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Summary

Statistical procedures to test that a life distribution is exponential
against the alternative that it is harmonic new better than used in
expectation (HNBUE) are considered.

1. Introduction

In performing reliability analyses, it has been found very useful
to classify life distributions using the concepts of aging (wearout). The
most well known classes of life distributions (i.e. distribution function
with F(0—)=0) based on some aging property are: 1) the increasing
failure rate (IFR) class; 2) the increasing failure rate in average (IFRA)
class; 3) the new better than used (NBU) class; 4) the decreasing mean
residual life (DMRL) class; and 5) the new better than used in expec-
tation (NBUE) class. Each of these classes has a dual class. These
are named DFR, DFRA, NWU, IMRL and NWUE, respectively.

Rolski [26] introduced a new class of life distributions called har-
monic new better than used in expectation (HNBUE) with dual HNWUE.
Properties of such life distributions have been treated in Klefsjo [16],
[171.

DEFINITION 1.1. A life distribution F is HNBUE if

(1.1) Sj F(x)dz < exp (—t/p) for all £=0,

where F=1—F, %= p= Sw F(z)dx<oo. If the reversed inequality holds
0

in (1.1) then F' is HNWUE.
By using the mean residual life
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| Py _
dr " if F(x)>0
pr(2)= F(x)
0 if F(x)=0
it can be proved that the condition (1.1) is equivalent to
1.2) Tt—l——g(g)p for all £20.
1{ i@y

(cf. Klefsjo [16]), where pz'(z) refers to the reciprocal of ux(x). The
condition (1.1) means that the integral harmonic value of the mean
residual life of a unit at age « is less (greater) than or equal to the
integral harmonic mean value of a new unit. This is the reason why
Rolski [26] used the name HNBUE (HNWUE).

The following chain of implication exists among the six classes of
distributions (cf. Basu, Ebrahimi and Klefsjo [7])

IFRA NBU
_~ | (DFRA) | = | (NWU)
IFR
(DFR) ﬂ
Xy | DMRL NBUE HNBUE
(IMRL) | = | (N\WUE) | = | (HNWUE) |-

Basu and Ebrahimi [6] explored the possibility of extending the
HNBUE (HNWUE) class by defining the k-order HNBUE (k-order
HNWUE) class of distributions where HNBUE (HNWUE) corresponds

to the case when k=1. It was shown that though ‘HNBUEJ==>

| i-HNBUE |, unfortunately |k-HNWUE|—=> [HNWUE|. Thus HNBUE

(HNWUE) seems to be a more natural class of distributions.

The boundary members of the HNBUE class, obtained by insisting
on equality in (1.2), are of course exponential distributions. In this
paper we consider the inferential problem of testing

H,: F(x)=1—exp (—Ax) , =0, 1>0

versus
1.3) H,: F is HNBUE (and not exponential),
or
H,: F' is HNWUE (and not exponential),
on the basis of a random sample T,,---, T\, from the distribution F.

We assume that F is absolutely continuous.
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During recent years some tests have been suggested for testing
H,: F is exponential versus H;: F is V but not exponential, where V
denotes IFR, IFRA, NBU, NBUE or DMRL. Such tests were proposed
e.g. by Proschan and Pyke [25], Barlow [1], Bickel and Doksum [10],
Klefsjo [18], and Deshpande [13] when 7 is IFR, by Barlow and Campo
[3], Bergman [9], and Klefsj6 [18] when F is IFRA, by Hollander and
Proschan [14], Koul [19], [20], Kumazawa [22], and Deshpande and
Kochar [12] when 7 is NBU, by Hollander and Proschan [15], Koul [20]
and Koul and Susarla [21] when 7 is NBUE and by Hollander and
Proschan [15] and Klefsjo [18] when 7 is DMRL.

Since NBUE implies HNBUE, that is, HNBUE is the largest avail-
able class of distributions with aging property, therefore the test of
H, versus H, that we propose focuses on a larger class of alternative
distributions. For application along with some other important proper-
ties of HNBUE see Klefsjo [16], [17].

