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Summary

An inverse sampling procedure R is proposed for selecting a random-
size subset which contains the least probable cell (i.e., the cell with
the smallest cell probabilities) from a multinomial distribution with &
cells. Type 2-Dirichlet integrals are used (i) to express the probabil-
ity of a correct selection in terms of integrals with parameters only in
the limits of integration, (ii) to prove that the least favorable configu-
ration under R is the so-called slippage configuration with k& equal cell
probabilities, and (iii) to express exactly the expectation of the total
number of observations required and the expectation of the subset size
under the procedure R.

1. Introduction

The problem of selecting among multinomial cells has been studied
in many articles by using either indifference zone formulation or subset
selection formulation. Under the indifference zone formulation, Bech-
hofer, Elmaghraby and Morse [2] studied a fixed-sample-size procedure
for selecting the largest cell probability from a multinomial distribution
and Cacoullos and Sobel [3] studied an inverse-sampling procedure for
the same selecting goal. Under the subset selection formulation, Gupta
and Nagal [4] and Panchapakesan [5], [6] considered the goal of selecting
a random-size subset which contains the cell with the largest cell prob-
ability by using fixed-sample-size and inverse-sampling procedure respec-
tively. Alam and Thompson [1] studied the selection goal for the small-
est multinomial cell probability. They proposed a fixed-sample-size pro-
cedure under the indifference zone formulation and used “difference”
for the measure of distance. In this paper, we propose an inverse sam-
pling procedure and use “ratio” as the measure of distance to select
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a random-size subset which contains the cell associated with the small-
est cell probability.
Let p,,---, p, be the cell probabilities in the multinomial distribu-

tion with i p,=1. The ordered values of the cell probabilities are de-

noted by puj;,---, Pu; and the cell associated with p; is denoted 7,
1=1,..-, k. The goal of the experimenter is to select a subset contain-
ing the cell I7;;. In the case of a tie, one of the cells with probability
Puy will be considered as the best. A correct selection (CS) is defined
as the selection of any random-size subset which includes the best cell
IT;;. Under the usual subset selection formulation, we seek a proce-
dure R such that

1.1) P (CS|R)=P*

where P (CS|R) denotes the probability of a correct selection using the
procedure R and P*(1/k<P*<1) is a specified probability level.

The procedure R is defined in Section 2 and the P(CS|R) is ex-
pressed exactly in terms of Type 2-Dirichlet integrals. Section 2 also
discusses the infimum of the P (CS|R) over the parameter space. It is
shown that the infimum is attained for the configuration (1/k,---, 1/k),
which is called the least favorable configuration. Section 3 discusses
the exact results for E(N), the expected number of observations re-
quired to reach a decision. An exact formula for the expected subset
size E(S) is also given in terms of Type 2-Dirichlet integrals in Sec-
tion 3.

The main tool used in this paper is the fact that the P (CS|R) can
be written in terms of Type 2-Dirichlet integrals. This turns out to
be highly useful because it is exact and because the p-values show up
only in the limits of integrations.

2. The procedure R and the least favorable configuration

Procedure R: Continue sampling one-at-a-time until either

(1) One cell reaches a frequency of r, or

(2) (k—1) cells reach frequencies of at least ' (1=<r'=r+1).

As soon as (1) occurs before (2), we stop and select the cell with the
frequencies x, where z,<7'. As soon as (2) occurs before (1), we stop
and select the cell with the frequency <7»'. The constants » and 7’
are chosen so as to satisfy the basic probability requirement (1.1).

It should be noted that we can always find a pair (=, ') which
satisfies the P*-requirement since P (CS|R) increases in 7' for every r
and increases to one when r'=7r+1.

Before we give the exact expression for P(CS|R), we need the
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following probability interpretation of Dirichlet integrals.
Consider a multinomial distribution with b+1 cells; independent
and identically distributed observations are taken. We regard the ob-

servations as falling into one of the b+1 cells 1, II,,-- -, II, with re-
b

spective probabilities p,, Dy, -+, P»» > 0,=1. Observations are taken
i=0

one-at-a-time until cell 77, contains exactly 7, observations; the first
time this occurs is called the stopping time. Denote the random num-
ber of observations in cell /7, at stopping time by X, (¢=1,---,b) and
consider at the time of stopping the compound event E defined by

(2.1) E: X,=r, at stopping time, X,=7, (a=1,---, ),
X.<r, (@=j+1,---,b).

