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Summary

The basic regularity conditions pertaining to the asymptotic theory
of progressively truncated likelihood functions and maximum likelihood
estimators are considered, and the uniform strong consistency and weak
convergence of progressively truncated maximum likelihood estimators
are studied systematically.

1. Introduction

In a clinical trial or life-testing experiment, observations (viz.,
failure times) are gathered, in order of magnitudes, sequentially over
time. Further, due to cost, time and other limitations, often, experi-
mentation is curtailed either after a pre-set duration of time (trunca-
tion or type 1 censoring) or after a prefixed number of responses occur
(type II cemsoring). Interim analysis of accumulating data at various
failure points (progressive cemsoring) or continuous statistical monitor-
ing over the study period (progressive truncation) is sometimes advocated
with a view to a possibly early termination of the study, contingent
on the accumulating statistical evidence.

In a progressive censoring (PC) scheme, the likelihood fumctions of
the accumulating data lead to a discrete time-parameter stochastic
process (which, in general, may not have independent or stationary in-
crements). Weak convergence of such a PC likelihood process, for the
uni-parameter case, has been studied by Sen [9], and the same has
been incorporated in study of the asymptotic properties of some time-
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sequential tests. For some related studies, we may also refer to Gar-
diner [4]. Under a progressive truncation (PT) scheme, one encounters
a continuous time-parameter stochastic process relating to the accumu-
lating likelihood functions and this also, generally, does not have homo-
geneous or independent increments. We may refer to Sen and Tsong
[11], who studied the PT case and commented briefly on the multi-
parameter case too. Under more stringent regularity conditions and
in a somewhat heuristic setup, such PC (or PT) likelihood functions
have been employed by Bangdiwala [1] for some time-sequential tests
for a real valued function of the parameter(s), granted some smooth-
ness conditions. In this respect, the asymptotic theory of progressively
truncated maximum likelihood estimators (PTMLE) provides the basic
key for the study of the properties of the time-sequential tests, and
there is substantial scope for more refined analysis.

For independent random variables (r.v.) or processes with inde-
pendent increments, the intricate relationships between the likelihood
function equations and maximum likelihood estimators have been studied
by a host of workers; we may refer to Inagaki [6] where other ref-
erences are also cited. In the context of PT or PC schemes, such
relationships have not been studied yet in full generality. Indeed, in
view of the lack of independence or homogeneity of the increments,
such a study in a systematic and logically integrated manner may
naturally require elaborate regularity conditions.

Section 2 is devoted to the details of this study. With a clear
formulation of the martingale structure of PT likelihood processes,
uniform continuity of the truncated Fisher information matrix and
weak convergence of PT likelihood process in the general multipara-
meter case are studied in Section 3. Uniform strong consistency of
the PTMLE is considered in Section 4. Weak convergence of PTMLE
is studied in Section 5. This is primarily done through the exploration
of the intricate relationships between the PT likelihood functions and
the PTMLE’s. The concluding section is devoted to some general re-
marks and discussion.

2. Preliminary notions and basic assumptions

Let {X;: i=1} be a sequence of independent and identically dis-
tributed (i.i.d.) r.v.’s with a distribution function (d.f.) F\,(-) and a
probability density function (p.d.f.) fi(-), both defined on R*=[0, ),
where 6 €8, a subspace of R*=(—o0, o), for some k=1. For every
n(=1), let X,,<---=X,.,. be the ordered r.v.’s corresponding to X,
.-+, X, (ties among these may be neglected, with probability 1). If
the experiment involving » subjects is curtailed at a time point ¢t (>0),
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the observable r.v.’s are then
(2.1) Xuyr JETE); =2 I(X,.st),

where X,.,=0 (conventionally) and I(A) is the indicator function of the
set A. For 0=t<oo, let B,.,=B(X,.,;, j=1t); t—X,., v) be the o-
field generated by the observable r.v.’s at time ¢, with B,.,=3({¢})
and B,..=B(X,.;, j=m). Also, let &,., be the space of B,..-measurable
functions. Then, for every n (=1)

(2.2) B,.. is nondecreasing in ¢, t € R*.

Denote the projection mapping from &,.. to &,.. under the model dis-
tribution F, by %,.: that is, for any integrable function ¢(X.,, ---,
Xn:n)7

(2'3) (-CPn:c‘/’)(Xn:l’ ] Xn:n)=E0 {Sb(Xn:l’ ) Xn:n)lgn:t} ’ te R+ .