The scaled total time on test (TTT-transform) was introduced by
Barlow and Campo [3] and discussed in more details by Barlow [5].
This concept has proven to be very useful in the statistical analysis of
life data. In Section 2 of this paper, we have given two test statistics
for testing H, against H,. Both test statistics are in terms of empiri-
cal TTT-transform. The asymptotic behaviour and the consistency of
test statistics are discussed in Sections 3 and 4. Finally in Section 5,
the techniques of Section 2 are illustrated using two examples.

2. Test statistics based on the empirical scaled TTT-transform

In this section, we will obtain two test statistics for testing (1.3)
based on the empirical scaled TTT-transform.
We start with the following definitions.

DEFINITION 2.1. Let F be a life distribution with finite mean g.
The TTT-transform of F is then defined by

P

2.1) H;‘(t):So “ F(s)ds, for 0<t<1

where F-!(t) is the inverse function of F.

DEFINITION 2.2. Let F be a life distribution with finite mean .
The scaled TTT-transform of F is then defined by

HzF'(t)
H:'(1)

(2.2) Px(t)= for 0<t<1,

where by (2.1), H7'(1)=p.
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Remark 1. If F is exponential then the scaled TTT-transform is
given by ¢x(t)=t, 0=t=<1.

Assume that {(1)<t(2)<---=t(n) is an ordered sample from a life
distribution F' (and let ¢{(0)=0). Further let

2.3) Y,=3} (n—k+ D0~ tkh-1)),  G=1,--,m

denote the total time on test at #(j). A natural choice of estimator
of the scaled TTT-transform is the empirical scaled TTT-transform

2.4) Galt)= II;’"_','((?) ,  0stsl,

where H,:‘(t):SF; © F(s)ds for 0<t<1, F, is the empirical distribu-
0

tion function and F,=1—F,. Calculations show that
(2'5) ¢n<%>=sj ’ j=0y17"'yn

where

szTY’Lv j=0,1,--+,7n, Y,=0, and Y,= Zt(k)

n

One way to get a test statistic for testing exponentiality against
HNBUE is to use (1.2), (2.2) and the fact that F' is HNBUE (HNWUE)
if and only if

(2.6) ) {1—_}%0%—1}01@@0 :

The left hand side of the HNBUE inequality (2.6) has been esti-
mated for the specified times t(1),---, #(n), and summed up, that is,
the estimate A, is given by

@D  A=33 [CoIE D) -1

r=1j=1 1 Sjl
Ll D _Y=[l" 1 ] Y,
nmm T8, " lwA®T D e

where D;=(n—j+1)(t(5)—t(7—1)), 7=1,---,n and Y, and S, are given
by (2.3) and (2.5) respectively. The subsequent test criterion using A,
then, consist of noting whether the estimated inequality (2.6) is satis-
fied significantly on the average over times {(1),---, t(n), that is, we
expect a positive (negative) value of A, if F is HNBUE (HNWUE),



TESTING WHETHER SURVIVAL FUNCTION IS HARMONIC 351

but not exponential.
Our second test statistic for testing H, against H, is based on the
fact that F' is HNBUE (HNWUE) if and only if

2.8) In (1—¢(F(t))§(g)—_:¢_ . for all t=0.

The left hand side of the HNBUE inequality (2.8) has been esti-
mated for the specified times #(1),---, t(n), and summed up, with 57:]
i=1

H9) being estimated by =, that is, estimate B, is given by
[l

2.9) B.— [?—1 In (1—S,_1)] 4.

The subsequent test criterion using B,, then, consist of noting whether
the estimated inequality (2.8) is satisfied significantly on the average
over times t(1),-- -, t(n).

We have not been able to find the distribution of A, under H, (in
closed form) for different ». It is shown the complexity of the distri-
bution of A, increases very rapidly as the number of observations in-
creases.

The following theorem gives the distribution of A, under H, for
n=2.

THEOREM 1. Under the null hypothesis
Sfa(t)=2exp (—21[t) , —oco<Lt<oo .

PrOOF. From (2.7),
(2.10) A2=2t(1)—Y2/2=iﬁ (i) ,
=1

where a,=38/2, a,=—1/2. Using the fact that 2{(1) and #2)—%(1) are
independent under H, and have the same exponential distribution with
parameter A (cf. Barlow and Proschan [4], p. 59) we get
Aexp (24t) , —00<t<0
f Az(t) = {
Aexp (—21t) , 0<t<oo.

