matrix,

37y -1
UeDd,k—1Rk—dDd,k-1 ’

of rank k—d, where D, ,_, is the (k—d)x% matrix being composed of
the first (k—d) rows of D,,, and R, , is the (k—d)X(k—d) matrix
whose (¢, J)th element is E x.,.

4. Computational experiments

For estimating the degree of differencing, all of the computational
results are obtained by putting p, ¢=<1, d=2, and D=5. Hence the
original process, w,, is expressed as (1—¢,B)/*w,=(1—60,B)e,. We choose
the values of ¢, and 6, to be close to 1, which makes the estimation
of d more difficult. And we set f(3)=0.53, g(k)=Fk*, k=5, and [=12.
These values are chosen according to the method described at the end
of the Section 2. We set ¢=0.1, P=Q=1 and, next, evaluate ¢} and
o}, exactly for every pair of ¢, and 6, of the form ¢,=—0.940.35, 6,=
—0.940.3m, 0<j, m<6. Then k=5 is the smallest value of ¥ which
satisfies

0i<0k,1 »

for every pair of ¢, and 6,, and, 1<i<5. g(k)=F and 1=12 are arbi-
trarily chosen since we can adjust cel_p,/k’ by using ¢. Finally we set
f(3)=c8=0.53 so that

0'§_, - (a?,—-cja?z-z;/f’z) ’
and
(a5,:— cia§2_3/5z) —a3 ,

are as large as possible simultaneously for every pair of ¢, and 4,.

All of the simulations reported below were performed by using
pseudo normal random numbers.

We see from Table 1 that this method works effectively except
the case when ¢,=0.9 and 6;=—0.9 as the sample size increases. When
¢.=0.9 and 6,=—0.9, |h,| is close to 1 while ¢, is close to 1 and, hence,
c* is very small. Consequently our method does not work well in this
case.
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On the other hand, if p=Cor (x,, ©,,;) is near to or greater than
1/2, the degree of differencing which minimizes sample variance often
misleads to overdifferencing, since Var (Fz,)=(2—2p) Var (x,) is equal to
or less than Var (x,) if p=1/2. This is supported by the computational
results for k=0 in Table 1.

Table 1. The frequency of the degree of differencing in 100
realizations of an ARIMA (1, 2, 1) process

¢ ) p T kK f6 380 1 2 3 4 5
0.90 000 09 20 0 0.0 0 0 0100 0 0
5 0.56 2 9 7 13 0 0

500 0 0.0 0 0 0100 0 0

5 0.53 0 0 98 2 0 0

0.00 0.90 —0.50 200 0 0.0 0 43 57 0 0 0
5 0.5 25 22 58 0 0 0

50 0 0.06 0 17 8 0 0 0

5  0.50 8 8 8 0 0 0

090 040 0.8 20 0 0.05 0 0 0100 0 0
5  0.56 0 10 76 14 0 0

50 0 0.0 0 0 0100 0 0

5  0.58 0 0 997 3 0 0

0.40 090 —0.33 20 0 0.0 0 2 9% 0 0 0
5  0.56 23 29 48 0 0 0

50 0 0.0 0 01100 0 0 0

5  0.50 5 8 8 0 0 0

0.90 —0.90 095 20 0 0.0 0 0 0 8 14 0
5  0.56 0 1 5 4 0 0

500 0 0.0 0 0 0 9 5 0

5 0.55 0 0 57 43 0 0

Now let us see the results of simulations on the identification of
an ARI (p, d) process. We considered three ARI (1, 2) processes and set
K=12 in order to refer to the results of Shibata [12]. It can be seen
from Table 2 that although the processes are nonstationary and the
number of realizations is small, the “Total” values are close to the
asymptotic values in Table 1 of Shibata [12]. And the values for k=k,
and, §=d, that is, p=k—d and d=d, are almost proportional to the
asymptotic values when 7'=200, and are closer to them when T=500
since § is a consistent estimator of d.

Table 2. The frequency of the identification in 100 realizations
of an ARI(1, 2) process

é T § ko 1 2 3 4 5 6 7 8 9 10 11 12
0.9 200 0 0 0 0 0 2 0 00 0 0 0 0
1 0 00 6 3 00 0O0O0O0O0 0
2 0 o 05213 3 2 1 1 2 2 0 0
3 0 0 0 4 3 1 1 1.2 1 00 0
4 0 0 0 0000 0 0 0 0 0 0
5 0 0 0 00 0 0 0 0 0 0 0 O
Total 0 0 0622 4 3 2 3 3 2 0 0
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Table 2. (Continued)

