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Summary

The problem of finding an asymptotically minimum variance un-
biased estimator (A.M.V.U.E.) for the parameter of certain truncated
power series distributions, is discussed, when the generating function
of their coefficients are i) polynomials of binomial type ii) generalized
ascending factorials iii) polynomials with coefficients the well known
Eulerian numbers.

1. Introduction and notation

The zero truncated binomial distribution has probability function

=22 R () wetenm vcp

and can be seen as a special case of a generalized power series distri-
bution with probability function

(1.1) Pu(n)=A(m, n)A*[[An(2)— An(0)] n=1,2,---,m, >0

where
Anm)=3 Alm, o', Alm, )20.

Patil ([56], Corollary 1, p. 1052) proved for the distribution (1.1), that
there is no M.V.U.E. for 2 since the range of values {1, 2,---, m} is
finite. Cacoullos and Charalambides [2] constructed an A.M.V.U.E.
(m— o) for the parameter p/(1—p) of the zero truncated binomial dis-
tribution.

In this paper we consider the problem of finding an A.M.V.U.E.

Key words: Power series distribution, minimum variance unbiased estimator, polynomials
of binomial type, generalized ascending factorial, Eulerian numbers.
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for the parameter 2 of (1.1) when the sequence of polynomials A,(x)
=31 A(m, 5!, m=0,1,2,---, is defined in the following ways.
7=0

(i) By it’s exponential generating funection
(1.2) 31 An(@grml =60 | 550, glz)=3) k2'fil
m=0 i=0

that is, A,(x) is an exponential binomial type polynomial. From (1.2)
we have

(1.3) > A(m, n)zmim!=[g(z)—g(O)"/n! .

For the numbers A(m, n) the relation (1.8) reveals that

A(0,0)=1, A(m,0)=A0,n)=0 when 7, m#0 and

(1.4) Alm my=— (™ Yy, b,
n! Vv vy V) ° n
where the summation is over all n-tuples (v,---,v,) with »,=1 and
i‘,w:m.
i=1

(ii) By the following formula
(1.5) A (@)=(&+&n_)(@+Ep o) - (@+&), m=1,2,---, Afx)=1.
From (1.5) we have that
(1.6) A(m+1, n)=¢,A(m, n)+ A(m, n—1)
with
A(0,0)=1, A(m,0)=A(0,n)=0  when m, n=0

that is A(m, n) are the generalized signless Stirling numbers of the
first kind which has been defined by Comtet [4].
(iii) By it’s exponential generating function which has the form

1.7 z‘, A, @)z m! =21 =)

e(.t—l)z —

that is, A(m, n) are the Eulerian numbers (the number of permuta-
tions of 1, 2,--., m having exactly n rises) for which we have the re-
currence relation

(1.8) A(m+1, n)=nA(m, n)+(m—n+2)A(m, n—1)

with boundary conditions
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A0,0)=1, A(m,0)=A(0,n)=0 when m, n+0.

The above categories cover in particular most standard cases. For
instance A(m, n) may be the signless Stirling numbers of the first kind
or the Stirling numbers of the second kind or even the number of
permutations of m elements with % cycles or n ordered cycles with
given minimal and maximal size, etec.

2. Preparatory results

Let X, X;,---, Xy be a random sample from (1.1). Then the sum

N
Z=3 X, is a complete sufficient statistic and has probability function
i=1

@1  P(Z=p)=-lWmA_ N Ni1,..., Nm
(2 aem, ¥

with
C(N, m, 2)=3) A(m, n)A(m, ny)- - - A(m, ny)

where the summation is extended over all that ordered N-tuples (w,,
.-+, my) of positive integers n,<m, 1=1, 2,--., N such that n,+n,+---
+ny=4Z. Note that

2.2) %"v C(N, m, 2)*= [j}"j A(m, j)xf]N=[A,.(z)]”

which on differentiating with respect to 1 and equating the coefficients
of 2* in both sides of the resulting equation gives the recurrence re-
lation

C(N, m, Z+1)=7_’J—¥1— ’:20 (k+1)A(m, k-+1)C(N—1, m, 2—Fk) ,
m:l, 2,. .o

with C(0, m, 0)=1 and C(N, m, Nm)=[A(m, m)]".

Ignoring the fact that there is no A.M.V.U. estimator for 2, let
us denote by ﬁ(N, m, z) an estimate of 2 based on the complete suffi-
cient statistic Z and let us proceed to see where unbiasedness fails.
Using (2.1) the condition of unbiasedness is equivalent to

%‘v AN, m, 2)C(N, m, 1= NZZ CN, m, 2)3+! .