Remark 2. For an arbitrary »>2, we can write

A,=nt(1)+ 1; [(jjz (n—j+1)>—n—1]
Y,

n E(n_j_*_l) Dj+1+"'+Dn .
n ji=2

D,+-+-+D,
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Since %:i:’ '. " -:-Dlz * has Beta distribution with parameters (n—j, 1) and
Dj+---+D,, ) . e
»’s are independent, j=2,-..,n—1, the distribution of
Dj+ i +D'n p .7

S Dyt +D,
j=2 .Dj+" '+Dn

. . N "1 D 4o tD . .
difficult even to write the distribut f J+1 »(n—j+1
c n to wri ibution o 12:2 7 (m—3+1) in

is the convolution of (n—2) Beta distributions. It is

closed form.
The following theorem gives the distribution of B, under H,.
THEOREM 2. Under the null hypothesis

1
@11)  fp =] D!
0 otherwise .

(n—t)*?exp(t—n)  for —oo<t<0

Proor. Using the fact that f_‘, In (1—S,_;) has the same distribu-
j=1
tion as Elln X, where X,’s are independent and have uniform distri-
j=1
bution over [0, 1] (cf. David [11], p. 99) we get

1
@12)  fu (t)={ @2

0 otherwise ,

(—t)"texp (t) for —oco<t<0

where W,L=§‘_, In(1—S,_;) and hence (2.11).
Jj=1

Table 1. Critical values of the test statistic B, with level «

n Lower tail Upper tail
a .005 .01 .05 .1 .005 .01 .05 .1

3 —-45 -35 -1.75 —.8 2.9 2.8 2.65 2.4
4 —5.14 —4.23 —-2.4 -1.2 3.5 3.15 3.05 2.95
5 —6.24 —4.4 —2.68 -—1.8 4.7 4.2 4.1 3.9

6 -7.07 -5.17 —-3.5 —-2.25 5.7 5.4 5.2 5.03
7 —7.28 —6.76 —4.16 —2.9 6.3 6.1 5.8 5.45
8 —-7.52 —6.86 —3.6 -—3.1 6.6 6.5 6.4 6.15
9 -8.85 —7.19 —4.25 -3.2 6.8 6.55 6.45 6.3

10 —9.15 —-7.5 —4.45 -3.4 6.95 6.8 6.6 6.5
1 —9.55 —8.52 —4.9 -3.8 7.12 6.9 6.78 6.7
12 -9.8 —-8.75 —5.3 —4.3 7.5 7.3 7.15 7.1
13 —10.14 —-8.9 —-5.75 —4.9 8.6 8.35 8.12 7.9

14 —-11.4 -9.2 —6.17 -5.2 9.7 9.4 9.3 9.15
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Using the equation (2.11) we give critical values for B, for n=
3(1)14.

3. The asymptotic behavior of A, and B,

In this section we study the behaviour of our test statistics.
First we prove the following lemma.

LEMMA 1. Under the null hypothesis, A,/J % has asymptotically the

i 2 (- (g Bt o),

same distribution as Y,,/n<

ProoF. From (2.7), we can write

A,,/J%:X'L[("E:I (n—§)—(n—j+1) %jil-_‘_-:.-.-|-+pl-zn>/1/_ﬁ]

L) Y,
o onyn

Since under null hypothesis, n(t(1)) has exponential distribution and
Y,/n goes to 1/2 in probability, therefore n(t(1))/4/n and Y,/ny/n both
go to zero in probability.

Remark 3. We should mention that ¢(1) and Y,/n are asymptoti-
cally independent (cf. David [11], p. 270).

THEOREM 3. Under the null hypothesis,

3.1) lim P ( f;;‘: St) o) ,

where O(t) is the standard mormal distribution.
ProoF. Use Lemma 1 and Lindeberg’s condition.
The following theorem gives the asymptotic distribution of B,.
THEOREM 4. Under the null hypothesis
B,
Jyn

PROOF. Since ,é In (1—8,_;) has the same distribution as Eln X,
=1 Jj=1

3.2) lim P (

n—oo

gt) —a(t) .

where X,’s are independent and have the same uniform distribution
over [0, 1], by central limit theorem "ilog X, has asymptotically nor-
Jj=1

mal distribution with mean —(n—1) and variance n—1. The equation
(2.9) can be written as
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B,= {2 In (1—S,)+(n—-1)]+1 .
=
From this (3.2) follows.