Let 3,=B(X,<t, 1=1), te€ Rt with B,=B({¢}) and B.=B(X,, 1=1),
&, be the space of B,-measurable functions and %P, be the projection
mapping from . to &F,. Then (2.2) and (2.3) hold for these as well.
The usual likelihood function and equation for the full data (X, ---,
X,) are

(2.4) L,,(ﬁ):i[l f(X,, 8) or n'g F(Xoir 0)
(where we write f(x)=f(x, 6)) and
(2.5) 0,(6)=(0/06) log L,(0)

=3 9(X, 0)=0,

respectively, where ¢(x, 6)=(0/06) log f(x, 8) is the likelthood score func-
tion and 9,(0) is the likelihood estimating function. Let us define the

survival function F,(t) and the survival likelihood score function #(t, 6),
te R*, by

2.6) Ft)=1—Fi(t)= S“’ f(@, 6)dz
(2.7) #(t, 0)=(2/06) log Fi(t)
=(" s, @) Pt
where (2.7) holds under some regularity conditions, which will be intro-

duced in the sequel. We introduce the projection likelihood function
and the projection likelihood score function under F, (as in [11]) by letting
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’ 0 ’ .f O_S.. ét ’
@8  fiz, 0)=E, [F(X, o)l@m]é{ s o), it 0se
Fy ), if t<x<oo,

and

¢(x,0), if 0sx<t,
(2.9) ¢z, 0)=E, ((X, 0)!-‘Bm]={ _ ,
#(t, 0) , if t<w<oo.

E,[f|3..] stands for the generalized conditional expectation (c.f. Rao
[8]) and the equality (£) means the following: Let B,=B |0, t].

(2.10) Saft(x, 0)dx:SB f(, 6)dz, for any Be B, .

S f(z, 0z , if B=B,,
By

3

SE fl(x, O)dz+Fyt), if B=B;(t, o).

Let us now introduce the basic regularity assumptions on which
the proposed theory rests. Suppose that the true parameter 4, is any
inner point of @ (but fixed). Let ||-|| be the Euclidean norm.

[A1l] The parameter space @ is a subspace of R* and for any M >0,
Ox (=6_{0: ||0]|=M}) is closed.

[A2] For each #¢8, F(x) has a positive p.d.f. f(x, §) (with respect
to the Lebesgue measure), where f(zx,f) is continuous in & for all z
€ R*.

[A3] If 6,6, §R+ |f@, 6)— f(z, 6,)|dz>0. Further, if 6,06, and F,(t)
=F,(t) for some t>0, then

@11 |, 17(@, 0)—£(z, 0)1dz>0.

In addition to [A1]-[A3], we have the following ones, where U,(6,)
={0: ||0—6,||<d} stands for a neighborhood of 6, of radius d (>0).
[B1] There exists a dy>0, such that for every z ¢ R*, f(x,6) is con-
tinuously twice differentiable in 4 ¢ U, (6,) and there are positive func-
tions UX(x)=U*(x; 6,, d;) with

(2.12) U;*:S Ur@ds<oo, i=1,2,
R

such that for every 6 € U,(6,),
(2.13) 1(2/36)f (=, O)||< U*(x) , z R,
(2.14) [|(8%/0686") f (x, 0)|| < UX(x) , reR*.



ON PROGRESSIVELY TRUNCATED MAXIMUM LIKELIHOOD ESTIMATORS 255

Define ¢(x, 6) as in after (2.5) and let

(2.15) #(x, 6)=(2/26")p(xx, 6)=(2/2606") log f(, 0) .
[B2] The Fisher information matrix

(2.16) 1(6)=E, {[$(X;, 0)][¢(X., 0)]'}

exists, is positive definite (p.d.) and continuous in @€ U,(6,). The
expectation matrix E,¢(X,, 6) exists and is continuous in 6 € Uy (6,).
Ey, [$(X., 60)|'=E,, {trace (§(X,, 6))'} exists.

[B3] Let, for every d>0,

(2.17) u(@; b, d)=sup {||p(x, 6)—d(x, 6)[|; [|6—060ll<d} .
Then, the expected value of w(X;; 6,, d) exists and
(2.18) 1.3101 E,, w(X;; 6y, d)=0.

[B4] For every d and T >0, let

(2.19) R,(d)=sup {F,(t)||(2*/0608") log Fi(t)—(2*/2606") log F, (t)l|:
l60—86,l|<d, t>T}.
Then, for all sufficiently small d>0,

(2.20) lim R, (d)=0.

T —o0

For some other regularity conditions, let’s introduce the following :

@.21)  g(x; 0, d)=sup {f(z,7): €6, |c—0l|<d}, d>0,

(2.22) Gy(t; d)=sup {F.(t): €8, |[c—0||<d}, d>0,
g(x; 6,d), if xe€[O0,t],
(2.23) gux; 0, d)={ N
Gi(t; d), if xe(t, o), te R,
Furthermore, let
(2.24) g(x; 0., d)=sup {f(z, 0): 0€8, ||6—0|>d"},
(2.25) G,_(t; d)=sup {F,(t): 0 €8, ||0—0,|>d"},

gx;0.,d), if z€[0,¢],
(2.26) g:(x; 0., d):{ .
G, (t; d), if x€(t, o), teR*.