@ T J\ko0 1 2 3 4 5 6 7 8 910 11 12
500 0 0O 0 0 0 000 0 0 0 0 0 0

1 o 0 0 0 00O OO O 0 0 0 O

2 0 0 064 17 5 4 2 2 0 2 1 1

3 0o 0 0 01 00 0 0 0 0 1 0

4 0o 0 0 0 0 0 00 0 0 0 0 O

5 o 0 0 0 0 0 0 0 0 0 0 0 O

Total 0O 0 064 18 5 4 2 2 0 2 2 1

0.8 200 0 0o 0 01 0 0 0 0 0 0 0 0 O
1 0O 0 0 42 0 0 0 0 1 0 0 O

2 0 0 05 15 6 2 2 1 3 2 0 0

3 o 0 0 1.2 0 0 0 2 0 0 00O

4 0 0 0 0 0 0 00 0 0 0 00O

5 0O 0 0 0 0 0 00 0 0 0 00O

Total 0O 0 06219 6 2 2 3 4 2 0 0

500 0 0O 060 0 0 0 00 0 0 0 0 0O

1 0o 0 0 0 0000 0 0 0 00O

2 0 0 06118 7 2 3 1 2 2 3 1

3 0O 0 0 0 0000 0 0 0 00

4 o 0 0 0 00 00 0 0 0 00

5 0o 0 0 0 00 00 0 0 0 0 O

Total 0 0 06118 7 2 3 1 2 2 3 1

0.3 20 0 o 0 0 2 0 0 0 0 0 0 O 0 O
1 o 0 01 0 2 0 0 O 1 0 0 1

2 0 0 06213 7 2 2 3 2 0 1 0

3 0o 0 0 0 0 01 0 0 0 0 0 O

4 0O 0 0 0 00 0 0 0 0 0 0 O

5 o 0 0 0 0 0 00 0 0 0 0 O

Total 0 0 065 13 9 3 2 3 3 0 1 1

500 O 0 0 0 0 0 0 00 0 0 0 0O

1 0o 0 061 00 0 0 0 0 0 0 O

2 0O 0 07413 4 1 4 0 1 1 1 0

3 0 0 0 0 000 0 0 0 0 0 0

4 o 0 0 0 0 000 0 0 0 0 O

5 0o 0 0 0 0 0 0 0 0 0 0 0 O

Total 0 0 07 13 4 1 4 0 1 1 1 0
Asymptotic 0 0 0721 6 4 2 2 1 1 1 1

The total of the asymptotic values is 101. This is due to the
rounding errors.

Appendix : The sample covariance matrix

In this appendix, we shall derive the asymptotic distribution of
+W.Dz!, a sample covariance matrix of an ARIMA process. This is
a generalization of the results given by Hasza and Fuller [10]. This
has its own interest and is necessary to investigate whether or not the

assumption imposed on the main results in Section 2 holds. Define w,
by ‘

S -2 DN A=)y, 21,
w{___ =1
0, t=0.

And let M be the d xd matrix whose (7, j) element is (—i+1)’!. Then
w, is expressed as



404 YOSHIHIRO YAJIMA

(A.1) w,=w;+‘:§ ot t=—d+1,
=0
where {v,,---, v,_,} satisfies
{w, -+, W_gri} = {vo,*+ -, va )} M.

Then we have that Evi<o, 0<t<d—1. Now we shall prepare a lem-
ma which is used frequently later.

LEMMA Al. (i) If 0<i, J=d,

Too \t=1

—k
p—lim (2 Ve WiV Wy — Z Vd—iwfw—tyd_jwfw—j)/Tt”:o .
t=1
(i) If o<1, j=d,

k .
p—lim <2 Ve wlaisnVl Wy q J+— El Vd_lwfw—tVd—jwa—j)/TtH:O .

Tooo \ t=1
Jor any finite integers h and .
The proof is easily shown by using (A.1) and, hence, is omitted.

Now we shall introduce some notations according to Hasza and
Fuller [10]. B, is the (T—1)x(T—1) lower triangular matrix with
B;;=1 for i=j and A, is defined by A,=B,B,. J; is the (T—1)x1
vector defined by

Jr=(1,1,---,1).

Further let A;=(A7,-+, Ar_1,r)’ denote the vector of the eigenvalues
of Ay and ;7 =(tir,1,***, Tir,r—1)’ be the eigenvector associated with 2,,.
Then it can be shown that

Air=sec* {2T—-1)"(T—1)r}/4,
and
Tir,e=2(2T—1)""2 cos {(2T—1)" (2t —)n(t—1/2)} ,
(Hasza and Fuller [10], p. 1111). Then we have the following lemma.
LEMMA A.2. Let 7,=2{(2i—1)z}"(=1)"** for i=1 and
v, =2 QMO _1)By o (2K+2)!

where ﬁmﬂ, 8 Bernoulli’s number. Then
(i) lim > 2 7/ T =3 r¥=v,./2,

T —oo i=1

(i) lim J;A;JT/Tzkﬂzz 2 PUEAD —
T i=1
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PROOF. We see that JpA%J,/T*"=S) z;vT<Tj TWY/ T™+, Since
| T* < CyJ(2i—1)% ,
and
-1 2
RS ) [T CCRI— 11,
t=1

where C, and C, are constants, we have the assertion by the bounded
convergence theorem.
Now we give the asymptotic distribution of D7'W,D;' as T— co.