Equating the coefficients of 2* on both sides shows that the above con-
dition can be satisfied if and only if,



244 A. KYRIAKOUSSIS

(2.3) AN, m, 2)=C(N, m, z—1)/C(N, m, 2)
2=N, N+1,---, Nm—1 and C(N, m, Nm)=0.
Obviously, however C(N, m, Nm)=0 can not be satisfied and 2(N, m, z)

as defined in (2.3) has relative bias, caused by the last term 2z""*,
equal to

(2.4) E (M) —1= —[A,(A)]"*C(N, m, mN)a¥=

= [Am(z)]_N[A(m9 m)lm]N .

So, ﬁ(N, m, z) given by (2.3) has been constructed in a unique way and
it is an AM.V.U.E. of 2 in the case that the relative bias given by
(2.4) converges to zero.

Remark 1. It can be easily seen from (2.4) that, if the number of
samples N tends to infinity the estimator given by (2.3) is an A.M.V.

U.E. and if (N, m, 2) is an AM.V.U.E. (m— oo or N—oo), then i(N,

m, z)+io(N, m), where io(N, m)—0 as m—oo or N—oo, is also an
AM.V.U.E. of A.

3. AMV.UE. for 2

THEOREM 3.1. Let A,(x) be an exponential polynomial in x of de-
gree m defined by (1.2) with k, =0, i=0,1,2,--., 0<a<a<b. Assume
the existence of a real root r of the equation xrg'(r)=m,

(3.1) DHg(M) ke, DEg(7)] , k=1, 2,3, Dt*=d*/dr*
with (re,)/m—0 as m— oo, y positive and
(8.2)  g(r)—Re[g(re”)zclg(n)]/* ™,  m~<L|0|<z, m=m,, ¢,

positive constants and Re is real part.
Then, A,(x) has the following asymptotic expansion

An(x)=[2g'(r)]" exp [€{g(r)—9(0)} —m][1+O(1))/
[14+rg"(r)/g'(]*  as m—oo.

Moreover assuming that rg’(0)/m—0 the estimator ﬁ(N, m, 2) of (2.3) is
an AMV.U.E. of 2 with 0<a<2<b.

Proor. Using Caushy’s integral formula, A,(x) may be written
in the form

A= | 2 exp [0 {02 —g(0)} 12



ASYMPTOTICALLY MINIMUM VARIANCE UNBIASED ESTIMATION 245

where C is the circle z=7¢?, 1=+ —1. Therefore

3.3) A (z)="riexp[2{9(r)—g(0)}] S exp [z{g(re”)— g(r)} —im]do

r™2m -z

_ m!exp [x{g(r)—g(0)}]

- Tm‘\/% {I1+I2}
where

_ 1
h=—7= S_a exp [G(6)1d6
L=—1 S exp [G(6)]d6+—~— S exp [G(6)]d4
Vor J-= Vor Js

with

G(6)=w{g(re")—g(r)} —ifm .
From the assumption of the existence of a real root r of the equation
(3.4) org'(r)=m

along with the fact that ¢(r)=2rg’(r)—m is an increasing function it
follows that this root is unique. Choosing the radius » of the circle
of integration to be the root of (3.4) and

(3.5) 3=m"8

we can approximate I, and show that I, is negligible for large m. For
some  between 0 and & we have by Taylor and by (3.4) that

G(0)=x{g(re”)—g(r)} —i6m
=— -‘% 0*{rg'(r)+7%g"(r)} —xire*(6°/6)
. {gl(reiC) + Sreicg”(,reic) + ,,.262i(gﬂl(,reic)} .

Using the relations (3.1), (8.4) and (3.5) we have for |§|<m ™~ | —xire*.
(6%/6){g'(re®) +3re*g" (re®) + rieg" (re)} | < m~ (1 + 6rc, +67%;)—0 so

L | exp GOV = s | o7 e+ 0]
where
o= (a/2)"[rg' (1) +7°9"(r)]*-0
and

e=[(2/2) {rg'(r)+ 129" (r)} 15 .
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Note that e—o0 as m— oo, since on using (8.4) and (3.5)
e =m = (x/2) {rg/(r) +r'g"(r)}
=mi| L (L+rg g} | 2.