[C1] For every 6¢®, there exists a positive number d,(f)>0 such
that, for any d € (0, dy(9)),
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(2.27) S: 9(x; 8, dydw < oo .

[C2] There exists a positive number ;>0 such that

(2.28) lim S: {9(z; 0., ) F (@, 0)}f () B)dz=0 .
Furthermore, for all sufficiently small d >0 and any ¢>0,
@2)  ("log" (9@ 0., DIf @, 00) £z, O <0,

(2.30) [, log™ {95 0., DIf (&, 09} f (=, 0)ds>0,  and

@3)  lim | log" {g(z; 0., @)/ (@, 00}/ @, 00dw|Fo(T)< o0

where log* x=max {log z, 0} and log~ x=max {—log z, 0}.
The following remarks regarding the three sets of assumptions
are worth mentioning.

(I) Assumption [Bl] implies that f(z, ) and (0/26)f(x, 8) are differ-
entiable in mean, i.e.

(2.82)  lim S: | f(x, 6+h)—f(x, 6)—(3/36)f (w, 6)'h|dx/||h||=0,

(2:38) lim o S

=0.

1(2/26)f (x, 6+h)—(2/26)f (=, 0)—(2/0630") f (=, O)h| da

These, in turn, lead to

(2.34) S: (3/30)f (z, 6)dz=0,

(2.35) S: (64/06006')f (x, 6)dz=0 .

It also follows from assumptions [B1] and [B3] that

(2.36) lim E, [|6(X:, 0+h)—¢(X,, $)— (X, OOk||/|IR]|=0,
so that, by (2.35) and (2.36), we have

(2.37) E, ¢(X,, 6)=—1(0) .

If we define for every te R*, 6¢8,

(2.38) L(6)=E, {[¢.(X, 0)][¢.(X:, O)I'} ,
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then, by (2.9), (2.16) and (2.38),
(2.39) L6)=I6)—-I(0), teR*,

where
@40)  T0)=(" 18w, 0)—dt, 0)} (#(w, 0)—(t, 0))'Fild)
={" @@, 0)6ta, )y Futde)— Futy@te, )@t oy -

That is, I(f) is equal to Jr(f) in [11]. Note that L(6)=I(6)=16)
and I(0)=I.(6)=0. From Assumption [B1], (2.36) and (2.39), we have
(2.41) (2*/2626") log F,(t)=(2/26)¢(t, 6)

= S“’ (3/0606")f (, 0)dw/Fy(t)

~{{ @rens(, 0is} | @re0)s(w, 0aa] [Fice
= {7 é@, /@, 0)ds} [Futy+ LONFA®) -

(See Theorem 2.1 and 2.2 of [6] in this context.)

(II) In the same way as in (I ), [B1] implies that

(2.42) A(@=sup{|" 102095z, 0)— (@009f (w, 0)\1da: 1604l <d]
—0asd]O0, for ¢=1,2,

where (0*/06%f stands for the general term of (0%/9606¢")f.
(III) Assumption [C1] holds if [B1] holds for every 6,¢ 6.

3. Some preliminary results

From (2.8) and (2.9), we have the PT likelihood function and equa-
tion for the set of observations {X;<t, 1=<i1<n} as follows:

3.1) L,,:‘(e):iT:[lf,(X,, 8)
() —
(3.2) ®,.(0)= ;; $(X., 6)

Tp(t)

=2 H(X,.1r 0)+ (n—ra(t))e(t, 6)=0,

where ¢(X,.., 9)=0. Note that L, (0)=1, 0,+(60)=0; L,..(6)=L,06) and
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0,..(0)=0,(6). The facts that
(3.3) L..(0)=P..L(0)=E, [Ln(6)| Br:.] »
(3'4) ¢n:t(0) = gﬂ!t¢ﬂ(0) = Ed [¢n(0) I 9n:t] ’

for te€[0, o0) (viz. [11]) play a vital role in the developments of this
paper. Since, from (2.9) and (2.38),

(3.5) E, ¢.(X,, 0)=E, ¢(X,, 6)=0,
(8.6) Vol X,, 0)=1.0)=1(6)—L(6) ,
for each ¢ ¢ R*, the sample functions @7 = {0;.(6,); t € R*} with

3.7) 0500 =770, (00 =n"" 33§ X., 00
=1 { Py D.(00)}

has the following moment structures under P, :

(3.8 Eo, {9r::(60)} =0,

3.9 Es, {27:4(00)97:.(60)'} = L1~(60) »

for every s,t€ R*, where s {=minimum (s, t). Furthermore, under P,,
{D2..(00), B,..; te R*} (for every m=1) is a zero mean martingale closed
on the right by n='2@,(6,) by virtue of (3.4) and (3.7).

