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Summary

Factorial design theory has been effectively used in solving problems
associated with many combinatorial structures. Hedayat, Raghavarao
and Seiden [7] clearly demonstrated this in obtaining various results on
F(n, A)-squares. Indeed, both theorems in their paper are cute obser-
vations if knowledge of factorial design theory is assumed. The ob-
jective of this paper is to present the lattice square method for ob-
taining sets of mutually orthogonal F'(n, 2)-squares of given order n.
As a by-product a generalization of a theorem, due to the above au-
thors, is obtained and a lower bound is presented for the number of
mutually orthogonal F(n, 2)-squares on sets of various cardinalities as-
sociated with the canonical decomposition of n as a product of powers
of distinct primes.

1. Introduction

It is well known that factorial design theory can be used as a tool
in solving problems in many mathematical and statistical areas. Con-
versely, the theory associated with many mathematical and statistical
structures lead to solutions in factorial design problems. This intimate
relationship is typically climaxed in the construction of factorial designs.
A discussion of this aspect can be found in Chapter 12 of the recent
book by Raktoe, Hedayat and Federer [13].

The connection between Latin squares and factorial designs has
been known for a long time and it is not surprising that F-squares,
which are generalizations of Latin squares, also exhibit this property.
F-squares were introduced by Finney [3]-[5] and Freeman [6], and sub-
sequently various aspects have been developed by Hedayat and Seiden
[8], Hedayat, Raghavarao and Seiden [7], Federer [2], and Mandeli, Lee
and Federer [10] In their paper Hedayat, Raghavarao and Seiden [7]
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have effectively used concepts and results from factorial design theory
to establish their two theorems concerning F-squares. Their first the-
orem follows immediately from some basic results in fractional factorial
design theory and their second theorem relies on confounding theory
for prime powered symmetrical factorials.

The objectives of this paper are as follows: (i) In Section 2 the
prime-powered lattice square approach is used to construct sets of mu-
tually orthogonal F'(n, 2)-squares. The development not only results in
exhibiting to the reader the various algebraic-geometric-combinatorial
aspects associated with this approach, but also leads to re-emergence
of the second theorem of Hedayat, Raghavarao and Seiden [7] in the
lattice square framework. (ii) In Section 3 we generalize the “easy”
case of Section 2 to the mixed prime powered lattice and it is shown,
via the canonical decomposition of n, how to obtain various sets of
mutually orthogonal F'(n, 1)-squares for given n. This generalization
leads to a lower bound on the number of mutually orthogonal F(n, 1)-
squares of the various types associated with ». (iii) Finally, in Sec-
tion 4 we provide a discussion of the results and indicate directions of
further research in this area.

All the results obtained in this paper are illustrated with a detailed
example and if deemed necessary some preliminary notions are briefly
recalled.

2. Symmetrical prime powered lattice squares and corresponding
sets of mutually orthogonal F-squares

For basic terminology on F-squares we refer the reader to the
paper by Hedayat and Seiden [8] and that on lattice squares to stand-
ard texts, such as Cochran and Cox [1] and Kempthorne [9]. In their
paper Hedayat, Raghavarao and Seiden [7] have shown how to obtain
a complete set of mutually orthogonal F(m, 1)-squares in the prime
powered case. Since we will present a unified and generalized lattice
square method it is both illuminating and essential to develop the prime
powered case fully from the lattice square viewpoint.

Let n be a given prime power, which is written as n=2p*, where p
is a prime. Further, let d be a divisor of # so that w=~hd for some h, and
n is rewritten as p*=(p")®=s% Consider the nxXn=s%Xxs? lattice square
with row-column confounding schemes given by the two-tuple of flats
((d—1)-flat, (d—1)-flat) of the finite projective geometry PG(2d—1, s)
over the Galois field GF'(s) such that these flats generate PG(2d—1, s).
This implies that the two confounding schemes have no common ele-
ments and that (s?—1)/(s—1) effects of PG(2d—1, s) are confounded with
rows and the same number with columns of the lattice square. The
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allocation of the s* treatment combinations to the n? cells of the lattice
square proceeds by taking simultaneously the parallel pencils of the finite
Euclidean geometry EG(2d, s) corresponding to the generators of the
two-tuple of flats. Now, note that there are precisely t=(s*—1)/(s—1)
—2(s*—1)/(s—1)=(s*—1)*/(s—1) effects which are unconfounded with
rows and columns. These effects are orthogonal to each other and
each will produce an F'(n, Az=s?"')-square on s symbols in GF'(s) by tak-
ing linear combinations of levels in the treatment combinations of the
n® cells corresponding to the point in PG(2d—1, s) representing the un-
confounded effect. Hence this will lead to a complete set of mutually
orthogonal F(n, s*!)-squares on s symbols. This same result was ob-
tained by Hedayat, Raghavarao and Seiden [7] without resorting to
lattice square terminology.