Remark 4. The distribution of B, is invariant under 21 but the
distribution of A, depends on 2. However, by taking a consistent esti-

mator ﬁ,,:n/Y,,, one can consider a test based on 1,4, whose asymp-
totic distribution is independent of the 2. We should mention that if
A is known one can use A,.

Remark 5. Since ¢,(x) is a consistent estimator of ¢ (x) (cf. Barlow
[6]), therefore St i—l—_—F—"(L)—l}dw and In {(1— ¢.(F(t))} + ;t are con-

0 L 1—g,(2) w
sistent estimators of S: {ll_—l;((g—l}dx and In {(1—¢(F(t))}+—t- for all ¢.
- 1

Remark 6. While the first draft of this paper was being written
one related work was brought to our attention. Borges, Proschan and
Rodrigues [8] have used sample coefficient of variation as a test for
exponentiality versus NBUE. We think that one can use the same
test statistic to test exponentiality versus HNBUE.

Since it is difficult to find the distributions of our test statistics
under alternative hypothesis (even asymptotic distributions), we have
used Monte Carlo approach to study the power of our statistics. In
our study we have also included two statistics A, and B, studied by
Klefsjo [18], which are in the following form

(3.3) A= 4Dy
=t 5,
and
_ < [ B;D;
(3.4) B=3 <___Sn )

where a,=%{(n+1)3j—3(n+1)2j2+2(n+1)_1'3}, ﬂjz%{2j3—3j2+j(1——3n

—3n?)+2n+3n*+n’}. We have simulated the power of tests with sig-
nificance level a=.05 for some Weibull and gamma alternatives for =
=20. The power estimates are based on 2000 simulations each. The
results are given in Table 2.

From Table 2 we observe that B, has largest power values. We
think the main reason for that is B, tests for exponential distribution
against a larger class of distributions.
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Table 2. Power estimates based on 2000 samples of
size n=20 with a=.05.

A, B, A; B
F(x)=exp (—x'-%) .62 .68 41 .59
F(z)=exp (—?) 8 | .7 | .18 | .8
F(x)=exp (—z8) .54 .59 12 .43
F‘(x)=S: tetdt 68 | .15 | .28 | .72

4. Efficiency of the tests

Using the result from Barlow et al. [2], pp. 284-285, we get that
the test statistic B, is unbiased and consistent.

To compute the Pitman efficiency of test statistic B, (for a descrip-
tion of Pitman efficiency see Lehmann [23], pp. 371-380) we need the
following

THEOREM 5. If {F,} is a sequence of alternative distributions con-
tiguous to Gy(x)=1—exp (—z) (for a definition of comtiguity see Barlow
et al. [2]). Then

(4.1) JW( f . —#(F,.))

converges in distribution to a standard normal distribution, where
© £ 1 -1
“42) p(F)= [So xdF,,(a;)—So x(1~F,.(x))dx—1] [SO(F,,(u))du] +1.

PrOOF. Use theorem (6.11) in Barlow et al. [2].

When testing a simple hypothesis =6, against an alternative hy-
pothesis 6>6, (say) using a test statistic 77 which is asymptotically nor-
mally distributed with mean g(f) and variance o*(f)/n the efficacy for
calculating Pitman efficiency is given by Eg (X)=(x'(6,))"/s*(6,), where
the dash indicates differentiation. In our case this means that Ey (B,/
n)=(p'(F,))}/0=0, where 6, corresponds to the exponential distribution.

We calculate Ey (B,/n) for linear failure rate, Makeham, Pareto,
Weibull and gamma alternatives given respectively by

F(x)=1—exp <-—<x+—;-0x2>> for 620, =0
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Fyzx)=1—exp (—(x+0(x+e*—1))) for 620, x=0
(4.3) Fyx)=1—-Q1+0x)"" for 620, =0
Fy(x)=1—exp (—x) for >0, =0

FAx):ﬁ Sot"“e“dt for 60, 0.
For Fy, F, and F;, 6,=0, and for F, and F; H, corresponds to 6=46,
=1. Calculations give the following efficacy values

LFR Makeham Pareto Weibull Gamma
Er(B.n)  1.000 .063 1.000 1.000 .250

As an example, for the LFR case, the efficiency of the statistic
B, with respect to the best test proposed by Kumazawa [22], is 1.28.
Pitman ARE of B, compared to other tests can be similarly computed.

