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Summary

We consider the empirical Bayes solution in such a situation where
the sample size is successively determined by a rule which includes the
Bayes risks and the observation costs. The empirical Bayes floating
optimal sample size depends on current as well as on previous infor-
mation assumed to be collected from earlier performances of similar
decisions. The sampling is done from an exponential conditional distri-
bution, with a single parameter. The proofs, which show the asymp-
totic optimality of the empirical Bayes solution, are presented for a
hypotheses-testing problem. A straight generalization to a multiple
decision problem is also given.

1. Introduction

Bayesian analysis presupposes knowledge of an adequate prior dis-
tribution, before it is possible to derive Bayesian decision functions and
make use of Bayesian techniques in a classical sense. It is often dif-
ficult to assert what the prior distribution should be. This might lead
to the application of a rule, the risk of which will be greater than the
minimum risk attainable when the prior distribution is known. When
we abandon the assumption of a known prior, the classical Bayes solu-
tion is unattainable. In practice, however, one easily finds fields of
applications where the is no conceptual difficulty in postulating the ex-
istence of the prior. This alone does not make the Bayesian solution
practicable, but if we deal with a repeated decision process, where
similar decisions are made successively, the empirical Bayes solution
may be attained.

The ‘standard’ empirical Bayes theory deals with repetitions of
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independent and identical Bayesian decision problem where the prior
is the same from one decision to another, i.e. the sample size is fixed.
During the recent years, however, there have been papers which have
dealt with independent repetitions of a given problem with varying
sample sizes. When we apply the empirical Bayes techniques to a re-
peated decision process, the information available increases as the pro-
cess continues. In the present paper we will utilize this property in
such a way that when we decide the sample size of a certain decision,
we allow the sample size to depend on information collected from ear-
lier performances of the same decision. We should then be in a situa-
tion where the sample size may change from decision to decision. Con-
sequently, we will call the approach the ‘floating sample size approach’.

The criterion, on which the approach is based, includes the Bayes
risks and the observation costs. We will look for such a sample size
that the expected utility gained by one more observation is less than
the cost of this observation. The sample size for each decision is de-
termined, based on the above principle, before the sampling. This
means that the sample size for the classical Bayes solution, with a
known prior, is fixed, and that of the empirical Bayes solution, espe-
cially for the first decisions, tends to be high, but later it will properly
approximate the classical Bayes solution.

The detailed presentation will be given to a hypotheses-testing
problem where two composite hypotheses are tested against each other.
The presentation includes the proofs of the asymptotic optimality. The
generalization to a monotone multiple decision problem is also given,
but without proofs, because the latter is a straight generalization of
the former. For the conditional distribution of the observable random
variable we assume that the sampling is done from an exponential
family, with a single parameter.

The reference on the general empirical Bayes theory can be made
to Robbins [9], [11], and Maritz [3]. The empirical Bayes hypotheses-
testing has been dealt with in Robbins [10] and Samuel [13], where a
fixed sample size is used. O’Bryan [5], [6] and O’Bryan and Susarla
[7] have discussed the empirical Bayes rules with varying sample sizes.
The determination of necessary sample size has been discussed in Suzuki
[14]. The floating sample size approach in empirical Bayes context is
introduced in Laippala [2], where the particular case of binomial ex-
perimentation is studied. In the present paper we generalize those
results to exponential families in general.

2. General background

The decision problem may be characterized as follows. We deal
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with independent performances of the same decision problem with one
and the same prior distribution. We have to make a decision the con-
sequences of which will depend on an unknown realization 2 of a ran-
dom variable 4. A4 has a prior distribution G which in empirical Bayes
situation is assumed to remain unknown. Furthermore, we assume
that the realizations 2 remain unknown, but that we get information
about their distribution by observing the values of z which are reali-
zations of a random variable X. X has a conditional distribution de-
pending on A, say f(x]|2).
We assume that f(x|2) may be given in the general form

(2.1) f(x|2)=27g(x)h(2) .