In the next section we generalize the above symmetrical prime
powered lattice square procedure to the asymmetrical or mixed prime
powered lattice square procedure for obtaining sets of mutually orthog-
onal F'-squares.

3. Asymmetrical prime powered lattice squares and corresponding
sets of mutually orthogonal F-squares

Let n=p%p}...p¥ be the canonical representation of the integer
n as a product of powers of distinct primes, and let d, be a divisor of
the exponent u;, t=1,2,-.-,v. This implies that u,=h,d, for some h,.
Further, let n be rewritten as n=(pl)%(p}2)%- - - (pio)to=(s;)%(s52)- - - (82v),
where h, corresponds to d, and s,=p.

In the ensuring development we assume that the reader is familiar
with the calculus of mixed prime powered factorials as developed by
White and Hultquist [14] and Raktoe [11], [12]. In this calculus the
Galois fields GF'(s;) are imbedded in a finite commutative ring R of or-

der ]g[si such that they are isomorphic to mutually annihilating sub-
rings R(s;) of R. As a consequence the ring R is the direct sum of
the GF(s)’s, i.e., R=§@(R(si);:GF(si)) and, both EG(2d,s;) and

PG(2d,~1, s;) have their isomorphic representations over the subrings
R(s;) of R. Denoting these representations by EG*(2d,, s;) and PG*(2d,
—1, 8,) it follows that the set of treatment combinations T and the set
of effects E of the s¥ixsix ... xs¥ factorial are the direct sums of

the EG*(2d,, s;)’s and the PG*(2d,—1,s,)’s, i.e., T=T*= i‘é @ (EG*(2d,,
s)=FEG(2d,, s)) and E=E*= ié @ (PG*(2d,—1, s)=PG(2d;—1, s;,)). This

means that all arithmetic with treatment combinations and effects (in-
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cluding generalized interactions) associated with the s} xsiex ... X sk
factorial will take place in T* and E*, respectively. Detailed examples
of this unified approach for mixed prime powered factorials can be
found in the above-mentioned papers. However, to put the reader at
ease we provide an exhaustive example.

Example 3.1. Let n=6 with the canonical decomposition 6=2!x 3.
The underlying Galois fields are GF(2)= {0, 1} and GF(3)={0, 1, 2} with
mod. 2 and mod. 3 arithmetics. Let R be the ring of residue classes
modulo 6, i.e. R={0,1, 2, 3, 4,5} with mod. 6 arithmetic. The reader
may verify that R(2)={0, 3} and R(3)= {0, 4, 2} are mutually annihilat-
ing subrings of R. Via the isomorphisms ¢, and ¢,

¢l ¢Z
0—0 and 0—0
1—3 1—4
2—2

we observe that GF(2)=R(2) and GF(3)=R(3), so that R=GF(2)®
GF'(3). The isomorphic representations of EG(2,2) and EG(2, 3) are,
respectively, equal to EG*(2, 2)={(0, 0), (3, 0), (0, 3), (3, 3)} and EG*(2,
3)={(0, 0), (4, 0), (2, 0), (0, 4), (4, 4), (2, 4), (0, 2), (4, 2), (2, 2)}. Hence the
set of 36 treatment combinations in the nXxn=2!x3? mixed factorial
is given by the set T*={(x,, %\, X3, %)}, Where z,, x;; are elements
of R(2) and =z, x, are elements of R(3) or equivalently (xy, ;)€
EG*?2, 2) and (%, %) € EG*(2, 3). Similarly, the isomorphic represen-
tations of PG(1,2) and PG(1, 3) are, respectively, PG*(1, 2)={(3, 0),
0, 3), (3,3)} and PG*(1, 38)={(4, 0), (0, 4), (4, 4), (4, 2)}. These sets re-
present the sets of effects {A}, A3, A%, A%} of the 2! factorial and {Aj},
Al ALAL, ALAL)Y of the 3% factorial. The set of 3+4+4(3)(4)=19 ef-
fects in the 2?x3* mixed factorial are represented by the set E*=
{AfnAZeBiuB,in}, where {xy, 2} CR(2) and {xy, 2} CR(3) with the
understanding that two effects A,7uA 4,724,322 and A YA A A2 are
the same if (yy, Yoy Yor, Y22) = p(%11, L1sy Xay, X35) is not a zero divisor in R.
Equivalently, the set E* can be described by taking (xy, ;) € PG*(1, 2)
and (xy, %) € PG*(1, 3) with the understanding that (xy, x,;) represents
the class {o¥(%y, Zi5): p¥+#0€ R(2)} and (&, x») represents the class
{o¥(2y, 2): pf#0€ R(3)}. The generalized interaction of the two effects