In terms of multinomial sums, we clearly have

;[ plra Ti+171
(2.2) P(E)=p: 11 <_'> S
a=1 T", -’ﬂj+1=0

J b
o T(ret 37t 33 2) o e,
a=1 a=j+1 Tl' pa .

Tp=0 I'(ry) a=j+1 L,

It has been shown in Sobel, Uppuluri and Frankowski [7] that the
multinomial sum in (2.2) can be written in terms of Dirichlet integral
CD=7(r, 1), i.e.,

2.3) P (E):CDg’—J:I)(r, 70)

I'(r+R) ﬁ <a1"> S“’

re) T ey [ 70
w ﬁ rldy
a=j+1
Sa 7 [} To+R |’
" (14 et )
a=1 a=7+1

b
where R=E Ty r=(7‘1,’ ) 'rb)y az(ah' ) a’b)z(pllpm' ° %y pb/p0)°

a=1
When j=0 in the event E in (2.1), we can simply drop the super-
seript and write
(2.4) E,: x,=r, at stopping time, and x.<7, (@=1,---,d)

and

(2.5) P (El) = CDa(r, 1'0)
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with the same R, r, @ as defined in (2.3).

In the CDaq(r, 1) integral, consider a,=p,/p, as a variable (say a;=
x) and all the other parameters as constants, we have the following
lemma.

LEMMA 2.1. (1) The derivative of CDe(r,r)) with respect to x 1is
equal to —r,jx P (E;) where

E,: x=7, at stopping time, z,=r, and z. <7, (@=1,---,b; a%i).

(2) The derivative of CDa(r, 7,) with respect to 1/x is equal to vy P (E;)
where

E;: x;=r; at stopping time, x,=7, and z,<r, (@=1,---,b; a%1).

PrOOF. (1) Consider CDa(r, r,) in (2.5) as a function of x=p,/p,,
we have by (2.4) and (2.5)

TbI xla"dw,
dCDu(r, 1) __ I'(ri+R) (— e S‘” S“ N _S"" ot

b a a b 79+R
@ re) e * Gl M (1+e+ 3
a#i
=-T1ipE).
X

(2) Consider CDq(r, 7o) in (2.5) as a function of y=1/r=p,/p;, we have

(2.6) dCDa(r9 7o)
dy

b
TI ®r="'dx,
TR (Lyee (-

L) Y a aj a b To+R
) T 1) v M, o (1+y+§ x>

a#i

Let y,=y-x, for a=1,-.-,b and a#1. (2.6) becomes
dCDa(ry "'o)
dy

b
M y,="'dy.
=__I’("'_o+R)_yro—1S°° S‘” S” azi

b ) ) b
l—'('ro) ;l;[; F('r,,) Py/p; Py/p; <1+y+§yn>

a#i

Pj/Pi rot+R
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=T pE)=rxP(E) by (2.4) and (2.5).
Y

Remark 2.1. Consider the case k=b+1 and let z;, (¢=1,---, k) de-
note the number of observations in cell I, at stopping time. Let E,,
E, E; be the following events:

E,: x=r ast; z.<r, (@=2,---,k—1); ., <r".
E;: z,=7r ast; x,<r; ©.<7r, (@=2,--+,k—-1).
E,: x=r ast; z,=1"; z.<7r, (@=2,--+, k1) .
If p./p,=2, then d P (E))/dx=—1'(p,/p:)P (Es)= —d P (E;)/dx.

Remark 2.2. We will apply Lemma 2.1 to the differentiation of
CD integrals in the next theorem. As we will see in the proof of the
theorem and the following illustrative example, the variable x appears
not only in one limit of the integral piece. When this is the case, we
should consider taking derivative one integral piece at a time and keep
the other integral pieces fixed like differentiating a product of two
functions. These are the main properties we will use in proving the
next theorem.

THEOREM 2.1. The least favorable configuration under the procedure
R s given by

1
(2.7 Ppy=--- =pm=f .