This form covers, e.g. the Poisson and the negative binomial distribu-
tions, and after a simple one to one transformation such continuous
distributions as the normal and the gamma. The binomial distribution
is not entirely covered by (2.1), and a slight modification is needed, see
Laippala [2]. What we will observe with the first performances of the
decision problem is the sequence of pairs of random variables {(z,x, %¥)}i-0

where ¥ (gi:ié‘) is the sample size at the kth stage, and 2, is the

sum of 4} observations. By 1 we denote the maximum number of
observations that we are willing to make, and by 4F the sample size
of the first stage, called the 0-stage, because then no previous infor-
mation is available and the optization rule of the sample size cannot
be applied. The conditional distribution of Z, given 2 and ¢}, has the
probability mass or density function given by

(2.2) f(z]2, )= 2ga(z) {R()}* .

When using the accumulated observations, the exponential form and the
value of 1 remain unaltered, but g is a function of 4}, which is added
to emphasize the dependence.

The hypotheses to be tested against each other are of the type

H,: 151*
(2.8)
H,: 1>i*

where i* is a fixed critical constant. In the hypotheses-testing, the
action space A consists of two actions, namely the action a, pertaining
to the hypotheses H,, and the action a, to H,, We apply the follow-
ing loss function:
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0 when A1 4*
L(a,, 2)= {
A—A* otherwise
(2.4)
0 when 1> 2*

L(a,, 1)={

A¥—2 otherwise .

For the prior distribution G we make a standard assumption that
SL(am, 2)dG(2)<oo to ensure that the Bayes risk is finite. The loss

function above has been widely applied in empirical Bayes and also in
classical Bayes literature.

For the floating optimal sample size we assume that at each stage,
i.e. when making each decision, at least one observation has to be
made, i.e. i¥=1vk=1,2,.... For simplicity, we let the cost for each
observation be a constant c.

3. Classical Bayes solution : fixed optimal sample size

We begin with the explicit derivation of the classical Bayes solu-
tion: we operate with the assumption that the prior is known to be
G. From hence on, the subseript G indicates a classical Bayes quantity.

Any decision function 8 =24(z) has with respect to the prior G the risk

B.1)  We(3)=E[(Z)L(as, )+ {1—3(Z)} L(an, 2)]
=Eq [L(ay, )] —E[8(Z) Eq {L(as, 2)—L(ay, 2)| Z}]

where E is the expectation with respect to the joint distribution of
(Z, 4) and E; is the expectation with respect to the prior G. The de-
cision function minimizing the risk (8.1)—and making it the Bayes risk—
for fixed G is

1, when E; {L(ay, 2)—L(a,, 1)|2} >0
(3.2) Ba(2)={

0, otherwise .

For a more detailed discussion of (3.1) and (3.2), see Laippala [2]. Re-
calling (2.2), and denoting A=2, i¥=1, we have for the unconditional
probability of any outcome Z the marginal probability

(3.3) ﬁ(z):S f(z|2, )dGQ) .

According to (3.2), the Bayes rule 4% is based on the conditional ex-
pectation, which, when applying the loss function (2.4), may be written
in the form
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N — _ _ ff@+D)/g(e+]1)
(3.4) Kg(2,1)=E; {L(ay, 2)—L(ay, 2)|2} = 770)042) *

where the first term of the r.h.s. is the expectation of the posterior
of 4, given Z=2. When we define the sets

A

(3.5) Af={z| K4z, 3)>0} , J=1,--4, 0.

we may write that

R 1

:%l‘ [gi(z)fta(z+1)/gt(z+1)—z*fia(z)]=§ [pa(2, )] -

The optimization rule for the sample size may then be formally given
in the form

8.7 1%=inf {1|he =0}
where

3.8) ha,¢=Wa(<”a“)—W(5‘é)+0=§ [pa(2, i)]_%“ lps(2, 1+ 1)]+c .

The Bayes decision rule with optimal sample size ¥ is
1, when Kg,(z, 15)>0
(3.9) 3=
0 otherwise
and its Bayes risk is
(3.10) W4(348)=Eg [L(ay, )] —E [35K (2, i¥)]
={ =46~ 2 lpola, )] -
> ASx

O’Bryan [5] has pointed out that when the sample size varies there
is no single Bayes envelope functional of the prior, but rather a se-
quence of envelopes W/. Then the Bayes rule (3.9) satisfies the con-
dition

A

3.11) Wi=Wq(3t)=min {(We(32)} ,  J=1,---,1.