SuAfuBfuAg2 and AYuA edinAye in K is given by the set of effects
{Alfl’l”n“"’zyuAl;’lez*'P2V12A2f1121+92721A251’”22+F2”22}, where 01 and p; are not zero
divisors in R. If in a 2!x 3! factorial blocks of 6 units are considered,
then it is sufficient to confound an interaction between a two-level fac-
tor and a three-level factor in order to confound the effects making up
the interaction. For example, if A% B is confounded with blocks then



CONSTRUCTION OF MUTUALLY ORTHOGONAL F-SQUARES 333

so are A3 and B: also. Conversely, if A} and B:, are confounded with
blocks then so is the interaction A%B.. To find the allocation of treat-
ment combinations to the blocks when A% Bj is confounded we have to
solve six equations in T*. The solutions are given in traditional nota-
tion by the sets (ALAL), (ALAL), (ALAL): (ALAL)s, (ALAS), and (ALAS)s.
Here the “second level of the effect (A43.A43%)”=(A43A%).= {(%11, T1z) L1y T22)
€ T*: 3x,+4x,=2}. Since each element in R has a unique decompo-
sition in terms of the elements of R(2) and R(3), the equation 3xy,+
42, =2 can be decomposed in the two equations 3z,+02,=0 and Oz, -+
4, =2, i.e., 32,=0 and 4x,=2. Hence (4}43).={(0, 0, 2, 0), (0, 3, 2, 0),
(0,0, 2, 4), (0,3, 2,4),(0,0,2,2), (0, 3,2,2)}. Thus finding the block con-
stituents boils down to finding the six “levels” of (A%}A43).

The above discussion and example have now brought us in the
position to tackle the confounding aspect in a mixed prime powered
lattice square. Consider the problem of constructing an nXxXn=(sf1Xsf2X
s X sI) X (shXshaX - - - X8fv) lattice square by providing suitable row
and column confounding schemes. As has been indicated above, the
Galois fields GF(s;) have as their isomorphic counterparts the subrings
R(s)) of R, and the isomorphic counterparts of EG(2d;, s;) and PG(2d,
—1, s;) are EG*(2d,, s;) and PG*(2d;—1, s;). The set of treatment com-
binations 7' and the set of effects E of the sixs¥:X --- X s¥ factorial
are represented by T* and E* respectively. To obtain an nXn lattice
square we must confound a v-tuple of flats ((d,—1)-flat, (d,—1)-flat,-- -,
(d,—1)-flat) with rows and another v-tuple of flats ((d,—1)-flat, (d,—1)-
flat,- - -, (d,—1)-flat) with columns such that each pair of (d,—1)-flats in
the two-tuples generates PG*(2d;—1,s,), i=1, 2,---,v. It follows that
all interactions between effects, represented by the points in the flats
of the first v-tuple, will also be confounded with rows and similarly in
the second v-tuple with columns. For v=2 the number of effects con-
founded with rows (columns) is equal to (sii—1)/(s,—1)+(s5z—1)/(s;—1)+
(sh1—1)(sk—1)/(s;—1)(s;—1). For general v this number is equal to the
sum of » such terms plus all products of such terms taken two-at-a-time,
three-at-a-time, etc., and finally v at-a-time. The treatment combina-
tions for the m?® cells of the lattice square are obtained by developing
simultaneously the “levels” of the generators of the flats in the v-tuples
for rows and columns. In this process the interactions of effects from
different flats in the row and column v-tuples can also be utilized to
obtain the cell constituents. It follows that in PG*(2d,—1, s;) precisely
ri=(s%—1)%(s;—1) points (or effects) will be unconfounded with rows
and columns. Hence from these points we obtain y; mutually orthog-
onal F(n, A,=mn/s;)-squares on s, symbols in GF(s;)=R(s;) by taking linear
functions of the components of the treatment combinations in the n?
cells of the lattice square corresponding to the unconfounded points (or
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effects). Briefly, this process amounts to finding at which “levels”
the unconfounded effects are in the n? treatment combinations of the
lattice square. We thus have established the following theorem :

THEOREM 3.1. The construction of an nXn=(sf1xsdhx ... X8dv)X
(8hrx 82X «++ X8) lattice square implies the comstruction of v sets of
mutually orthogonal F(n, 2,=n/s,)-squares on s; symbols, the ith set hav-
g cardinality (sf—1)}(s;,—1), 1=1,2,---, .

Before giving a detailed and non-trivial example to illustrate The-
orem 3.1 we state two corollaries, which are immediate consequences
of the theorem.

COROLLARY 3.1. Theorem 3.1 of Hedayat, Raghavarao and Seiden
[7] follows by setting v=1.

COROLLARY 3.2. The number y,=(sf—1)}/(s;—1) in Theorem 3.1 is
a lower bound on the number of mutually orthogonal F(nm, A,=n/s;)-squares
on 8; symbols.