Now, let W°={W°(t), 0=t<1} be a Brownian bridge on [0, 1] (so
that W° is Gaussian with E {W°}=0 and E{W°(s)W°(t)} =s t—st for
each s,t€[0,1]). We consider a k-variate Gaussian process @°= {@?(d,),
te R*}, where

(3.10) P00=\" 4, O WO (F (do)

3.11) 02(00)=0°(0) = S:’ (, 0) W (F,(da)) ,
and &7(6,)=0, with probability 1. Then, as in after (2.3),
(3.12) 02(0))=PO(0)=E, [0°(6)|B], teR*,

so that @°={#?(6,), B,; t € R*} is a martingale closed on the right by
?:(6,) and has the same moment structures as @, defined in (3.7):

(3.13) E,, {97 (60)} =0,
(3.14) Eq, {97607 (00)'} =1,.A60) ,

for each s,t€ R*. Furthermore, we have the following.
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THEOREM 3.1. Suppose the set of assumptions, A and B, in Section
2. Then, under P,, ;= {®:.(0:); t € R*} converges weakly to the Gaus-
sian process @°={D7(0,); t € R*}, in the extended Skorokhod Ji-topology
on DY[R].

This theorem is essentially due to Sen and Tsong [11]. The con-
vergence of the finite-dimensional distributions (f.d.d.) of {@;} to those
of @° follows from the classical central limit theorem. Note that by
construction both processes belong to D*[R*]. The proof of the tight-
ness of the former processes is parallel to that due to Sen and Tsong
[11] by using Lemma 2.1 and the submartingale inequality of Lemma
3.3 of [11].

The following lemma is easy to see.

LEMMA 3.2. Under the regularity conditions of Section 2,
(i) I(0), te R*, 0 €8, is continuous in R*X Uy(6,),
(i) H(d)=sup {|LO)—LO): 0—0i]I<d, tc B*}—>0, asd]O0,
(i) H(d)=sup {|LO)—LG)|: 16—bi]l<d, teR*} -0, asd|0.

(v) Y@=sup || to(z, Olls@, 01 f(x 0)da

— [ 180w, 0019, 001 (&, 0da|: 10—dul<d, te R*}—o0,
asd|O0.

4. Uniform strong consistency of PTMLE
Let us define the PTMLE {ém, t e R*} by the following equation,
4.1 Ly (0n.)=3up {L,..(6): 0 €6}.

Since L,.(6) is continuous in 8 € @ (for every n=1 and t ¢ R*) and fur-
ther L,..(0) is right-continuous in t e R* (for every n and 6), we claim

that for every n, 0A,,:, is right-continuous in ¢ € R*: that is,
(4.2) {6, t € R*} e D[R*],  for any n21.

The main result of this section relates to the uniform strong consis-
tency of é,,:, and towards this, we consider first following.

LEMMA 4.1. Under Assumptions A and [Cl] in Section 2, for every
positive number d, M and t,, there exists a p,: 0<p,<1, such that for
any >0 and dall n sufficiently large

(4.3)  Py[sup {Ly.(0)/Ln.(00): €[ty ), d=||0—bil|=M}>9]=0f .
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PROOF. Define g(x; #,d) and g,(x; 0,d) as in (2.21) and (2.23) and
let the projection of g be

g(x;0,d), if 0<x<t,
(4.4) gu(x;0,d)=E, [9(X;; 6, d)l.@mlii

Gi(t; d), if t<x<oo,
where
(4.5) é,(t;d)zg“’ 9(x; 0, d)dz, teR*, d>0, 6¢6.
Then, by (2.21)-(2.23) and (4.4)-(4.5), we have
(4.6) Sz, 0)=g.(x; 0, d)<g.(x; 0,d), for any te¢ R*;
4.7 ldifn 9.(x; 0, d)=fu(=, 0) .
]

Also, by the Lebesgue dominated convergence theorem, we have from

Assumption [A3]

(4.8) ldiﬂl E,, [log {9.(X:; 0, d)/f(X, 6,)}|=E,, [log {f(X, 0)[f(X., 6,)}]
=—K(0, 6,) (say),

where, for every t>0,
(4.9) K, (4, 0,))>0, if 6+6,.

Therefore, from (4.8) and (4.9), we claim that for every ¢>0 there
exists a positive number dy(0)>0 such that for any d € (0, dy(6))

(4.10) E,, [log {9.(X:; 0, d)/f. (X, 0} 1< —%Kzl(ﬁ, 60)<0 .