4. Empirical Bayes solution: floating optimal sample size

If we give up the assumption of a known prior, the classical Bayes
solution is unattainable. In the empirical Bayes situation we suppose
only that the prior is fixed, even if unknown. Suppose that the same
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decision has been made n times, i.e. we are at the stage n+1. Then
we have at our disposal the information {(z;, 7¥)}i-,. We estimate the
marginal probability fF(z) by

4.1) A =(nt1)t 3 9@ =8 o
k=0 gt’,‘,‘(zk,i’,’;) i

where gy(u)=1 iff w=0. The estimator is motivated by O’Bryan [5]
and employed effectively in O’Bryan [6]. It uses all the past data and
satisfies the condition

(4.2) Wm fi@)=77®), (D),

provided that one assumes 1 € [0, 8] where 8<oo. The additional assump-
tion of the bounded parameter space cannot be regarded as a practical
limitation in applications. In continuous case, the marginal density may
be estimated as follows. Let ¢ be the number of those stages where
at least j observations are made. Then ff(2) is estimated by

(4.3) [i@)=1F}(z+h,)—F}(z—h,)][2h,

where h,=dn™"* with d>0 a constant and where F7}(2) is the empirical
distribution function defined by

(4.4) Fi()=()) § (k|2 <z, 0<k=<n} ,  @;>0.

The empirical density f7(z) satisfies also the condition (4.2), see Rosen-
blatt [12] and Parzen [8]. Considering the applicability of the proce-
dure, we now agree that every now and then, e.g. successively after a
fixed number stages, the maximum number of observations is made.

Then the formula (4.2) holds for every j, j=1,---, 1. For other moti-
vation of the modification, we refer to the Section 7.

Substituting now the estimator f}(z) for ff(2) in the classical Bayes
formulae of the previous section, we get their empirical Bayes counter-
parts

P S F ca s\ A Ca s VI
@8)  Ki(e, i {(onag i) = TEELAIEED e

(4.6) Ai={2|Ku(2, 1; {(2x,e5) 9)}2=0) >0}
(4.7) oz, 15 {@e,xr 19)}iz0) =9:(2) (2 +1)/9.(2+1)— A*f(2)
(4.8) i¥,=inf {i|h, =0}

(4°9) hn.tzg [Son(zy 'L; {(zk,i’,‘:‘y i:)}::o)]— E [‘pn(zy 7'+1; {(zk,tti %2‘)};::0)]"'0

n
Ain
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(4.10) 1,  when K2, ifi; {(2ep W)}i=0)>0
' "o otherwise .

In the empirical Bayes situation the Bayes risk is estimated by

(411) W,,(a,f"f* ‘)‘—'EG [L(aor 2)]—A"2 [Son(z: Ty {(zk,i;‘;r z;k)};c':o)] .

*
tat1

The actual Bayes risk of the empirical Bayes rule is the conditional
Bayes risk, given the prior G:

(4.12) W (3,551 =Eq [L(ae, 2)]—E [3;*1K (2, i¥,1)]
=Eg [L(a(), ll)]_A"E [‘PG(Z! 1:71‘4\-1)]

*
tht1

on the convergence of which the asymptotic optimality depends.

5. Asymptotic properties

Recalling the respective definitions, it is seen that for fixed j and 2

(5.1) ngl» K2, §; {(ees ))i-0)=Kol2, 5) »  (P),
(5.2) lim by =ho,;, (),
(5.3) 1,‘131” o2 1)=9e(2,5)»  (P).
THEOREM 1.
(5.4) limi*,=i%, (P).

N—00

PrROOF. Suppose that hg . is not exactly 0. The event e L%
can come about either through iX,<%% or 4¥,>%§. Accordingly,

if-1
(5.5) (ifa#is =] U (20} |Ul{hag<0}] -

Because hg,,<0, j=1,---,1§—1,
(5-6) {h,.,j20} c {hn,j—ha,/ze} - {Ihn,j_ha,jlgs}

for €>0, e<min{—hg,; j=1,---,45—1}. On the other hand, k>0,
and thus

(6.7 {hn,tg<0} S {hn,tg—ha,tzé —e} S {lhn,tg—ha,tglg e}
for €>0, e<hg,s. From (5.5)-(5.7) it follows that

-1 i§
6:8) (iFa#is)=] U 200 |l g<ONE U e —ho.s|Ze)
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for ¢>0, e<min {|hg |, j=1,---, ©4}. Recalling (5.2), and letting n— oo,
the last line (5.8) tends to ¢, and the result follows.

THEOREM 2.