The asymptotic expansions of the form S e~ (Polynomial in ¢) de

along with these remarks justify the replacement of ¢ by o. Thus

- 14+0(1) _
(@) {rg'(r)+7rg"(r)}"

1

By (3.2) we have |I2|§z(£—_—a—)- exp (—zc(g(r))/4+v), a=m=*, So L=
V2

0( m"‘) since on using (3.1) g(r)=g'(r)/cn=wrg'(r)[wre,=m/zre,, mlre,
m

— o0 as m— oo and consequently |L| = 2r—2) exp (—xe(mfxre,)/ *P)

reo/m = V2rn

-(mfre,)—0 as m—oco. We also have

L™ {rg (r)+1'g"(1)} = k{1 +-1g"(r)]g ()} # =0(1) .
By (3.3) we have

___mlexp[x{g(r)—g(0)}]
A= Gy rg () 4 Py T OD)

or
An(2)=[xg'(r)]" exp [z {g(r)—9(0)} —m]
- [1+0M))/[1+7g"(r)[g'(r)]"
by expanding m!=(2r)"m™+%¢-"[14+0(1)]. X
We shall now prove that the relative bias of the estimator A(N,

m,2z) of (2.3) tends to zero as m—oco. On using the asymptotic ex-
pansion of A,(x), (1.4), (3.1) and the condition r¢’'(0)/m—0 we have

[l Qi Lty g
el(v(r)—a(o))[l +O(1)]

A(m, m)- 1™
An(2)

éKM”'_)_—-)O as m-—oo

e'm./rcm
where K is a positive constant.

Remark 2. The first term in the expansion of G(6) which may
converge to zero under our assumptions, is the one involving up to
third order derivatives of g(r). So in (38.1) we need k=1, 2, 8.
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Special cases
1. g(2) is a polynomial of finite degree p>1, with positive coefficients
The equation Arg’(r)=m has always a real solution », since the
function ¢(r)=Arg'(r)—m is an monotone increasing function in r with
¢(0)=—m<0 and there exists a real number a, such that ¢(a)>0.
Note that r—o as m—oco. We can easily see that, the condition
(8.1) hold with ¢,=p/r and rg’'(0)/m=Fk,/29'(r)—0 (p>1). By Canfield
([1], Lemma 1) we have that

Re{g(re)—g(r)=cyr'* when n=|0|=r /28,
But r—*t18>m~% and there are positive constants ¢, ! such that
cl,rl/lgc[g(,r)]l/(l+l) .

So the condition (3.2) also hold and Theorem 3.1 is applied.

2. g(@)=1+2), s>1, s integer

By [3] we have that A(m, n) are the numbers C(m, n, s) appearing
in the n-fold convolution of a truncated binomial distribution and satisfy
the recurrence relation A(m+1, n)=(sn—m)A(m, n)+sA(m,n—1) with
boundary conditions A(0, 0)=1, A(0,7n)=0 if »#0 and sn—m>0 for
n=1,2,.--,m+1, m=0,1,2,---,s. Note that g(z) has positive coeffi-
cients when s is an integer and s—oc when m—o (s>m). So the
case 2 is not a special case of the case 1.

We can easily see that there exists a real solution r, of the equa-
tion Asr(1+7)"'=m, where 0<r<1 and sr—co when m—oc. We can
also see that (3.1) hold with ¢,,=s/(1+7). Moreover for 3=m™**<|0|<x,

(14+7ry—Re(1+re’y=(1+r)—|1+re’f
=147r)— {(1+7)*—2r+2r cos 0}**

=(1+7) [1— {1+_21((c10j__i)—2-11} '/2]

=(1+r) [1—2, <81/02> {Er%qi%l_)} k]

=147r)"sr(l—cos 3)

. [1__% <31/62> {zr(cos 3—1) }"'1] .
k=2 82 (L+7)

Since <s’/62>§(s/2)", k=1,2,---, and

lsr(l—cos 3) < srd?/2 < sr/(1+7) -0

Arry |- Qrrf - s a8 mme
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we have that

8/2
< ){Zr(cosa 1)}"l
k=2 g2 (147r)

o {sr(l—ecos d))*_  sr(l—cos 8)/(1+7r)* R
éZ{ A+ }_1—sr(1—cos.())/(1+'r')2 0

and consequently (1+47)'— Re(1+7e?)*=c(1+7)"* for every m=m, where
we have used the fact that 1—cos4>4%8 for small 3. So (3.2) hold
and Theorem 3.1 is applied.

as m-— oo

k=1

3. 9()=1-2), s>1, s integer, 0<2<1

By [3] we have that A(m,n) are the numbers |C(m, n, —s)|, ap-
pearing in the n-fold convolution of a truncated negative binomial dis-
tribution and satisfy the recurrence relation A(m+1, n)=(sn+m)A(m,
n)+sA(m, n—1) with boundary conditions A(0, 0)=1 and A(0, n)=0 if
n+#0. We can also see that (3.1) hold with ¢,=s/(1—7). Moreover
for d=m=A<|0|<n, (1—7)*—Re(l—re?)*=(1—7r)"*—|l—re’|*=(1—7r)"*
—[A—=7r)+2r(1—cos )] 2= (1 —7)*—[(1—7)*+2r(1—cos 3)]"**=(1—7r)~*"?