Let us next define @, as in [Al] in Section 2 and U,(6,) as in after
(2.10). Let then 6,,=6,—U6), d>0. Then, by Assumption [Cl]
and (4.10), we have that for every d >0, M >0 and ¢,>0, there exist
finite points 6, ---,0, and finite numbers d,, ---,d, with 0<d,<
min (d,(6,), d«(6;)), 1<j<m, (for d(f) in Assumption [C1] and dy(6)
above) such that

(4.11) Oxa< U Us(0)).
(4.12) S: 9(@; 8, d)dw< oo ,
and, for each 5 (=1, ---, m),

(13)  E,llog {0,(Xi; 6, dy)If. (X 00} 1S — 2 K,(0, 0)<0.
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Set
(4.14) K=min (K, (0, 0)); j=1, ---, m}.

Then, from (2.21)-(2.25), (4.7) and (4.11), we obtain that for every ¢,
>0,

(415) P, (50p [Luul0)/Lual00): LSt<co, €Oy ]>0)
<33 P Jsup | TT GuXii 0 4)IF(X, 00); tiSt<oo]>e

ég P, {sup [[[ (9/X:5 0;, d))If(Xs, 0)); ti=t< oo] >e "KL,

Next, we note that {n @ X:; 0, d)IfAXs 0))), Bues LR is a

martingale for every =, 6; and d,, and hence

(4.16) {tﬁ (9.(X:; 0, d))If (X, 00))y Bois teR*l is a super-martingale
=1
for every a: 0<a=l.

Therefore, by the super-martingale inequality (viz. [7], p. 281), we ob-
tain that for any a: 0<ae=1, t,>0

@1 P Jsun [T @K 6, d)IFUX 00): Hist< ool >e ]

<o B, | 1T 0(Xi3 0 d)IF (X 00)]|
={e¥ E,, [gtl(Xl; b;, dj)/ftl(le ) o

By the Chernoff information inequality ([2]), we have from (4.18) and
(4.14) that

(4.18) p(01)=inf {e* an [gtl(Xl; 0, dj)/le(Xh )] 0<as1)<1,

for every j (=1, .-+, m). Corresponding to the 5 in (4.3), we let my=
—Klog 7 and let

(4.19) p=m"max {p(6,;); 1Sj=m}<1.
Then, from (4.15) and (4.17)-(4.19), we conclude that for every n=n,

(4.20) Py {SUp [Lyi(0)/Li(80): t;SE< 00, 0 € Bya] >7)
éPOO {Sup [Ln:t(o)/Ln:t(oo) : t1§t< oo, 0 € 9,{,,,] >6""K}

<3 (o0,
=m[max {p(d,); 1=<j=<m}]"<ps,

and this completes the proof of (4.3).
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LEMMA 4.2. Under Assumption [C2], for every t,>0, there exist
positive numbers M, >0 and 0<p, <1 such that for any 5, 0<3<1 and
all n sufficiently large,

(4.21) Py {8up [Ly.(0)/Ln.i(60): ©1St<00, ||6—0i]|>Mi]>7} <ol .
PrOOF. Let d=M;". From (2.21)-(2.23), it follows that
(4.22) SUp {[Lin.o(0)/ L. (60)]7 2 16— G0l| > My}
<TG Oer DIFAXer 80}

T(8)

=exp [ 2110g {9(Xoi; 0w A)/f (X Gu)}
+nFt) log (G, (¢ DI, B)).
Let h(z; d)=log {g(x; 6, d)/f (%, 6)}* and consider its projection :
Mx;d)y, if ze[0,¢],
4.23)  hz; d)=E, [h(X;; d)| Br.]= gj Wa; d)f @, O)daF(t) ,
if ze(t, o).

Then, the last exponential value of (4.22) is bounded from above by
(.20) exp {3 h(Xis d)
+nF(0) | h(@: df @, 0dalFyO)-+nFit) log Fi (1)

because of va(t? d)=1.
Now, it is easy to see that for every =,
(4.25)  {exp [nF.(t) log F-'(t)], B..; t € R*} is a submartingale.
Furthermore, for every =,
(4.26) E,, {exp [2F,(t) log F; ()]} = (2— F )} "<2".

Thus, by the submartingale inequality (viz. [10], p. 16), we have that
for every n and M,>log 2,

(4.27) P, {sup [exp (nFy(t) log F~'(t)); 0<t<oolZe™s} <p7,

where 0<p,=2¢"#:<1.
Next, (2.31) in Assumption [C2] implies that there exist positive
numbers M; and T such that



ON PROGRESSIVELY TRUNCATED MAXIMUM LIKELIHOOD ESTIMATORS 263

(4.28) Sw h~(x; d)f (2, 6)de/F,(t)<M,,  for every t>T.
t
Thus, for every n and all sufficiently small d>0,

(4.29) Sup. {exp [nF—‘,,(t) S:o h(x; d)f(x, Bo)dm/ﬁ-',o(t)]} <eMs, a.s..