(5.9) lim Wo(3,%5+1) = Wo(3J%) .

n—co

ProoF. From (3.10) and (4.12) it follows that it suffices to show
that

(5.10) lim E [0/*K (2, i¥,)]=E [04°K (2, 18)] -

(5.11) {lim E [3,%:K,(z, i%.)]#E [342K (2, i5)]}
S {lim &%, 4%} U {lim E [3/5K,(2, i§)]+E [042K (2, i%)]} .

We restrict ourselves to the set {¢},=1%}, i.e. to the second term of
the r.h.s. of (5.11):

(5.12) E[0Ko(z, i#)]=| | 04802t )i D Lo )~ Ll D)

A {(z, 1%, 1%)) =0 2

- g2y - S 2, 15)S (2] 2, W) pmHAG(2)

= | {asG a9
{(ze, %, 1)} =0 2

[ Gu@e8) - - - f G520, ) Koz, 1E)dpm
=[ PIK i8: (G 80> 01Kz, 8)p(2)

4

When z e A% is fixed, it follows from (5.1), as n— oo, that
(6.13) Lim P[K.(2, i%; {(2e,43, ©¥)}iz0)>0]=P [K(2, 18)>0] .
(5.14) |P[K.(2, 1%; (2e,up) 9)i=0)> 01K (2, 18)| | Kol2, 18)|

(6.15) | 1Koz #9)ldp@=| | 1L 1)-Liay, D112, i9G(ME)
={ 1L H- L@, DId6W <o .
a
Then, from the Lebesgue dominated convergence theorem, using (5.12),
(6.13), (5.14) and (5.15), follows the second term of the r.h.s. of (5.11).
(6.10) and the theorem follow from (5.11) using Theorem 1 and the re-
sult above.
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6. Monotone multiple decision problem

In the empirical Bayes context, the monotone multiple decision
problem has been discussed, e.g. in Van Ryzin and Susarla [15]. Let
now the action space consists of a finite number of distinct actions, say
A={ay---,a,) and let —oo=2_,<4 < +-<2_1<4=0c0. The decision
corresponding to a,, is that ‘the value of A=A is in the interval [A,_,,
An], m=0,---,s’. The loss function L(a,, ) is such that for m, m=
O’ cee, 3_1,

L(@pi1y A)—L(@p, A)=d(2,—2)
0, when A2,

(6.1)

L(a,, )= m
d>3(A—2y), when 2,1 <A=2,
t=1

where d is a known positive constant. The loss function (6.1) is actu-
ally a generalized version of the loss function (2.4) used in two-action
case, which is modified to cover multiple decision problem. Without
loss of generality, we can simplify the loss function by taking d=1.
The loss function (6.1) is monotone, because L(a,.;, 1)—L(a,, 1)=0,
when 2<1,, and <0, when A=2,, see Van Ryzin and Susarla [15].

The form of the decision rule is 9(2)={3'0]|2),- - -, 3%(s|2)} where
d'(m|2)=Pr[choose a,,|2, 7]. The risk w.r.t. the prior distribution G
may be given in the form

(6.2) wo@)=3 | am12){] Lew D712, DAGD]dutz)

which is minimized by defining d(m|2)=3d,(m|2), m=0,---, s, where
d¢(m|2) is the indicator function of the set

(6.3) O n=1{2| An_1<E {42, 1} < 2,}

where

| MR DD o1y _

(6.4) E{4]|z i} =
| S f(2]2, 1)dG(2) FE(2)]942)
Accordingly, 84(z)={04(0|2), - -, d4(s|2)} is the Bayes rule w.r.t. the
prior G.
Denote now

(65) Kg(z, 1, m)=g L(amy l)f(zl A, ’i)dG(l)_—'zm— fta(j"?;(i;;g:g;_ 1) )
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We may now write
(6.6) We0)=33 | d6(m|2){| L@, 276212, 9G] dp(z)

S {S L(an, A)f(z]2, fi)dG(Z)}dp(z)

M- M-

0
A

s
it

m

5 Koz, 5, m)dp(z)

Il
M-

3
I
o

A7

I
Me

| Gnf2@—0(a0f oG+ Digda+ 1))z

A3

B
I
=]

»
,m
,m

a2, 1, m)dz .

