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Summary

Some extension of Haldane’s multivariate median is carried out by
minimization principle of a specified distance function. Then, making
use of the median, three types of measures of multivariate skewness
are introduced and their asymptotic null distributions are obtained.

1. Introduction

Haldane’s [2] multivariate median is defined as a minimizer 6, of
the function E|X—40|, where X'=(X;,---, X,) is a p-variate random
vector distributed according to a distribution F' with mean vector u
and covariance matrix 3 and E denotes the operation of expectation
in X and || X—4| denotes the standardized Euclidean norm, i.e. {(X—
0)' 3 (X —6)} 2.

Since a median is defined, in general, as the value of 6 which is
closest to X, it heavily depends on a particular choice of the distance
between X and 6. In this paper, we introduce a median by way of a
real function ¢ satisfying the following conditions and examine its sta-
tistical properties. Let ¢ be a strictly increasing function defined on
the half interval [0, o) with ¢(0)=0 and such that has the continu-
ous 2nd order derivative on (0, c0) and that ¢(u,+u,)<¢(u,)+¢(u;) for
all u,, u,==0. Note that the properties imply the inequality ¢(uw)=<¢(1)
-(u+1). Now we define the distance between X and ¢ by ¥(X, 6)=
(| X—0).

In Section 2 under several assumptions we prove the consistency
and asymptotic normality of a sample median. In Section 3 we apply
the sample median to a testing problem of symmetry of multivariate
data and propose three types of measures of multivariate skewness.
Finally in Section 4 we give a simple example in which measures of multi-
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variate skewness are used, in particular, to test multivariate normality.

2. Generalized median

Let X,,---, X, be a random sample of size » from a p-variate pop-
ulation F' with mean vector g=(g;,---, #£,)’ and covariance matrix 2=
(@), & §=1,++,p. Put FO)=n" NT(X, 0) and F,0)=n"3 (X, 0)

i= i=1
where ¥, (X, 6)’s are defined by replacing 3 in ¥(X;, 6) by its consist-
ent estimator X, calculated from the sample. Set A(0)=EZ(X, 8). We
call a minimizer 6, of A(f) the (generalized) median and a minimizer
6, of @,(6) the sample median. Here note that if we transform X—
AX+b with a non-singular constant p X p matrix A and a constant px1
vector b, then 6,— A6,+0.

2.1. Weak consistency

We put the following two assumptions :

(A1) The domain of 4, @, say, is a compact set in R?. (If the
support of F, K say, is compact, we take as 6, a bounded and closed
sphere B including K and if K is not compact, we choose as 6, a suf-
ficiently large, bounded and closed sphere B such that the probability
of the set {X € B} approaches one.)

(A2) A(f) has an unique minimizer 4,.

First note that the property of ¢: ¢(u)<¢(1)(u+1) ensures the
strong consistency of F() to A(6) with each § €8, Then, by (Al) and
from the fact that |T(X, 6,)—T(X, 6,)|<T(8,, 6:) and |A(6,)— A(0,)|<T(6,,
8,), we have

LEMMA 2.1. For any >0,
limP{su})]@'(ﬁ)-—A(O)Ke, all nzm}=1.
m—+00 de ()

Next, by the consistency of 3, and the continuity of Z(X, 6) in 2,
we have

LEMMA 2.2. For any >0,
lim P {sup | T(6)—T(6)|>e} =0 .
n—roc0 0eb,
Lemmas 2.1 and 2.2 ensure that sup |%,(6)—A4(f)| tends to zero in
0680

probability. Thus, to prove the weak consistency of ¢,, it is enough
to remark that

(2.1) | A(8,) — A(05)| <] A(6,) — Tr(8,) |+ T(8,) — A(65)]
<2sup |T,(6)— A(6)]
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because by (Al), on putting ¢,=max (sup @,(6), sup 4(0)), we have
€6, 0e6,

|Z(6,) — A(6r) | <|sup [en—T,(6)] —sup [ea— A(O)]|
<sup|Z,(0)—4()] .
Then, by (2.1) and (A2), we obtain
THEOREM 2.1. For any >0,

lim P {|6,— 6,|> ¢} =0 ,

. . P 172
where |-| means an usual Euclidean nmorm, i.e. |a|=<2 a§> for a'=
i=1
(a'h' ) a’p)'