Since {exp [n(fn(t)/ﬁ,o(t)—l) S:o h=(x; d)f(x, 00)dac], B,y LSS T} is easily

seen to be a submartingale for every » and t,>0, we have by the
submartingale inequality that for any ¢>0 and «>0

(430 P, { sup exp [M(F(O/F,0) - )M >e'

<e ™ B, {exp [en(F(T)/F,(T)—1)M.]}

= {e~“*¥0F, (T) exp [aM,/F, (T)]}",
letting M4=M4(d)=gna h=(x; d)f(x, 0)de. By the Chernoff’s information
inequality, it is shovs:n that

(4.81) py=inf e~ “**0F, (T) exp [eM,/F,(T)]} <1.

a>0
Therefore, this and (4.29) conclude that for M/=max (M;, M,+¢),
(4.32) P, {tssltl? exp [nF—’,,(t) S:o h~(x; d)f(x, Oo)dx/F‘,o(t)] >enua'} <pb.

On the other hand, it follows from (2.28) in Assumption [C2] that
an h(X;; d)= an h(X;; d)
<log S: {9(=; 0., )/ f(x, 6))}1f (x, Gp)dx — — o0,
as d—0,

and hence, from (2.29) and (2.30) that for all sufficiently small d>0
and some ¢, >0

(4.33) Eoo MX,; d)+ M+ M{< —¢,<0.

Since {i} h(X;; d), B,..; te R*} is a martingale for every m, we obtain
by the submartingale inequality that for any e, 0<a<1,

Pao{ sup exp [é‘{ k(X ; d)+nM,;+ nMs’] >e""'xl

tyst<eo

< {exp (e — My — M) By, [9(X.; 0., d)/F(X,, O)]07} .

Similarly as in (4.31), the Chernoff’s information inequality guarantees
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p4=0i<12£1{e‘"1 By, [9(X:; 0w, d)/ (X, 00)]°} <1
That is,

(4.34) P,O{tséltlg exp [121 hi(X,: d)+an+nM3’] >e"“1} <ot
1 00 =

Therefore, from (4.22), (4.27), (4.32) and (4.34) we obtain the result of
(4.21) for n=mn, and p,<1 such that n,=—e'a;log » and p,=3""(p; p; ps)
<1.

THEOREM 4.3. Under Assumptions A and C in Section 2, the
PTMLE {é,,,,; 0<t< oo} ts a.s. consistent for 6,; this comvergence is
uniform in t: t,<t<oco for every t,>0.

PROOF. Note that by Lemma 4.1 and 4.2, for every d>0 and 73:

(4.35) Py {sup [Ly.(0)/Ly.(00): 1 <t<oo, [|6—0o]|>d]>7n}
Spi+pt  for every n=n*=n.n,,

where we take M=M,. On the other hand, by (4.1), it holds that for
every n and £,>0

(4.36) inf {L,..(0,.0)/Lni(6)} =1,  with probability 1.
t1St<oo

From (4.35) and (4.36), we conclude that for every d>0 and >0,
(4.37) P,{ sup |l0n.—0ullzd} 26", for nzn*,
t1St<eo

where p*=p,p;<1. This completes the proof of the theorem.

5. Wedak convergence of PTMLE

By virtue of Theorem 4.3 and the differentiability of the PT likeli-
hood function in (8.1), it follows that the PTMLE, defined by (4.1),
satisfies the PT likelihood equation (8.2), simultaneously in ¢: t,<t<oo,
for every t,>0 with the probability converging to 1 as n— c. This
implies that for any d: 0<d<d, and any £,>0, there exists a set B, ¢
B,... with P,(B,)=1—p, (say), where

(5.1) p,,=P,,0(Bf,) —0 as n— oo,

such that for every x=(xy, ---, 2,) € B,

(5.2) SUp [|6,.(@)— 6ol| <d
t)St<oo

and
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(5.3) n P, (6,.(2x)=0,  for any te[t;, ).
We define

(5.4) $u(x, 0)=(2/00")p,(x, 6)=(0*/0600") log f (=, 0) ;
(5.5) 6. (O=2¢(X.,0), teR*.

Then, by the Taylor expansion, we have from (5.2) and (5.3),
(5.6)  0=1"0,(00.) =10 (00 + 107G, (0,) (0G0~ 00))
on B,, where

(5.7) 18— Ooll <110 —Bul| <.

With these preliminaries, to study the weak convergence of the
PTMLE, first, we consider the following.