3
Il
o

Il
Ma.
SRy

A

The fixed optimal sample size of the classical Bayes solution is based
on the function
6.7) he,i=We(d5)—We(d%)+c

=§0 S vs(2, 141, 'm)dz—m}sf‘J=0 S ©e(z, 1, m)dz+c

@ G
4, m AL m

such that
(6.8) 1¢=inf {1|hs =0} .

The Bayes rule 4% with optimal sample size 4% has the Bayes risk

(6.9) Woe=3 | eote, it, mdz
m=0 A%{g‘m
In the empirical Bayes solution, we may again use the estimators
fi(z) defined by (4.1) and (4.3), and analogously to Section 4 we get
the empirical Bayes quantities

o FreDgde+])
6.10 (2, 1, =An—
(6.10) Koz, 1 m)= o= 02

. fo+ Vg e+1)
610 A= {elin < SHELTIED <2.)

(6.12)  ¢u(z, %, m)=2Anf7(2)— 9:(2) f7(2)/9:(2+1)

=0 m=0
A?—H. m A?, m

6.13) k=3 S o2, i+1, m)dz— 31 S o2, 1, mydz-+c

(6.14) %, =inf {¢|h, =0} .
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At the stage m-+1, the actual Bayes risk of the empirical Bayes rule

8in, evaluated conditionally for fixed past {212, 9)}2-0 and 4%, and
regarding G as known, is

6.15)  Wo(ati)=31 | atf(m|2){| L@, 0£GI2 20060 dute)

Il

3 | K it mdu@
An

*
1n+1, m

Il
Mo

S 0g(2, ¥, m)dz .
Anx

n+l, m

3
]
)

The corresponding asymptotic properties of Section 5, where the two
action rules were considered, may be shown to cover also the multiple
monotone case. The proofs for the theorems of the present case are
parallel, but more complicated, and they are not repeated here.

7. Discussion

In the present paper we have tried to keep our approach as non-
parametric as possible. The approach has been chosen with purpose,
because the theory in the present form gives possibilities to a wide
selection of the appropriate probability mass or density estimator f7(z).
In the text, we gave only one estimator for discrete and one for con-
tinuous case, and both of them are such that they are applicable to
any situation where the probability mass or density function may be
given or reparametrized to the form (2.2). In principle, there are two
tendencies in empirical Bayes estimation of ff(2). First, one might use
a general estimator, as we have done. Second, one might use an esti-
mator which takes into account of the particular family, to which the
conditional distribution belongs. As an example of the second tend-
ency, we refer to Martz and Lian [4] where several empirical Bayes
estimators for binomial parameter are presented, and their properties
studied. It should, however, be noted that all the estimators given in
empirical Bayes literature, do not allow varying sample sizes.

When we consider the criterion for optimizing the sample size, it
has to be realized that it is based on look-ahead idea, and particularly
in our case, on one-step-look-adead idea. The procedure, however, is
easily generalized to an m-step-look-ahead-procedure. The presentation
is based on one-step procedure, because it is easier to handle. Further-
more, we are aware that look-ahead procedures often fail to give opti-
mal solution, that is one might find such priors that the rule stops the
sampling too early in classical Bayes solution. So there might be situa-
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tions where the total costs, including the Bayes risks and the observa-
tion costs, are lower than in our classical Bayes solution. However, it
has been said that the look-ahead procedures in any case are a satis-
factory approximation, and they also have computational advantages.
Look-ahead procedures have been discussed, e.g. in Berger [1].

The modification that successively after a fixed period maximum
sample size is taken might also be used to control, that the prior dis-
tribution actually remains the same as it was at the beginning. Fur-
thermore, the modification should improve the convergence properties,
because under some certain priors, the optimization rule in the empiri-
cal Bayes situation tends at early stages to give too small sample sizes.

Some particular exponential conditional distributions, having the
form (2.2), are summarized in Table 1, where transformations, if needed,
and the functions g,(z) and {h(A)}’ are displayed.

Table 1. The functions ¢,(2) and {#(2)}* and possible transformations
for some exponential conditional distributions

Distribution Transformation 9:(2) (h(2)}¢
Binomial r fixed not needed <’:> (1—2)ir-=
Poisson not needed i*fi! e i
Negative binomi . _

r %‘;ve inomial not needed <zr+:. 1) (1=2)
Normal o} fixed A=exp (0/s3) exp (—22/2ia3) A-tog log 4/3
Gamma a fixed A=exp (—0) zta-l (—log 2)t«
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