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Summary

We make some remarks on the problem how to construct prob-
ability measures with given marginals. Questions of this kind arise if
one wants to build a stochastic model in a situation where one has
some idea of the kind of dependence and knows exactly certain mar-
ginal distributions.

1. Introduction

For modelling stochastic dependence e.g. for the description of
alternatives in problems of testing stochastic independence, a lot of
classes of multivariate distributions have been proposed. The most
famous are the Farlie-Gumbel-Morgenstern (FGM) distributions and
their generalizations (cf. Johnson, Kotz [9], Mardia [18], Kimeldorf and
Sampson [13]), the translation families (cf. Mardia [17]) and the Plackett
[19] distributions (we clearly cannot mention all particular, parametric
families of distributions as e.g. exponential families). A special prom-
inent role, when considering dependence properties, always play the
product measure (the independent case) and the ‘counterpart’ (in di-
mension two) the Fréchet distributions

H.(x, y)=min {F(z), G(y)}

(1)
H_(z, y)=max {F(x)+G(y)—-1, 0} ,

where F' and G are marginal distribution functions.

A Dbasic problem of modelling is, to find parametric families of
distributions with high degree of dependence as measured by correla-
tion or other dependence measures (cf. Farlie [6], Johnson and Kotz
[9], [10], Schucany, Parr and Boyer [20], Barnett [1], Cook and Johnson
[4]). A simple special advice in this direction is to consider convex
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combinations of the product measure and the Fréchet-distributions.

In the following we consider this problem for the case of uniform
marginals on [0, 1] only, The reason for this restriction is that our
method involves only consideration of densities which generalizes im-
mediately to general product spaces. Also for many dependence aspects
of real random variables which are °representation invariant’ it is
sufficient to consider the uniform maginals. This aspect is worked out
in Kimeldorf and Sampson [14].

2. Multivariate distributions with one dimensional marginals

Let M, be the set of all signed measures on [0, 1]* with uniform
marginals and let M, denote the probability measures in M, We
shall concentrate in the following on those elements of M, which are
continuous w.r.t. A", the Lebesgue-measure on [0, 1]*. The reason for
this restriction is that on one hand these distributions are easier to
handle, on the other hand this class is in a strong sense dense in M,.

For an integrable function f e L'(a") on [0,1]* and Tc{l, ---, n}
define

(2) f=\ 7 T au:

i.e. we integrate out the components in T. We can consider formally
fr as real function on [0, 1] which is constant in the T-components.
The following linear operator S: L!'(a")— L!(4") turns out to be im-
portant :

(3) Sf=f=__ 5 frt@=Dfo.m .

IT|=n-1

fA* denotes in the following the measure with density f w.r.t. A"
For measures g and » we define g<v if g is continuous w.r.t. ».

THEOREM 1. All distributions on [0, 1] with uniform marginals
and which are continuous w.r.t. 2* are of the form (1+Sf)A" where
f € L{A™) ; more precisely :

{PeM,; P2} ={(1+8Sf}a*; feL(a"},
{PeM}; PLK2"}={(1+S8f)2"; feL'x"), Sfz—1}.

(4)

Proor. By definition of M, and the Radon-Nikodym theorem
{PeM,; PL2"}={(1+1)a"; feL(a), and
fr=0 for all Tc{1, .-, n}, |T|=n—1}.

(9)



CONSTRUCTION OF MULTIVARIATE DISTRIBUTIONS 227

If now P=(1+f)1"€ M,, then f,=0 for all |T|=n—1 and, therefore,
Sf=f, i.e. P=(1+Sf)i

If, conversely, f e L'(a*), P=(1+S8f)a*, and T,c {1, ---,n}, |T|=
n—1, then for Tc{l, .-, n}, |T|=n—1, T+ T, we have (fr)r,=fu, ..n

and, therefore,
(SHr=(f=fr,= B frt®=Dfu)r,
*Tp T|=n-1

=fry—fr,— > (fr)ry+(m—1)f ...y =0.

T%T, [T|=n-1
Therefore, (14+Sf)a" € M,. The second part of relation (4 ) is immediate.