2.2. Asymptotic normality

To prove asymptotic normality of 6,, we utilize the results in Huber
[8]. Following the formulation in Maronna [4], we write our parameter

vector as v'=(4', @', vec (2~)’) where # is an arbitrary pXx1 constant vec-

tor, 3=(,,) is an arbitrary pXp positive definite matrix and vec (2) de-
notes the p(p+1)/2x1 vector formed from the elements on the right

of the diagonal and including the diagonal of 3, i.e.
vec (S‘)I=(Em Gas® oy Oipy Oagy oy oyt * 0y ﬁpp) .

Let 6,=R?, 8,=R***"”? and #=6,x6,x6,. The product set & is norm-
ed by an usual Euclidean norm and @ includes the true parameter v;=
8, o', vec (2)).
In the following we deal with the sample median 6, calculated from
#.(0) with S,=n"' 3} (X,—X)(X,—X) and X=n"'3 X..
i=1 i=1
We first put

(2.2) U(X, v)=—|IX—0]"'¢(| X—0l)(X—6) ,
2.3) %X, v)=—(X=F7),
2.4 (X, v)=vec [—(X— @) (X—p)'+3]

where | X—0|={(X—0)'2-'(X—0)}* and ¢ denotes the first derivative
of ¢. W, is derived from the gradient vector of ¥(X, 6) with respect

to 6. Note that the estimator »,=(6,, X', vec(Z,)) is a solution of the
systems of equations n™! ﬁ P(X;, v)=0, n! ﬁ‘, 7(X;, v)=0 and n! é T(X,,
i=1 i=1 i=1

v)=0 where we put ¥(X, »)=0 if X=4.
Let 4 be the function defined by
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A(X, v)'=(T(X, v), T(X, v), (X, v)) .

For simplicity of the discussion, we denote the derivative of 4(X, v)
with respect to v by (D4)(X, v) and write down the differential of 4
as follows:

(2.5) AT X, v)=[l| X—0"'¢(| X—0|) L+ h(») 2G(»)1d0
+271h(v) tr (G(»)d3)(X—0) ,

(2.6) d¥(X, v)=dj ,

2.7) d¥(X, v)=vec[dZ +da(X— ) +(X— p)dp']

where I, denotes the identity matrix of order p and
G)=|X—0|23-(X—0)(X—0)5-,
h(v)=¢(| X—01)— || X—0]7'¢(| X—61)

and also ¢ denotes the second derivative of ¢.
Set

A) =), 4(), 2())=E[4(X, »)],
COr)=E[4(X, v)4(X, »)]=[Cy;(»)] (1, 7=0,1,2)

where A,(v)=E[¥(X, v)] and C,;(»)=E[¥(X, »)T,(X, v)'], Also we de-
note the derivative of A(v) with respect to v by (DA)(v) and put (Di)
(»)=[D,,(»)] (¢, 5=0,1,2) where the partition of D2 corresponds to its

derivatives with 6, 7 and vec(3) in v, for example, Dy(v)=((3/6,)(»),
ooy (0/0,) () for 0'=(0y,- -+, 0,), Du(v)=((3/E)A(»)," - -, (9] E)A(v)) and
Dy(v)=((3/G1) 2(»), - « = (8/15) Ao(), (3[Fn2)Ao(¥), - + -, (/T ) Ao(»)), ete.

Here we put further assumptions:

(A3) The underlying distribution F' has a density with respect to
Lebesgue measure and E|X['<oo;

(A4) Operations of differentiation with respect to » and expecta-
tion with respect to X are interchangeable for A(f) and A(v);

(A5) The following integrals exist, i.e.