PROOF. We only have to consider the case »’<r. The case that
r=r+1 will always give P(CS|R)=1. Consider the configuration

k
(2.8) PSPS - SPhw where §1 P=1.

Let S,={Puy - *» Prm}» Ta={Dtnsrsy* *+» Py} be two sets. Fix all the
ratios of the elements in S, and T, respectively and let pr,.,y/pmy=2 be
the only variable in any of the CD-integrals under the configuration
(2.8). We now prove that P(CS|R) is a non-decreasing function of x
for every me {2,3,:--, k}.

Let x, denote the frequency in the cell with cell probability p,
1=1,---, k.

Then the probability of a correct selection under procedure R can
be written as

(2.9) P(CS|R)=tZi} P (x;=r ast; at least one of {,,-:-, x:}



308 PINYUEN CHEN

is less than 7'; x1<r')+é} P(x;=7" ast;
rsx,;<r(i#1, j#1); x1<_fr’).
For 4, j=2,.--,k (¢#J), let A, ;, B;, B, ; be the following events:
A x=r ast; ¢,<r; x,<r'; x,<r for all m#1,14,7.
B;: ;=7 ast; x,<r for j+#1, j#1; z,<r.
B, ;: z=r" ast; x;<r'; £,<r'; x,<r for all m+1,1, 7.

Then (2.9) can be written as
k k
(2.10) P (CS|R)=3 P < u A,.,,.> +3P (B,.— u BM> .
i=2 j#i 1=2 i#i
J#1 J#1
By the inclusion-exclusion principle, we have

(2.11) P(UA,)=3P (Aiyj)—j%ﬁ P(A;;,NA; )+
+(=1)*'P(NA,,

(2.12) P(B;—U B, )=P(B)— [;‘:l P (Bi,j)—jgu P (Bi,,a n B,,,ﬁ)
+(—1)*-*P(nBi,,)] .

Notice that the terms on the right hand side of (2.11) are always
in the form of E, in Remark 2.1 and the terms on the right hand side
of (2.12) are always in the form of E; in Remark 2.1. For every nega-
tive term that appears in the derivative of P(CS|R) with respect to
x, we can always find a positive term in the derivative with the same
absolute value. For example, the term in the derivative of P (4, ;N
A, ;,N--+NA,,) corresponding to the integral with lower limit Py l0i=
PenDi* Py [Dinsy- @ (Where 1€ S, j, € T,) is equal to the negative of the
term in the derivative of P (B, ,NB, ;N--- NB;,;,) corresponding to
the integral with lower limit Di/Py,=Pi/Pny* Prnsif Dy, 1/x.  From the fact
that the cells npy,- -+, n; serve as counting cells with either frequency
r or frequency 7' at stopping time in the P (CS|R), we can cancel all
the CD-integrals (which are in the form of E;) in the derivative of the
P (CS|R) with respect to # except those terms that come from the de-
rivatives of the integrals with lower limit py/p.; (@=2,---,k). The
derivatives of those terms are clearly non-negative. So P(CS|R) is
a non-decreasing function of ¥ and we can decrease the P(CS|R) by
changing the configuration (2.8) to

PSSP =PpennS -+ - SOy -
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The above argument is true for every n with 2<n=<k. Thus we
can apply the same argument (k—1) times and this completes the proof
of this theorem.

INlustrative example. For k=3, we can write

P (CS|R)
=P (z,=7, ast; 2, <7, 2, <7)+P(x;=7r, ast; z,<r, 2,<7')
+P (x, =7/, ast; x,<r, 2, <r)—P(x,=7', ast; z, <7, 2, <)
+P (x;=7", ast; x, <7, 2, <r)—P(x,=7', ast; x, <7, ,<r).
Here, we only consider the case r'<r, since P(CS|R, r'=r4+1)=1

for any configuration. At first, consider n=2 and take x=py/p, and
Ppy/Pr; @ fixed constant. By Lemma 2.1,