By Theorem 1 we are led to propose the following method to con-
struct parametric families of distributions with uniform marginals:
Let fq, J€8O, be a parametric family of functions in LY(A") such that
Sfg=—1, J€6, and consider P={Pqg; I € 8}, where Pg=(1+Sf4)2".

The idea of this method is that the functions f4 describe the de-
pendence structure of an underlying situation and that our fit Py to
the given marginals does not disturb too much this feature. The fol-
lowing examples indicate that this idea works well.

Example 1. a) Let f e L'(a"), ay=inf {(Sf)(x); x € [0, 1]"} > — 0 and
consider fq4(x)=JIf(x), x€[0,1]", JebB= [O, 1 ]

I
1) If f (at:)=t]j1 v(x;), where S v(x;)dx; =0, 1=<1<mn, then Sf=f and

P gives a generalized FGM-family (cf. Johnson, Kotz [9], Kimel-
dorf, Sampson [14]).

2) If f(.f:;):i[1 27, then

1

P S |
+1>xu+(n )|

m,+1 "’

sf@=11ar—3 (11

i=1 \j*i my,

which gives a new family.

3) If n=2 and f(x, y)=—1-—, then
el

Sf (@, y)=Flylﬁ—2(x*/2+(1—x)“=+yw+(1—u)lﬂ)+8/3 :
P gives a family of distributions which is like f highly con-
centrated near the diagonal.
b) Let 6=[0,1], n=2 and f4(x, y)=—1(x—y|>J) (1(4) denoting the
indicator function of A). Defining gg4(x)=(1—-29)1(I=<2z=<1-9)+(1—=

—HO=s<I)—(E—I)(@>1—J) for ogﬁgé,
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while gg4@)=(@x—I)1(x>I)+(I—x)l(x<1-Y9), %<JSI, we obtain

(Sf9)(@, ¥)=F4(x, Y)+99@)+945Hy)—(1—I). Pgy=(1+Sf4)2* approaches
for J—1 the product measure, while for small J (neglecting small and
large x values) 1+(Sfy)(x, y)=2—29 for |x—y|<J and =~1—-29 for
|x—y|>J. In order to introduce stronger dependence one can consider
an additional parameter and start with fg4.(x, y)=af4(x, y), which for
J small and a large centers the distribution near the diagonal.

3. Distributions with given independence structure

Let T, ..., T,c{1, ---,n} and C={Ty, ---, T}. The question we
consider in this section is to construct distributions on [0, 1]* with
given uniform marginals, such that the T-subset of the components is
independent, 1<¢<k, more precisely we deal with

(6) M/C)={PeM,; P<a* and =, (P)=2"4, 1Si<k},

where 7, denotes the projection on the T;-components.
For this problem we need a second linear operator V: L'(a™) —L!(2").
Define R,=T{={1, ---, n}\T, and define for f € L'(a*) inductively

.)“(1):.7“—‘.)“1;1 and for m<k,

f(m+l)=f(m)_(f(m))}?m+1 )
finally define: V(f)=fw-

(7)

THEOREM 2.
M, (C)={Q+V-8f)a"; feL'(aM}.

PROOF. By Theorem 1, M (C)={(1+Sf)2"; (Sf)s,=0, 1=i<k}. If

1+Sf)i~ e M, (C), then by definition V.Sf=Sf, 1mply1ng the inclusion
M,(C)c{(1+ VeSf)a~; f e L'(am}.

For the converse inclusion define D,={Sf; f ¢ L'(2")}. For ge D,
we prove by induction that gi., € D; and (gum)e, =0, 1Si=m, 1=m=k.
If m=1, then clearly (9u)z,=0 and for |T|=n—1, T#Ti=R, we have
(9)r=gr—gr,=0 since ge D,. This implies that gy, € D,. For the in-
duction step observe that by definition

(g(m+1))ﬂi = (g(m))Ri - (g(m))Ri - (Q(m)niuxmﬂ =0 for 1Isi=m+1

and as for the case m=1 we see that ¢..., € D;. Therefore, for f ¢
L'(2") we get that VoSf=(Sf)u, € D, i.e. 14+ VoSf)a*e M, (C).