Elg(|X=0)F<oo,  E|g(|X—-0])f<oo,
Elg(| X—0ID/I| X—0]|F < o0
in some neighbourhood B(v,) (C8) of v;=(8;, ¢, vec(3)');
(A6) C(v) and Dy(») are nonsingular matrices for v € B(v,).
Remark that (A4) implies 2(vy))=0 and with (DA)(v,), Dy, Dy, Dy,

Dy and Dy are all zero matrices and D=1, and also Dy=1I,,,,,, where
we omit the suffix v, for simplicity when we evaluate the values of
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C(v) and (DA)(v) at the true parameter v,. The moment conditions (A3)
and (A5) ensure the existence of C(v) and (D2)(v) for v € B(v,).
Now we check the conditions of Lemma 3 in Huber [3].
Define
wX, v, d)=I sup |4(X, v,)—4(X, v)|.

v—vlsd

and put N(X, v)={(X—0)2-(X—6)}* for v'=(8, ', vec(Z)) € B(,).
The following lemma holds:

LEMMA 2.3. There are some positive constants ¢;, 1=1,.--, 6, which
are independent of any v € B(v,), such that for any v, v, in B(v,) and
for any d>0,

(i) a|X—0|SNX, v)Sca|X—0[;

(1) sup |N(X, v)—N(X, v)|=(c| X—0]|+c))d ;

]ul—vlﬁd
X—0, X—0 ( o
- < d.
@ S N ) NE ) | =\ NEX ) +c‘*>

PRrOOF. (i) is obvious. (ii) is obtained from (i) and the differen-
tiability of N(X, v) with respect to ». (iii) is easily shown by use of
(i) and (ii).

We need the further assumption:
(A7) For any v, v, in B(vy) and for any d >0,
sup |(N(X, v))—d(N(X, v))|sH(X)d ,

Iy~visd

where H(X) is independent of v € B(v,) and E|H(X)[}<oo. (Note that
one of the sufficient conditions for (A7) is Lipshitz’ continuity of ¢.)
Then

LEMMA 2.4. Under assumptions (A3)—(AT), there are some positive
constants a, b, ¢ such that for every v and v, in B(v,)

(i) RE)zaly—wl;

(ii) EwX, v, d)<bd;

(i) Eu(X, v, d)*<Zcd.

Proor. For (i), we note that
|2() = (v —»o) (D) (»*) (D) (*) (v — y)
where v* lies on the segment between v and y,. Put

a={ inf 7 (DDEYDVE)"

where 7.,[-] means the minimum latent root of the argument matrix.
For (ii) and (iii), using the results of Lemma 2.3 and (A7), we have
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. , X—6
UX, v, d)< sup [GN(X, v)—$(N(X, ””"m

(N(X,
TS NE e NE, g P& D
+ sup Iﬁl—ﬁ|+|ysg|gdlﬂfz(X, v)— (X, v)|

Iul—vlsd

S[er'H(X) +(esN(X, ») 7'+ e |§(N(X, v)) |+ X |+cs)d

X—0, X—-0

where ¢; and ¢; are some positive constants independent of » € B(v).
(ii) and (iii) are immediately verified by use of the last term in the
above inequality.

Thus, by Theorem 3 in Huber [3], we have

THEOREM 2.2. Under assumptions (Al)-(AT), n'*(v,—v,) s asymp-
totically distributed as a (p+p+p(p+1)/2)-variate normal with mean
vector 0 and covariance matrixz [(D2)(v))]'C(v) [(DA)(vo)]™! (=V=[Vi]
1, 7=0,1, 2, say). Submatrices of V are defined by

Vo= Di'[Coo— DusCo— CooDia + Dy,Cou Dia) D'
Vou=Vio=Dg'[Coy — Dy:Cy] ,
Viu=V3=D5'[Co— Du:Ci] ,
and
V.;=Ci; 1, j=1,2.

3. Application

First we consider some statistical interpretation of the median 4,.
Noting that i(v,)=0 under the assumptions (A1)-(A4), we have

IV X—0,) - ]___

(3.) B L1 X—al)] =0

Since ¢ plays a role of weighting the orientation statistic 3~"%(X—4,)/
| X—86,|l, a natural choice for ¢ is thought to be a monotonous funec-
tion, i.e. ¢(u)<d(uy) or ¢(u)=g(u;) for w;Su,. If ¢ is nondecreasing
and ¢(0)=0, the property of ¢: ¢(u;+u;)<¢(u;)+¢(u,) implies that
¢(u)=¢(1)u, which gives us the equivalent criterion the Haldane’s case.
Thus we have only to consider the case that ¢ is nonincreasing, i.e.