(2.14) ﬂ%?:_ll_?)_z

/

[—%P(mz=r ast; x;=7', x, <7
+—:;-P(mz=fr’ ast; x;=7r, 2,<r)
—LP(xzzr’, ast; x;=7r, 2,<7’)

x
’
+Lx-P(w2=r', ast; x,=7, x,<7)
4
+—2—P(x2=r, ast; x,=7", x,<r")
,rl
—— P (x,=17" ast; x;=1", x1<r’)]
x
+[LP(m1=r’ ast; =7, 2.<r')
x
/
+%P(w1=r’ ast; x;=7', 0,<7)
,’.I
—— P (x,=7" ast; x;=1, x2<r’)} .
z

The first six terms in (2.14) come from the derivatives of the in-
tegral pieces with power limits py/p,; and P /P and the last three
terms come from the derivatives of the integral pieces with lower limits
Py/Psy- It is clear that the first six terms sum up to 0 and the last
three terms sum up to

(2.15) —l—[rP(xlzr’ ast; w=7r, 2,<r)
z

+7' P (x,=7" ast; x;=7, ¥'Sx,<7)]
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which is always non-negative.
Secondly, we consider n=1. Then by letting y=py/p,; and con-
sider p/py; as a fixed constant in (2.13), we have

2.16) _@_Pi_%sﬂ)_=

gP(an:r’, ast; ; <7, 2,=7)

+ L P(m=7", ast; @,<r, z,=7)
y
’

+ L P(w,=7, ast; a,<r, x,=1)
y
’

~ L P@=r, ast; 2,<r, m,=1r)
y
/

+ L P(m=1", ast; <7, Z=1')
Yy
rl

——P(x,=7" ast; x,<7, x,=1")
Y

=_;;[P(x1=r’, ast; @, <r', x,=7)
+P(z=1", ast; x,<7', @m=1)]
+_';_’.[P (x,=17', ast; r'<x; <7, 2,=7)
+P (m,=7" ast; r'<Sx,<r, 1,=1")]

which is always non-negative.

3. Expectations

Let N denote the total number of observations required by the
procedure R. Using the same notation as in Section 2, we can write
the expectation of N as follows:

k-1

k
(3.1) E(N)=§(x1+---+xx)[2 D*P(xi=r ast; x,;<r, 0, X<

m=2 i,m

r'sx,<r for je{l,..-, k}—{i,11,42,.- -, im})

k
+ 3 P(w,=1' ast; »,.<r'; r'=wx,<r
m=1

m#i

for je {1,---, k}— {1, m})]

where X* is over all the possible combinations {i1,---, im} of size m
i,m

from {1, 2,---, k} — {%}.
It is easy to see from the definition of CD integral (2.8) that for
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any 1,
3.2) @+ +x) P(x,=r ast; x,=7r, j#1)
=" P(z;=r+1 ast; ;=7 JFI).

y 2

By (3.1) and (3.2), we can write E(NN) under the configuration (2.7) as

(33 EWI@N=rk 3 b5) 5 3P @e=r+l ast; au<r oo, 6 <t

/réxj<r fOl' JE {11 *y }—{k) kl»"" km})
+7r'E(k—1) P (z,=7"+1 ast; x,<r'; r=Sx,<r
for je{l,---, Kk} —{1,k}) .

But in (3.3),

(3.4) gg*P(xk=r+1 ast; xu<r, ., Tyu<r'; YSw, <1
for je{1,---, k}—{k, K1,---, km})
=k£_}1 S*P(x,=7r+1 ast; <7, Ceu<r; Y2, <7

m=1 k,m

fOl’ jE {1,"',10}'—{’0, kl;"" km})
—(k—-1)P(x,=7r+1 ast; x,<7r'; r=o,<r
for jE {11‘ "rk}_{lr k})

where >* is the same as we defined in (3.1).
k,m

By using tne inclusion-exclusion principle as we did in Section 2
and using (3.4), we can rewrite (3.3) as

35) E(N|@.7)= rk2 (-~ 1)f+1< >CD“ (T 1)
—rk*(k— 1)2( 1)”‘( )CD(I Lo, r+1)
+R0—1) 5 (~ 1 (*72)CDa, ..o 7 +1)
where r,=(r,---,r,7r',--+, ' 1 times).
Now we let S denote the subset size of the selected subset S for
the procedure R. For any configuration, it is clear that
k
E(SlR):El (I, e S|R).
Under the configuration (2.7), we can write

(3.6) E(S|@2.7)=kP (I € S|(2.7)=k P (CS|(2.7)) .