LEMMA 5.1. For every n and e: 0<%, e<1, there exist positive
numbers d,: 0<d,<d, and n,=1 such that for every d: 0<d<d, and
every m=mn,

(5.8) Py {sup [|n7'0,.(6)—n'0,.(60)||: 0St<oo, [|§—6o]|<d]>7}<e.
PROOF.
(5.9)  ||n"18,..(0)—,..(6)|
<n-! r:z::)W(Xm, 0)— (X, 00)
+F,(t)1(2/00)p(t, 6)—(2/26)g(t, 6)
<n-! iZ W(X,; 6, d)
+(F0)IF, ) (F (D)]1(0%/0606") log F,(t)—(2*/2600") log Fy (£)]} ,

where the w(z; 6, d) are defined by (2.17) and F,(t) is the empirical
survival function. Thus, the left hand side of (5.8) is bounded from
above by

(5.10) Py jnt Su(X; 0h, d) > /2

+ P, sup [F,0)/Fot) (F.0)0/20)3(t, 6)— (2/20)t, 0}
te R, "0—0o"<d]>77/2} .
By Assumption [B3], d can be chosen so small that

(.11) P, {n“ 330X 0o d)>7;/2} <(2/2)" By w(X;; 60, d)<e/2.
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Now, let us consider the value

(6.12)  R(d)=sup {F,(t)]|(2*/0600") log Fy(t)—(2*/2606") log F, (t)||:
16— 6]l <d}
<max {R.(d), R.(d))

where R;(d) is defined in (2.19) and

(5.13)  Rr(d)=sup {F,(t)[|(2"/2600") log F(t)— (2*/0600") log F,(t)l]:
lo—6ill<d, 0<t<T}.

Then, Assumption [B4] implies that T can be chosen so large that for
any M >0 and all sufficiently small d>0

(5.14) R (d)<7/(2M) .

From (2.41)-(2.42) and Lemma 3.2 we can choose d so small for any
T>0 and M >0 that

(5.15) R:(d)<9/(2M) .

Therefore, for any » and M >0 there exists d,>0 such that for any
d e (0, d,)

(5.16) Rd)<9/2M) .
On the other hand, it follows by Chernoff and Rubin [3] that
(5.17) sup {F_',,(t)/F_',o(t); t € R*} is stochastically bounded.

Thus, from (5.16) and (5.17) we have that, for sufficiently large M >0
and sufficiently small d>0, the second term of (5.10) is bounded from
above by

(518) P, {sup [(Ft)F O)R@)] > /2]
<P, {sup [(F.O/F O >M| <ef2.
From (5.10), (5.11) and (5.18) we conclude the proof of this lemma.

LEMMA 5.2. For every e,7: 0<e, <1, there exists a positive im-
teger m, such that for every m=mn,

(5.19) P, {sup [In"'D,..(6) + L(G); t € R*]>7}<e.
PrOOF. By (2.4) and (2.41), it holds that
(5.20)  [|n'D,..(6))+ L(0y)|
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r, (t)

=||n"! g, (X1, 00)+ Fi(t) Sj (x, 6.)F, (do)/F, (t)+1(6,)

+(Fu)F6)—1)L(60)

<||n-1 é‘{ S X, 00)+1(6,) +|F, @)/ Fo(t)— 1| L6l ,

where ¢,(x, 6,) is the projection of é(x, 6,) ; that is,

(5.21) ¢, 0)=E, [§(X,, 6,)| B1..]
#(z, 6,) , if 0<z<t,

B S:" é(z, O)F, (d2)|F,(t), i t<z<oo.
Therefore, the left hand side of (5.19) is bounded from above by
(5.22) P,o{sup [Hn‘ 316X, 6)+100); teR+]>7;/2}

+ Py {sup [|FL@)/ Fo &)~ 1[I L@o)l; t € R*]>7/2} .

Since {’n“ i}tp',(Xi, 00)+1(0y), Bn.e; te€ R+} is a zero mean martingale for

every n, we have by the martingale inequality that

(5.23) P, fsup [“n‘ 316X, 00+100); teR+]>n/2}

2

§27)—1 Eoo

w7 16X, 00)+1(60)
=270 B, (X, 00)+1(00) [P < ¢/2

for all sufficiently large .
Next, by (2.39) and (2.40), for any »>0 and M >0 we can choose
T enough large to let

(5.24) L)< n/@2M),  for every t>T.

By the result due to Chernoff and Rubin [3] that sup [|F’,,(t)/F',o(t)—1|;
t € R*] is stochastically bounded, this implies that
(6.25) P, {sup [ FL(t)/F, (&)~ 1l L@B)Il; T<t<oo]>9/2}

<P, {sup [|[F.(®)/F,(O)—1]; te R*]>M}<el4.
Furthermore, note that {|F_',,(t)/F_,o(t)—1], B,..; te€ R*} is a submartingale
for each n. Then, it is shown by the submartingale inequality that
(5.26) P, {sup [|F, n(t)/F—’oo(t)_—ll IL@6)]I; 0st<T1>7/2}

=P, {sup [|[F,Q)/F,(t)—1|; 0=st<T1>9/2]1(6,)]))
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= @2[IG) /) B, IF_’,.(T)II_T},,(T)— 1
=@ L@ |2y~ (Fo(T)| Fo(T)) <e/4
for all sufficiently large n. (5.25) and (5.26) lead to
(5.27) P, {sup [ F,@)/Fo &)L @) II; t € R*1>7/2} <e/2.
This together with (5.22) and (5.23) completes the proof of this lemma.