$#<0. Hence 6, will point a location at which the population has a
high density.
3.1. Measures of multivariate skewness

Now we consider how to use the median 6, in testing symmetry
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of the population. The difference between p and 6, gives us some in-
formation about asymmetry of data. Then, we define a Pearson-type
measure of skewness by

(g—00) 2 (p—6)  (=Sp, say).

Alternatively, it is often useful to examine the configuration of data
about the specified locations. Thus we check the distributions of the
scaled residuals

e=3""X—p) and e=3""(X—-4,),
which can be converted to radius-and-angles representations

_ I X—p) _ I X—8,)
=1 X—pl|l =\ 2T &) =|| X—8,|| =—2"")
e=||X—pl| X—rl and e=|X—0,| TX—6i]

As formal test statistics Geary’s test concerns |e| or |¢| and Rayleigh’s
test deals with e/le| or ¢/le|. The difference between p and 6, will re-
flect the basic elements of the above tests. Thus we define another
measures of skewness by

E[IX—pll—=l|X—=6] (=S¢, say)
and

SYX—p) _ STHX—6) |

(=Skg, say).
[ X— ¢l 1 X—6] *

Remarks. (i) The measure S, can be derived from the ratio of
determinants of two dispersion matrices E(X—p)(X—p) (=2) and
E(X—6,)(X—6,). Noting that E(X—6))(X—6))=3+(z—0,)(z—0,)', the
ratio is written as

det (2)
det (2+(—00) (2 —60)")
Thus S, measures the discrepancy between generalized variances about

two locations.
(ii) For the definition of S;, we can take another type of measure

=(1+Sp)".

E l_u{___g.‘l“_—l : (=8¢, say).
e & 52)

3.2. Asymptotic null distributions of measures of skewness

Using a random sample Xj,--., X, from the underlying p-variate
distribution F' having mean vector x# and covariance matrix 2’ and satis-
fying the conditions (A1l)-(AT7), estimators for S;, Sg; Si and S are
represented as
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Sp=(X—0,y3YX~0,) ,
So=(1/m) 33 11X~ 0.1~ | X~ X1,

&) Xi—0. 4|
St=m) > [AZizball _q]*,

’ “ X=X

& _ 3 X—X)  3TVHX,—0,) |
Sz=@1/n) 2] L=/

w=(1m) 3 ’ X, —X|| | X:— 6.l

where the summation is taken over all values of the index set {1,--.,m},
X=n"'31X, 6, is the sample median calculated from #,(f) with 3,=
i=1 .

n"é(Xi—X )(X;—X) and for simplicity of the discussion we use I
i=1
instead of X, in the above and following expressions for S;, S;, S and
Sz.
Note that for each 7 (=1,---,n)

-1 -
821Xl X (1=, 0y ZEA 0,y
i~ Vo

By KON IEKot) [ 3R 0)X 03]
| X:— 0.l [| X — 6] | X —6,*
2—1/2(011 — 00) -1
2 V0.
| X:— 6ol ?

Replacing 6, by X and 6, by g in (3.2) and (3.3), we obtain asymptotic

expansions for X.

Now we put the three null conditions as follows:
(NL) Oy=p;
(N2) [IX—86,|| and Z-Y*(X—86,)/|| X—8,|| are independent ;
(N3) The third cumulants of X are all zero.

By (3.2), (8.3) and (N1), Ss, S; and S, reduce to
Se=(X—0,y27[(1/n) 3 A3 (X —0,)4+0,n2)

84=(X—0,y377 (Um) 2 %]2—1/2()?— 6,)+0,(n"") ,
1]

Sa=(E-0 37 (Wm) 53 A [ 595 F—0,) 10,0

where

-1/2 _ _0 IS—I/z
A= X |I§(o¥¢§0“2 ) ’ U=|X—0,
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and A; and U, are given by replacing X of A and U by X,, i=1,---,n
respectively. Then, by (N1) we have E[U?=p and from this fact and
by (N2) it follows that E[A]=(1/p)L,.