312 PINYUEN CHEN

By (2.10), (2.11), (2.12), we can write E (S|(2.7)) in (3.6) as

k-1 _
+CDy,...15(ry, "")-l-g]2 (f_%)(—1)i+ICD(1,-~-,1)(ru ""):|

where r; is defined as in (3.5).

4. Comparison with a fixed-sample size procedure

In this section, we will make some analytical comparisons between
our procedure R and the fixed-sample size procedure 7T that was pro-
posed in Gupta and Nagel [4] for the special case k=2. The procedure
T for selecting a subset containing the cell with the smallest probabil-
ity is as follows:

Procedure T': Select the ith cell iff

x,<min (x;,- - -, ,)+¢

where z; (¢=1,---, k) is the frequency of the ith cell and ¢ is a given
non-negative integer. Two meaningful criteria for evaluating the per-
formance of a subset selection procedure are the smallness of E(S),
the expected subset size and E (XN), the expected sample size. When
k=2, E(S|R) is either 1 (when »’<r) or 2 (when »’=r+1). To make
a suitable comparison, we take »'=r for the procedure R and ¢=0 for
the procedure T to make E (S|R) and E(S|T) as close as possible. For
any configuration (Pp;-Ppy),

r—1 —
(@) P(CS|R, r=r)=P5 5 (T4 1) By
and

P(OSIT,0=0, N=m)=_31 ()Pt Pis"

a={n/2]t

where [n/2]* is the smallest integer greater than r/2.
We also have

4.2) E(S|R,r=r)=1

1+< n ) /2 Pr/2 when 7 is even,
E(SIT, C=0’ N=n)___ /n/2 r2] £113

1 when 7 is odd .

and
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E(N|T, c=0, N=n)=n.
We consider the following two cases separately.

Case 1. When n=2r—1,

(43)  P(CS|R,r=r)=P 5] ("‘+z'1> Pfy=3] (";) Ps, Priye

=P (CS|T, ¢=0, N=2r—1) .

The second equality for the sum of the upper and lower tails of
the binomial series can be found in (2.3) and (2.4) of Sobel, Uppuluri
and Frankowski [7]. From (4.2), we have

E(S|R, r=r)=E(S|T, ¢c=0, N=2r—1)=1
and
E(N|R, r=7r)<2r—1=E(N|T, ¢=0, N=2r—1) .

Thus for any configuration, the procedure R save the expected cost of
sampling for this case.

Case 2. When n=2r,
(4.4) P(CS|R, r=r)=Ps, 20 (”z‘l) P
and
P (CS|T, ¢c=0, N=2r)= z (Z) P, Pig=Pf, 33 ("+Z—1) Pg, .

Here, for the last equality, we use the same result as in (4.3).
From (4.4) and (4.2), we obtain

(45) P(CS|T, c=0, N=2r)—P <CS|R, r=r'=%> = <2’;1) PLy Pl

and

4.6) E(S|T, ¢=0, N=2r)=E <S|R, r=r'=%> - (2:) Pr, i

respectively. Thus by using the procedure R with a stopping frequency
r=N/2, we shall expect a smaller selected subset and a smaller prob-
ability of correct selection than by using the procedure T. However,
the differences (2: > P7; Ph; and (2"‘; 1
(or n) is large. The most important fact is that the expected sample
size E(N|R, r=7")<2r—1 is always less than 2r, the fixed sample size
for T.

>P{1] Pf;; approach to 0 when r
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5. Concluding remarks

P (CS|R) the probability of correct selection, E(N) the expected
number of observations required and E (S) the expected subset size can
all be written in terms of the CD-integrals as we can see from (3.5),
(8.6) and (8.7). The computation of these values is complicated due to
the fact that a compound stopping rule is involved in the procedure R.
(Thus both r and 7’ appear in r, and this makes the computation dif-
ficult.) Actually, the table for r=7' can be found in (8) for various
arguments involved. However, it is believed that a compound stopping
rule is necessary for the selecting goal for the least possible cell. We
hope that the technique and procedure we present in this paper can
be used in developing multinomial selection procedures.
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