Some special attraction has attained the problem of this section in
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the case that C={Tc {1, ---, n}; |T|=k} (cf. Joffe [7], [8], Biihler and
Mieschke [3]). In this case the following more compact representation
of the solutions is possible.

Define for f e L'(A") and 1=<k<n inductively linear operators V,,
«e+, Vo, by:

(8) ViF=f  Veuf=Vif—= 5 (Vihr.
Call a signed measure P k-independent if the projection of P on
any k components equals the product 2%, 2<k=<m.

THEOREM 3. The set of dll k-independent elements of M,, which
are continuous w.r.t. A* is given by {(1+ VioSf)a"; f e L'(a"}.

Proor. If P=(1+f)2"€ M, is k-independent, then f e D;={Sg; g
€ L'(A"} and, therefore, f=V,f=V,f=-..=V,f; i.e. f is a fixpoint of
V, implying that the k-independent i"-continuous distributions are of
the form (1+ V,oSf)a*, f € L'(2"). For the other inclusion observe that
f € D, implies that V,.f € D,. Furthermore, for |T,|/=n—k we have

(ka)ro=(Vk-1f)ro“(V -If)T"_|T[§n-k(Vk"lf)TUT°=0

T*T,

since |TUT)|=zn—k+1.

For the construction of k-independent distributions we need the
additional condition V,oSf= —1; this condition is easily satisfied if one
uses bounded functions f. Note that the k-independent distributions
not being k+1-independent are given by the additional condition that
2{(VyoSf)r#0} >0 for all |T|=n—k+1.

If, especially, k=n—1 and f (x)=iT (%), S v(x)dz;=0, then f=Sf

and (1+f)A* is a generalized FGM-distribution (cf. Section 2). If 2"{f
=0} <1, then Vi f=V,f=-.-=V,_f=f, which implies that (14f)a" is
(n—1)-independent but not =-independent. This observation strongly
indicates the lack of strong dependence in higher dimensional FGM-
families and, simultaneously, gives some very natural examples of
(n—1)-independent distributions, which are not n-independent. Similar-
ly, 14+ f)a* is k-independent but not k+1-independent, where f(x)=
a > T[w,z,), « being a factor such that 1+ f=0.

IT|=k jeT

A different method of construction of k-independent families is the
following: Let X, ---, X, be k-independent random variables on a
small set {1, ---,p} as e.g. given by the construction of Joffe [8] or
by ad hoc methods. Assume that Y, ---, Y, are independent random
variables such that Z,=h,(X,, Y;) are uniformly distributed on [0, 1],
then Z, -+, Z, are k-independent and uniformly distributed.
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If e.g. Y; are uniformly distributed on [O, —11)—], 1=1€m, and h(7, %)

=y+%, 1<j<p, ye [O, l-], then we get Z,= Y,~+—117(X¢—1), 1=i=n,
v

are k-independent, uniformly distributed and not k-+1-independent, if
X, -++, X, are not k+1-independent. This method to transfer depend-
ence properties from distributions on small sets to any distributions
was introduced in the case of normal distributions by Biihler and
Mieschke [3].

4. Multivariate marginals

A well known and difficult problem of multivariate distribution
theory is to construct a probability measure with prescribed multi-
variate marginals; i.e. let C={T}, ---, T\} be a family of subsets of
{1, .-+, n} and {P;; T €} be a consistent family of distributions, P,
being the distribution of the T-components. The problem is whether
there exists a distribution P on [0, 1]* with marginals P,, T¢C, and
how to construct it.

Some aspects of this problem are discussed by Dall’Aglio [5]. The
problem of existence was solved by Kellerer [11], Satz 4.2, but the
solution is essentially of theoretical kind and does not allow to decide
the existence problem in most of the practical situations. The cases,
which always allow a simple construction, are classified by Kellerer [12],
Satz 3.5. A typical example is the case C={{7, 1+1}; 1=i=n—1},
where a common distribution can be constructed as a distribution of
a Markov chain. The simplest unsolved case is for n=3 and C={{1, 2},
{2, 8}, {1, 8}}. Some necessary conditions have been given in this case
by Bass [2] and Dall’Aglio [5].