Thus under (A1)-(A7) and (N1)-(N3), we obtain

Co=2"E[A]13" E[p(U)}=1/p) E[(U)IZ=a,F, say,
a=1/p) E[UHU)1E, Cu=Ci=0, Cn=Ci=0,
Dy={(p—1)p"' E[U'$(U)]+p~' E[¢(U)},=b,L,, say,

Dy,=0,
and also
(3.4) var (0,)=n""c,2+0,(n"*?) ,
(8.5) cov (6, X)=n"'d,T+0,(n""?) ,
(3.6) var (6,— X)=n""¢,5+0,(n""?)

where c,=a,/bj, d,=E[Ug(U)]/(pb,) and e,=c,—2d,+1=E [¢(U)—b,UT/
(pb;) and var(-) and cov (-, -) denote a variance and a covariance with
argument vectors respectively.

Here we remark that if, under the distribution F, the random
variable U (=||X—6,||) has a density g(u) of which first derivative is
continuous and lirgl d(u)g(u)=1im ¢(u)g(u)=0, then b, can be rewritten as

) by=p™ E [MU}(V)]
where
(338) = (log 25

Hence, from the Schwartz inequality we have
(8.9) ¢,zp/E [MU)}

which gives the lower bound of the variance of 6, and the equality
holds if and only if ¢(w) is proportional to A(u).

Finally we get the result that under the conditions (A1)-(A7) and
(N1)~(N83), (n/c,)Sp, p(nfc))Se, (P/E[U1)(n/c,)Sé and (p—1)7(p/E[U])
-(n/e,)Sy are respectively distributed as x* variables with p degrees of
freedom. Remark that in the case of replacing 3 by its consistent

estimator 3, in the preceding expressions for S;, Sy S; and .§R we
have the same results as above because of the continuity of the rele-
vant quantities in J.
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4. Example

In this section we first examine the set of our distance functions
and discuss a rough test procedure based on a distance function which
does not satisfy (A7). Next, using the above results, we consider the
use of a rough test procedure based on a typical distance function in
testing multivariate normality and check the performance of it by use
of well known data.

4.1. On distance functions

We define the set of distance functions by G={¢|¢ is nonnegative
on [0, o), ¢(u;+u;) < Pp(uy)+¢p(u,) for all u,, 4,20, ¢>0 and ¢§ is non-
positive, nondecreasing and continuous}. The set G contains various
functions, for example, (1) ¢(u)=1—exp(—u/r), r>0, (2) ¢(u)=log(1+
ufs), >0, (3) ¢(w)=u’, 0<t=1, etc. G is abundant in the sense that
if ¢, and ¢, belong to G, then ¢;=¢, o ¢, (defined by ¢y (u)=¢,(¢x(u)))
again belongs to G.

In the above examples functions (1) and (2) satisfy the assumption
(A7), but (3) except for t=1 does not. The boundedness of ¢(0) is es-
sential to (A7). Thus we divide G into Gy={¢|¢ € G, |$(0)| is bounded}
and G;=G—G5. Also note that for any ¢ € G5, there is some sequence
{¢.}, €10 such that ¢,eG; for all e>0 and ¢, converges to ¢ uni-
formly as ¢ |0, because for given ¢ we can put ¢,=¢ o ¢, wWith ¢,(u)
=u+te, >0, ¢, € Gz. For a test of symmetry of the population, this
fact enables us to use test statistics, i.e. our measures of multivariate
skewness corresponding to ¢ (€ Gj) in the following sense.

For any given ¢ € G, we have some uniformly convergent sequence
{¢.}, €l0, ¢.€Gz. Let 6(c) and 6,(c) denote the population median
and the sample median corresponding to ¢, respectively. Under (Al)-
(A7) and (N1)-(N3) we have 6(e)=p=0, for any ¢>0 and a,=p"
E[¢.(U)], by, =p ' E[MU)J[(U)], etc. Thus, if under (A1)-(A7) and (N1)-
(N3) a¢=1'ilr£1 ay, b¢=l'ilr£1 b,, etc., then we can regard test statistics

formally constructed in terms of ¢ as the approximations to the cor-
responding test statistics derived from ¢, with sufficiently small ¢>0.