Example 3.2. Let n=6=2'x3! and consider the problem of con-
structing a 6x6=(2'x3")x(2!x3") lattice square. The details of the
calculus for the 22X 3* mixed factorial have been described fully in
Example 3.1. To obtain a lattice square select A} and A} (represented
by the points (3,0, 0, 0) and (0, 0, 4, 0) of E*) for the row confounding
and select A}, and Aj (represented by (0, 3,0, 0) and (0, 0, 0, 4) of E*)
for the column confounding. Equivalently, we may use the interactions
A} A} and AL A5 for the row and column confounding. So the two-tuples
of flats representing the confounding schemes are({(8, 0, 0, 0), (0, 0, 4, 0)})
and ({(0, 3, 0, 0), (0, 0, 0, 4)}), and in both cases these are of the type (o-
flat, o-flat). Notice that the points (3,0, 0,0) and (0, 8,0, 0) generate
PG*(1,2). Similarly, the points (0,0,4,0) and (0,0, 0,4) generate
PG*(1, 3). Utilizing the interactions A%Ai and A%AL4 we obtain the
following lattice square in conventional “level ” notation :

(ALAL)  (AhAL): (AhAL) (AhAL)s (ALAL)M (ALAL)s

(A} A4 (0,0,0,0) (0,3,0,4) (0,0,0,2) (0,3,0,0) (0,0,0,4) (0,3,0,2)
(A} A4 (3,0,4,0) (3,3,4,4) (3,0,4,2) (3,3,4,0) (3,0,4,4) (3,3,4,2)
_(AhAY): 0,0,2,0) (0,3,2,4) (0,0,2,2) (0,3,2,0) (0,0,2,4) (0,3,2,2)
T (AL AL)s 3,0,0,0) (3,3,0,4) (3,0,0,2) (3,3,0,0) (3,0,0,4) (3,3,0,2)
(A} A5 0,0,4,0) (0,3,4,4) (0,0,4,2) (0,3,4,0) (0,0,4,4) (0,3,4,2)
(A} AL)s 3,0,2,0) (3,3,2,4) (3,0,2,2) (3,3,2,0) (3,0,2,4) (3,3,2,2)

The first cell in L is developed by solving the equations 3+ 4x,=0
and 3w,;+42,=0 in T*. This reduces to 3x,,=0, 3x,=0, 4%,=0 and
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42,=0, which gives the unique solution (0, 0,0,0). The other cells in
the first row of L are obtained in the same way. The treatment com-
binations in the first row form the “intrablock” subgroup and the
other rows can be developed by co-setting with the appropriate treat-
ment combinations in the first column.

Using L we obtain 7,=(2—1)}/(2—1)=1 F(6, 2,=3)-square on GF(2)
=R(2)={0, 8} from the unconfounded effect A} A} € PG*(1,2). Thisis a
6x6 Latin square whose entries are obtained by taking the linear com-
bination 3w+ 3x,; of the components x,, and z,, in the 36 cells of L.
Thus :

F 3,43, =By +321)] =

S W o w o
S W o W o w
oS W o W o
W o W o W
W o W o wWwo
W o W o W

|3 3 0 0]

By utilizing the unconfounded effects A3 A% and Aj A3 of PG*(1, 3)
we obtain 7,=(8—1)%/(83—1)=2 mutually orthogonal F'(6, 1,=2)-squares
on GF(8)=R(3)={0, 4, 2}. The appropriate linear combinations of com-
ponents of the treatment combinations in L which produce the two
squares are 4@, +4x, and 4xy+2x,. Therefore:

0 4 2 0 4 2
4 2 0 4 2 0
2 0 4 2 0 4
F i, 43, = [(42y +400)] = 04 20 4 2| and
4 2 0 4 2 0
12 0 4 2 0 4]
0 2 4 0 2 4]
4 0 2 4 0 2
2 4 0 2 40
Fuga3,= (4% +225)] = 02 40 2 4|°
4 0 2 4 0 2
12 4 0 2 4 0]

These sets of F-squares illustrate Theorem 3.1 and from Corollary
3.2 we know that there are at least 1 mutually orthogonal F(6, 2)-
square on {0, 3} and at least 2 mutually orthogonal F(6, 3)-squares on
{0, 4, 2}.
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4. Discussion of the results

A generalization of our results could be obtained by abandoning
the canonical decomposition and using arbitrary decompositions, e.g.
n=12=6'x2!. The penalty carried by this approach would be the loss
of the finite geometrical aspects and the subsequent combinatorial com-
plexities. However, it would provide F-squares which are not neces-
sarily based on Galois fields or their isomorphic counterparts.

Another problem is to sharpen the lower bound obtained in Corol-
lary 3.2. A formidable problem is to provide complete sets of mutually
orthogonal F'(n, A,=n/s;)-squares.
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