8/2+k—1
< k > {2r(cosa 1) }" ‘}
k=2 s/2 A—r)

Since <S/2+k 1) slz)ky k-——ly 2,"" 3>1 and

-8r(1—cos 3) [

‘ sr(1—cos 6) l sra”/2

(1_,’.)2 (1 ’I‘)’ __ (1 ) =2—3/4(8,'.)1/4(1_7.)3:/4—5/4__)0

as m—oo (r—1l)
we have that

8/2+k—1
l ( k > {Zr(cos 3—1) }""

k=2 s/2 11—y
= (sr(l—cosd) )% sr(l—cos d)/(1—7r) _
=2 { (1—ry } ~ 1—sr(1—cos 3)/(L—7)? 0

as m— oo

k=1

and consequently (1—7)*—Re(1—re?)*=c(1—7r)""* for every m=m,
where we have used the fact that 1—cos3=0%8 for small 3. So (3.2)
hold and Theorem 3.1 is applied.

4. g(z)=e
Now A(m, n) are the Stirling numbers of the second kind which
satisfy the recurrence relation A(m+1, n)=nA(m, n)+A(m, n—1) with
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boundary conditions A(0, 0)=1, A(0, n)=0 if n#0. The equation Are’
=m has always a real solution r and r—oo as m—oo. We can easily
see that (3.1) hold with ¢,=1. Moreover for d=m"2<|f|<n, € —
Re{e"i"} ge’—le"”l —er—gr sl —pr {1 _er(coso—x)} =e {1 _e'r(cosa—l)} =e"r(1—cos 0)

. & {r(cos 6—1)}"‘1]
(145 drteosd ot .
Since k!=2*', k=1,2,--., and r(cosza_—__l) —0 as m—oo (r—o) we
have that |3 [7(cos d—1)I*" éi[r(l—cos 6)}’; r(1—cos 3)/2
k=2 k! = 2 1—r(1—cos 3/2)

as m—oo and consequently e’— Ref{e’}=ce* for every m=m, So
(3.2) hold and Theorem 3.1 is applied.

THEOREM 3.2. Let A,(2) be a polynomial given by (1.5) with 0<a

<A<b. If ¢,=1, then ﬁ(N, m, z) given by (2.3) is an A.M.V.U.E. of
A of (1.1).

ProOF. Since A(m,m)=1 and ¢,=1 we have that |A(m, m)a™/

A APFSQ/A+2))""—0 as m—oo. So, the relative bias of AN, m, 2)
given by (2.3) tends to zero as m— oo.

Special cases
1. with £,=1 we have that A(m, n)=<’:> and (1.1) is the zero trun-

cated binomial distribution with p=2/1+2).
2. with §,=m we have that A(m,n) are the signless Stirling num-
bers of the first kind.

THEOREM 3.3. Let A,(2) be a polynomial given by (1.7) with 0<a
<2A<b. Then ﬁ(N, m, z) given by (2.3) is an A.M.V.U.E. of 2, of (1.1).

Proor. Multiplying both members of (1.8) by ¢ and summing for
n=1,2,---,m+1 we have

(3.6) Frii(8)=(1—€)F(s)+(m~+1)e' An(s)
where

F,,,(s)=§o A(m,n)en,  Fys)=1.

The general solution of the difference-differential equation (3.6) is the
following

F,,(s):m!(ﬁ'.;_l)”“ .
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So

3.7) A ()=F.(n /1)=m!(31?1‘_%)"”1 .

Since A(m, m)=1 the relative bias of A(NN, m, z) given by (2.3) tends
to zero when m—oco. In fact

2”‘(1!1—1),”“/'”&!')\,—-»0 as m—o oo,

|A(m, m)A™ A (R)|F = 1

Remark 3. The family of estimators provided by (2.3) does not
always yield asymptotically minimum variance unbiased estimators. A
specific example is the following.

Consider the set of arrangements of m elements of order j, (m),
=m(m—1)---(m—j+1), weighted by 2/, 7=1,2,---,m, 1>0. If an
arrangement (m), is randomly choosen, let X be the random variable
that assigns to (m), its order n. Then

P (X=n)=p.(n)=(m),2" jﬁ_l (m),¥  m=1,2,--,m.

Notice now that the relative bias of the estimator i(XN, m, 2) does not
go to zero. In fact

mlze (33 (m) =[5 @ay-siom—gy]
=[S @wst—qarm] e as moseo.
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