4.2. Test for multivariate normality

Suppose that the underlying distribution F' is a p-variate normal
Ny(g, 2). In this case the density of the random variable U=|X—p|
is g(u)=[27""I"(p/2)]"'u*~* exp (—u*/2). Thus, from (3.8), h(u)=wu. Also,
from (3.5) and (3.7) we have d,=1, which implies asymptotic independ-
ence between X and 6,— X for any choice of ¢ €Gp.
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Now we take ¢(u)=u’, 0<t<1 as a distance function because of
its easy feasibility in data analysis and examine the performance of our
measures of skewness derived from ¢. This distance function is the
limit of a uniformly convergent sequence {¢.}, ¢ |0, ¢, (u)=(u+ce), ¢
€ Gz. Under the null hypothesis a¢=1ilrgl a,, b¢=1i11§1 b,, etc., and so

oer(3osa) (i) rf oo =t

Note that ¢, is strictly decreasing in ¢ (0<t<1) and from (3.9) it is
seen that ¢,>1. By the assumption (A5), the range of dimension p is
restricted as p>2(2—t) for 0<t<l. Therefore, with any ¢, 0<t<1,
the sufficient condition for p is p=4.

Let us consider the well known iris data in Fisher [1] and examine
multivariate skewness of the data on iris setosa, which comprise 4
measurements on each of 50 plants. We take 4 measurements as vari-
ables, which are x,=sepal length, x,=sepal width, x;=petal length and
x,=petal width.

For each t, 0<t<1, Table 1 shows the estimated median 64, and

estimated measures .§P, Sg, SR under which we also put the values of
the corresponding test statistics.

Table 1. Analysis of the data on Iris setosa.
Upper values, medians and measures §P, Sa and 33.
Lower values, the corresponding test statistics.

The value Median Measures of skewness

of ¢ 21x1071  3x 107! 2gx 1071 Z4 Se Ss%10 $ex10

1.0 .5000 .3406 .1458 .2290 .0311 .0858 .1208
11.82 13.02 12.23

.8 .5004 .3403 .1458 .2243 .0537 .1478 .2140
12.95 14.26 13.76

.5 .5013 .3399 .1460 .2184 .0973 .2706 .4027
12.78 14.21 14.10

.3 .5030 .3406 .1466 .2139 .1506 .4215 .6445
13.47 15.08 15.37

1 .5034 .3405 .1470 .2089 .2027 .5585 .9076
12.35 13.60 14.74

From Table 1 we know that there exists a strong evidence of non-
normality for each t, because 5% point of a y* variable with 4 degrees
of freedom is 9.48773. We also note that as ¢ decreases, the values of

Sy, S;, Sg increase. This fact indicates the feature that in the pre-
sence of non-normality the median is inclined to depart from the sam-
ple mean for small values of ¢.
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Table 2. Analysis of the transformed data.
Upper values, measures Sp, Sg and Sj.
Lower values, the corresponding test statistics.

Measures on
The:.)fv:llue Z1, X3, X3 and log x, log x;, 1=1,2,3 ,4

S, S;x10 Szx10 S, Sex10 Sex10

1.0 .0100 .0291 .0425 .0108 .0320 .0430
3.81 4.42 4.30 4.10 4.86 4.35

.8 .0199 .0589 .0856 .0221 .0660 .0907
4.82 . 5.68 5.51 5.33 6.37 5.83

.5 .0492 .1441 .2234 .0507 .1515 .2232
6.46 7.57 7.82 6.66 7.95 7.81

.3 .0787 .2307 .3704 .0887 .2598 .4084
7.04 8.25 8.83 7.93 9.29 9.74

1 .1132 .3282 .5524 .1245 .3639 .6010
6.89 7.99 8.97 7.58 8.86 9.76

The marginal analysis for each variable (see Small [6]) leads us to
transform «,—log®,. The result for the data on =z, x, z;, logz, is
shown in Table 2. There still exists some evidence for the deviation
from normality. In Table 2 we also present the result of the data on
all transformed variables log z;, t=1,---,4. Comparing these cases, we
see that the unnecessary data transformation may make the data dirty.

Finally we remark that in the above analyses the sample medians
were calculated, using the sample mean as the starting point, by Algo-
rithm AS 47 provided by O’Neill [5].
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