An interesting observation in this context is due to Kellerer [11],
Satz 1.1, who constructed a signed measure with marginals P,, T €C;
i.e. the consistency is a necessary and sufficient condition for the ex-
istence of a signed measure with given multivariate marginals. We
shall follow this line of approach and assume that P, are continuous
w.r.t. 217!, Te(C, and that U(:T= {1, ---,n}. Define

Te

(9) W.C)={PeM,; PL2*, nr(P)=PFr, TeC}.

Note that by our assumption the one dimensional marginals are uni-
form and that P,=g¢72'"!, TeC.

If TeC and T'cT, define g™'2'"’! to be the projection of P, on
the T’-components. For the subset Jc {1, ---, k} define TJ:jDJ T, and

for the empty set ¢, g*=1; we consider as in Section 2 the functions
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g7 formally as functions on [0, 1]* and introduce

(10) h(z) = é(—nm-*J S gu(), welo,1].

cf1, ekl 1T |=m

Remember the linear operator V defined in (7).

THEOREM 4. The set of all distributions on [0, 1]* with marginals
P;, TeC, which are continuous w.r.t. 2" 18

(1) WAC)={(h+ VoSf)a"; f e L(a")}.

PrOOF. In the first step we prove that hi* e W,(C) or, equivalent-
ly, that hp,=g":, where R,=T¢, 1<i<k. Without loss of generality
we consider the case i=1. By definition of b we get

k
h=gh+ X (- 5 gv

|J |=m,J %{1}

=g7i+ 3 (-1

gloum4 > gTJ>
|J|=m,1ed,J *{1} |J |=m,1&J

\

=gT1+Z=1(—1)’""< > glum+ 3] gTJ)

|Jl=m-1,1&EJ, J ¢ |J|=m,1&J

=g’l+k§(—1)"‘< > glvm— 3] yT1>;
m=1 |J|=m,1&J |J|=m,1&J
from the relation (g"7v), =(g™)z, we obtain the assertion hps=g"1.

Let now P=gi*e W,(C), then g=h+(9g—h)=h+ V-S(g—h), since
g—h is by the first part of this proof a fixpoint of VoS. Conversely,
for feL'(a") and TeC: (h+ VoSf)re=hre+(VoSf)re=hre=g" by de-
finition of V, i.e. (h+ VoSf)a" e W,(C).

Theorem 6 allows in certain cases even to construct probability
measures with given multivariate marginals. The idea is to find a
function f ¢ L'(a"), such that VoSf is balancing the negative parts of
h. Some natural candidates for f are functions which allow an ex-
plicit and simple determination of VoSf, such as e.g. linear combina-

tions of functions of the type ﬁvi(xi) where Svi(m,)d:c,=0, 15150,
i=1

Example 2. Let n=38, C={{1, 2}, {2, 3}, {1, 3}}.
a) When the marginal densities are

Sy, 2)=1,

Su(®y, 25) =1+ (xz—

1 1
2 2
Ju(®y, 2) =1+ (xl—-]z;) (xa—.%.) ,
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b)
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then

h(w,, x, xs) =—g—+m1%+ Lols— xs—‘a%

is already a nonnegative density with the given marginals.

If

Sy, 2)=1 +3<x1—.%.> (%—-;—) ,

fll;(xh xs) = 1—3<$1— %.) <xa__%)
and

f23(x2’ xs) =1 ,
then

P2y, %2y ®5) = f1a(%1, %)+ fro(aes, 25)—1

and

min {k(@,, s, 2;)} = —%:h(l, 0, 1)=h(0, 1, 0) .

A function balancing these negative parts is given by

]
so that
h(w@y, @5y x3)+ f (2, 23, x“)=1_6<x‘—'flg”> <x2—%> <xs_%>

a3 o)

gives a nonnegative density with the given marginals as can easi-

ly be seen discussing the cases x,, ng-%-, xag%, etc. Instead of

the factor 6 in the balancing funtion, one can use a factor a in
an interval around 6, in this way obtaining a parametric class of

distributions with given multivariate marginals.
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