THEOREM 5.3. Under the regularity conditions of Section 2, for

any t,>0, the PTMLE {n"¥0,,—0,), t,St<oco} converges weakly in
DH[t,, oo) to the Gaussian vector process

(5.28) LGN O)=LLON" || 4(e, 00Wo(F(dx)),  tist<oo,
where O2(0,) is defined by (3.10)~(3.11).

PrOOF. By virtue of (5.1)-(5.7), we have (on the set B,) with
probability arbitrarily closed to 1 (for large n),

(5'29) _n—lmnzt(én:l) {In’tﬂ(é\n:t— 00)} = n_lﬂQn:t(ao) ’ tl §t< oo ,

Since by Theorem 3.1,

(5.30) sup {||n"@,.(65)|; t,St<oo}=0,1),
it holds by (5.29) that for any ¢,>0
(5.31) Sup {17100, ) (020, — 00))||; 1, SE< 00} =0,(1).

Hence, by using Lemma 5.1, 5.2 and (5.31), we conclude that
(5.32) sup {|| L0 (G~ 05 tiSE< 00} =0,(1) ,
which, in turn, along with (5.29), ensures that

(5.33)  sup {|n 0,00~ LON0 " (Bn.i~0)|; tiSt< 0} -0,

in probability, as n — co. Since ||, (60)[| S| L(6o) IS [ 1(60)|| < oo for every
t,<t<oo, we have, by (5.33),

(5.34)  sup {[|n"(b,.—0)— L' (0)(n D, (6)]|; t;St< o0} — 0

in probability as n— oco. Therefore, (5.28) follows from (5.22) and
Theorem 3.1.

6. Discussions and remarks

Under the regularity conditions mentioned in Section 2, we have



ON PROGRESSIVELY TRUNCATED MAXIMUM LIKELIHOOD ESTIMATORS 269

the result (same as in Sen and Tsong [11]) that {n~'®,..(6,)— I(6,)b}
converges weakly in D*[t,, o) to @2(6,) as n — oo when alternative {H,:
0,=0,+n"'b, be R*} holds. By virtue of contiguity of {P,} and {P,},

this and (5.34) imply that {n‘”(é,,:t—on); t,<t< oo} convergences weakly
in DM[t,, 00) to I7(6,)@7(6,) when {H,} holds. Note that the limit dis-
tribution is independent of local alternative b€ R*. In other words,
the PTMLE is regular in D*[¢,, o).

It is worth remarking that several distribution functions appeared
in the survival analysis (for example, normal, log normal, inverse Gaus-
sian, Gamma distributions and so on,) satisfy the regularity conditions
mentioned in Section 2. Assumptions C which depend on the para-
metrization of the distribution enable us to compactify the parameter
space. Therefore, we have to check that the regularity conditions
hold only in any compact subset of the parameter space. It is easy
to see that Assumptions A and B, except for [B4], hold. However,
we have to prove [B4] case by case.

OSAKA UNIVERSITY
UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

REFERENCES

[1] Bangdiwala, S. I. (1983). A progressively censored sequential likelihood ratio test for
general parametric hypothesis, Commun. Statist.-Sequential Analysis, 2 (1), 1-25.

[2] Chernoff, H. (1952). A measure of asymptotic efficiency for test of a hypothesis
based on the sum of observations, Ann. Math. Statist., 23, 493-507.

[3] Chernoff, H. and Rubin, H. (1956). The estimation of the location of a discontinuity
in density, Proc. of The Third Berkeley Symp. Math. Statist. Prob. (ed. Neyman, J.),
1, 19-37.

[4] Gardiner, J. C. (1981). Convergence of progressively censored likelihood ratio pro-
cesses in life-testing, Sankhya, 43, A, 37-51.

[5] Inagaki, N. (1973). Asymptotic relations between the likelihood estimating function
and the maximum likelihood estimator, Ann. Inst. Statist. Math., 25, 1-26.

[6] Inagaki, N. (1983). The decomposition of the Fisher information, Ann. Inst. Statist.
Math., 35, 151-165.

[7] Karlin, S. and Taylor, H. M. (1981). A First Course in Stochastic Process, second
edition, Academic Press.

[8] Rao, M. M. (1981). Foundations of Stochastic Analysis, Academic Press.

[9] Sen, P. K. (1976). Weak convergence of progressively censored likelihood ratio statis-
tics and its role in asymptotic theory of life testing, Ann. Statist., 4, 1247-1257.

[10] Sen, P. K. (1981). Sequential Nonparametrics, John Wiley and Sons, New York.

[11] Sen, P. K. and Tsong, Y. (1981). An invariance principle for progressively truncated
likelihood ratio statistics, Metrika, 28, 165-177.



