SOME COMMENTS ON A PAPER ON k-HNBUE LIFE DISTRIBUTIONS*

BENGT KLEFSJÖ

(Received July 23, 1984; revised Jan. 7, 1985)

Summary

In a recent paper by A. P. Basu and N. Ebrahimi (1984, Ann. Inst. Statist. Math., A, 36, 87-100) a new class of life distributions called k-HNBUE (with dual k-HNWUE) is introduced. Closure properties and bounds on the moments and on the survival function to a k-HNBUE (k-HNWUE) life distribution are presented. However, some of the results presented are incorrect.

1. Introduction

In a recent paper Basu and Ebrahimi [1] present a new class of life distributions called k-HNBUE (HNBUE=harmonic new better than used in expectation). This class consists of those life distributions F with survival function $\bar{F}=1-F$ and finite mean μ for which

$$\frac{1}{\frac{1}{t} \int_0^t e_F^{-k}(x) dx} \leq \mu^k \quad \text{for } t \geq 0,$$

where

$$e_F(x) = \begin{cases} \left\{ \int_x^\infty \bar{F}(s)ds \right\} / \bar{F}(x) & \text{if } \bar{F}(x) > 0 \\ 0 & \text{if } \bar{F}(x) = 0 \end{cases}$$

denotes the mean residual life at age x. If the reversed inequality in (1) holds \overline{F} is said to be k-HNWUE. When k=1 we get the HNBUE (HNWUE) class introduced by Rolski [6] and further studied by Klefsjö [2]-[4].

Key words: Survival function, HNBUE, HNWUE, k-HNBUE, k-HNWUE.

^{*} This research was supported by Swedish Natural Science Research Council Post Doctoral Fellowship F-PD 1564-100.

In their paper Basu and Ebrahimi [1] discuss closure properties and present bounds on the moments and on the survival function of a k-HNBUE (k-HNWUE) life distribution. However, the bounds presented are based on the incorrect facts that $\int_t^\infty \bar{F}(x)dx \leq \mu \exp{(-t/\mu^k)}$, $t \geq 0$, for a k-HNBUE life distribution and $t^{1/k} \int_t^\infty \bar{F}(x)dx \geq \mu \bar{F}(t)$, $t \geq 0$, for a k-HNWUE life distribution. Detailed comments on the paper by Basu and Ebrahimi can be found in Klefsjö [5].

The aim of this note is to present a new upper bound on a k-HNBUE survival function.

Bounds on a k-HNBUE survival function

We have not succeeded to get sharp upper bounds on the moments and on the survival function of a k-HNWUE life distribution. However, it should be mentioned that the only lower bound we can get on the survival function is the trivial one that $\bar{F}(t) \ge 0$. This is easily seen by studying $\bar{F}(t) = \varepsilon \exp(-\varepsilon t/\mu)$, $t \ge 0$, which is k-HNWUE.

We now turn to the situation when \overline{F} is k-HNBUE.

THEOREM 2.1. If \bar{F} is survival function of a k-HNBUE life distribution, k>1, then

(2)
$$\int_{t}^{\infty} \overline{F}(x)dx \leq \left(\frac{\mu^{k}}{\mu + (k-1)t}\right)^{1/(k-1)} \quad \text{for } t \geq 0.$$

PROOF. Set

$$F^*(x) = \int_x^\infty \bar{F}(s)ds$$
 for $x \ge 0$.

Then

$$(3) \qquad \int_0^t \frac{(\bar{F}(x))^k}{(F^*(x))^k} dx \leq \int_0^t \frac{(\bar{F}(0))^{(k-1)}\bar{F}(x)}{(F^*(x))^k} dx = \int_0^t \frac{\bar{F}(x)}{(F^*(x))^k} dx ,$$

here the second step follows from the fact that if F is k-HNBUE then $\bar{F}(0)=1$ (see Remark 1 below). The integral on the right hand side is equal to

$$\frac{1}{1-k}(\mu^{1-k}-(F^*(x))^{1-k}).$$

Since the k-HNBUE property means that

$$\int_0^t \frac{(\bar{F}(x))^k}{(F^*(x))^k} dx \ge \frac{t}{\mu^k} \quad \text{for } t \ge 0$$

the inequality follows.

Remark 1. If \bar{F} is k-HNBUE then $\bar{F}(0)=1$. This can be seen in the following way: Suppose that $\bar{F}(0)=a<1$ and choose t_0 so that $\int_{t_0}^{\infty} \bar{F}(x) dx > \mu a$ (this is possible since $\int_0^{\infty} \bar{F}(x) dx = \mu$). Then $\left\{\bar{F}(x) \middle/ \int_x^{\infty} \bar{F}(s) ds\right\} < a/a\mu = 1/\mu$ for x < t. This means that $\int_0^{t_0} e_F^{-k}(x) dx < t_0/\mu^k$ which contradicts the definition in (1).

By using this theorem we can present an upper bound on a k-HNBUE survival function.

THEOREM 2.2. If \bar{F} is survival function of a k-HNBUE life distribution, k>1, then

(4)
$$\bar{F}(t) \leq \begin{cases} 1 & \text{for } t < \mu \\ \left(\frac{k\mu}{\mu + (k-1)t}\right)^{k/(k-1)} & \text{for } t \geq \mu \end{cases}.$$

PROOF. By using (2) and the fact that $\int_s^t \bar{F}(x)dx \le \int_s^\infty \bar{F}(x)dx$ for s < t we get that

$$\bar{F}(t) \leq \inf_{0 < s < t} \left\{ \left(\frac{\mu^k}{\mu + (k-1)s} \right)^{1/(k-1)} \cdot \frac{1}{t-s} \right\} .$$

Then the result follows by straightforward calculations.

Remark 2. If $k \rightarrow 1$ in the bound (4) above we get the upper bound on a HNBUE survival function presented in Klefsjö [4].

$$\bar{F}(t) \leq \begin{cases} 1 & \text{for } t < \mu \\ \exp\left(1 - \frac{t}{\mu}\right) & \text{for } t \geq \mu \end{cases}.$$

Remark 3. It is also possible to get a lower bound on the survival function by using Theorem 2.1. We get

$$\bar{F}(t) \! \ge \! \sup_{s>t} \frac{\mu \! - \! t \! - \! (\mu^k \! / \! (\mu \! + \! (k \! - \! 1)s))^{1/(k-1)}}{s \! - \! t} \; .$$

By calculating the expression at the right hand side we get a rather complicated bound of a form similar to that in Klefsjö [4] in the HNBUE case.

LULEA UNIVERSITY, SWEDEN

REFERENCES

- [1] Basu, A. P. and Ebrahimi, N. (1984). On k-order harmonic new better than used in expectation distributions, Ann. Inst. Statist. Math., A, 36, 87-100.
- [2] Klefsjö, B. (1980). Some properties of the HNBUE and HNWUE classes of life distributions, Research Report 1980-8, Department of Mathematical Statistics, University of Umeå. Sweden.
- [3] Klefsjö, B. (1981). HNBUE survival under some shock models, Scand. J. Statist., 8, 39-47.
- [4] Klefsjö, B. (1982). The HNBUE and HNWUE classes of life distributions, Nav. Res. Logist. Quart., 29, 331-344.
- [5] Klefsjö, B. (1984). Comments and corrections to a paper on k-order harmonic new better than used in expectation distributions by A. P. Basu and N. Ebrahimi, Research Report 1984-3, Department of Mathematics, Luleå University, Sweden.
- [6] Rolski, T. (1975). Mean residual life, Bull. Int. Statist. Inst., 46, 266-270.