5. Examples

The techniques of Sections 2 and 3 will be illustrated by means of
the following examples.

Exzample 1. Consider the data given in Proschan [24]. The data
represent the failures of airconditioning equipment in 13 different air-
crafts. We want to test if failure times for each plane follow expo-
nential distribution or if they follow HNBUE (HNWUE) distribution.
The computations associated with B, and A, are given in Tables 3 and
4 respectively.

Let H(H;) denote the alternate hypothesis that F is HNBUE
(HNWUE) and not exponential. Table 3 summarizes the results of the
tests for each plane with significance level a=.05 when B, is used. For
plane number 7909, 7911, 7913 and 8045 the alternative hypothesis was
H; and for the remaining planes the alternative hypothesis considered
was H;,. In all cases H, was accepted. For small sample size we have
used Table 1.

Table 4 summarizes the results obtained when A, is used. In this
case the test is available only for »=2 and for large samples. The
conclusions reached are similar to that in Table 3.

Barlow et al. [2] tested H,: F' is exponential distribution against
H: F is DFR (but not exponential) for planes 7907, 7908, 7915, 7916
and 8044. There is a good agreement between the results obtained by
Barlow et al. [2] and our results. Also, there is good agreement be-
tween our results and results obtained by Proschan [24].
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Table 3.
Plane Sample Observed value Conclusions
size of statistic By (a=.05)
7907 6 Bs=.81 2%%
7908 23 B;33=6.86 2%%
(Z=1.3)*
7909 29 Byy=—.7944 1*
(Z=—.14)*
7910 15 B;5=5.76 2%¥
(Z=1.45)*
7911 14 By=-2.11 1*
7912 30 Byy=+17.01 2%F
(Z=+1.2)*
7913 27 By;=—4.08 1*
(Z=—.78)*
7914 24 By=.15 2%
(Z=.15)*
7915 9 B,=3.52 2%
7916 6 Bg=2.12 2%+
7917 2 B;=1.48 A
8044 12 B;12=5.3 2%%
8045 16 Bjg=—1.61 1*
(Z=— .4025)*

* Since the sample size is large we used the fact that
Bu/Yn=Z is asymptotically normal.
1* stands for not significant against H;.
2%* stands for not significant against H;.

Table 4.
Plane Sample Observed value Conclusions
size of statistic Ax (a=.05)

7908 23 —582.884 PAsd
(Z=-1.27)*

7909 29 —238.26 2%%
(Z=—.54)*

7912 30 —394.55 2k

(Z=1.21)*

7913 27 396.3 1*
(Z=.993)%*

7914 24 —8.97 2%*
(Z=—.03)*

7917 2 —61.5 2%%

* Since the asymptotic distribution of A, depends on 2,
we have used 7n/Yy instead of A.

Example 2. Consider the data given in Susarla and Van Ryzin [27].
The data represents the survival times of 81 participants from a mel-
anoma study conducted by the central Oncology Group. For our study
we have dropped censored observations, that is, we have 46 observa-
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Table 5.

Statistics  Observed value Conclusions (a=.05)

A 984.4 reject H, against the
46 (Z=2.1) alternative HNBUE
B —17.486 reject H, against the
46 (Z=-2.52) alternative HNBUE
A2v7560 1.72 reject H, against the
“n? : alternative IFR
Bv210 1.93 reject H, against the
ns : alternative IFRA

tions. We want to test if the survival times follow exponential dis-
tribution or if they follow HNBUE. The computations associated with
B, and A, are given in Table 5. Both A, and B, lead to rejection of
H,.

To check if H, will be rejected against more restricted alternatives
like IFR or IFRA the statistics 4, and B of Klefsjé [18] are also used
in Table 5. Under H, Klefsjo showed that A,v/7560/n’ and B+/210/n°
behave like standard normal distributions. A, and B also lead to re-
jection of H,.
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