PROPOSITION A.1. Let {V.}, be a sequence of independent normal
(0, ¢?) random variables. And let S(m), Sym), and Sy(m) be defined by

SM=27"Vi,  Sm=3r"Ve,  Sm)=3 maVe,
respectively, where

S (— 1@ m=2m,
pl:"": n—1
tgo (—1)rt=tp2n=0)(25 - 1) (— 1)rpin+t | m=2n+1,

And let W be the d xXd random matrixz whose (i, j) component W, (=W,)
18 defined by

Wy=el =1 Sim+m)+2{2 (~1yS(m+n—-DS,@)

+33 (—1'Sm+n—DS,(2)

=1

+

231 31 (— 1) i s S(E)Si20)

l=1a=1

(t=2m, j=2n, m,n=1),
—o(— 1)“*"[Sl(m+n+1)+2{ (—1)Sy(m+n+1—1)Sy(2l)

M:

+

l

} (— 1 Sim-+n+1-)S,@D)]

nMS :

231 31 (— v S(2DSH20)

(t=2m+1, j=2n+1, m,n=0),
=ao[E (—128(i++DSG-D+(~DSii—m)]
(3=1+2m+1, m=0),



406 YOSHIHIRO YAJIMA

where ¢c,=1—0,—- - —0,)/(1—¢—---—¢,)". Then we have
D7'W,D7'—W
as T— oo where L means convergence in distribution.

Proor. The proof for the most part is essentially the same as the
one given by Hasza and Fuller [10]. Thus we only show the outline.
Define

2 (+d—2HI-DIE— )}y,  t21,

u,=
0, t=<0,

er=(e, e, -, ery),

T2 =(Tuir, Tary* =+ Trogr)
Ve=Vizs Vars+++, Vo_i2) =7r€7 ,
Ay =diag (Aizs Agzye ey Ar_17) -

The random variables discussed later can be written by using e;Aber,
erA7Jr and Ve °u,_,. After these terms are expressed in terms of V,
and t74,7r (=Ayr), it can be shown in a similar way to the analogous
part of Hasza and Fuller [10] that

(A.2) (erAver [T, er Ard [T 12, Pi-oqyy_,| T4 1%)
—{S10), 228,(r), 2Sa)} ,

as T—oo for any finite integers I, r, b, and a with 1<a=d.
Consider the case 1=2m, j=2n. Putting

VoUri= Vs, Vo, -+, Pouer i) ,

we can show that the asymptotic distribution of

T—k

P Vd—iwcw—tyd—jwz+d—j/Ti+" ’

t=1
is equal to that of

con-2mUTde—2'nUTn/Ti+j ,

by the repeated use of Lemma A.1. Here F¢-*U,, is expressed as

(A.3) (=174 Uy =Afer+ 3 (— 1V AR, 74 Hup,

Intuitively, A, is the matrix representation of the “operator” A, de-
fined by
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A VU =Jp(I—B) W uy_,_;—(I— B)"2BV Uy,
=V Up_ i — V" Ur 041

By operating A, on e, (=F°Ur,) m times, A, takes it into (A.83). Then
the assertion follows from (A.2) and (A.3). Lemma A.2 is used to eval-

uate TZ—‘I 22,;/T“ and J;ALJ,/T**. The result for 1=2m+1 and j=2n

+1 is shown in a similar way by noting Fé¢™-'U,,=B.(V**™U,,).
Finally consider the case j=1+2m-+1. This case is proved in a dif-
ferent way. We have

T
Vd—luTVd-ﬂuT :E (Vd—lutyd-"uz—V"'lu,_lV"‘"ut_l)
T
=t§ (Pt P, P4t P4y, o, (THY) |
Consequently

i Vd—jutVd—_tut_:'mE—l (_1)17¢—j+luTVd—j+2m—luT
t=1 =0
(=)™ mug )2+ 0,(T) .
Then the assertion follows from (A.2).

Remark A.1. If we put t=7=2, then Wpy/c,= {Si(2)—4S:(1)Ss(2)+
o oo oo oo 2
2532 = [ 1vi-4(8 Vi) (2 1v.) +2( 71V, | which is equal to the

limiting distribution of ﬁ} Y2 ,/n'* in Lemma 3.1. (vi) of Hasza and
t=1
Fuller [10].
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