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Summary

This paper considers discrete distributions of order k¥ based on a
binary sequence which is defined as an extension of independent trials
with a constant success probability and is more practical than the in-
dependent trials. Some results on calculation of probabilities and char-
acteristics of the distributions are obtained as well as their formal ex-
pressions. Examples and an application are also given.

1. Introduction

The exact distribution theory of the discrete distributions of order
k was initiated by Philippou, Georghiou and Philippou [10]. They in-
troduced the generalized geometric distribution of order k, which is
the distribution of the number of trials until the occurrence of the kth
consecutive success in independent trials with success probability p.
Before their work, Feller [5] had noted that the distribution can be
regarded as an example from renewal theory. They, however, gave
exact probability of the distribution explicitly and investigated mutual
relationships among a class of distributions of order k. Some distribu-
tions of order k were indeed defined such as the negative binomial,
the Poisson and the logarithmic series distributions of order k, ete.
Various properties of the distributions and mutual relationships among
themselves have been studied (cf. e.g. Philippou [9], Philippou and
Muwafi [11], Philippou, Georghiou and Philippou [10] and Aki, Kuboki
and Hirano [2]). Recently, Hirano [7] defined the binomial distribution
of order k and gave the exact probability of it, only normal approxi-
mation of which had been given by Feller [5].

The distributions stated above are all based essentially on independ-
ent trials with success probability ». The distributions of order k% are
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closely related to occurrences of k consecutive successes in the inde-
pendent trials. It is certainly interesting that the classical fundamental
distributions are generalized to the corresponding ones of order k while
still retaining the mutual relationships among themselves. However,
what is the statistical meaning of considering occurrences of k consecu-
tive successes? This question, to which we can not answer clearly
based on the independent trials, leads us to further extension of the
distributions to the ones on the binary sequence of order k, which will
be defined in Section 2. Examples in Section 2 will give the answer
to the question. Moreover, the extension will turn out to be a very
practical one.

In Section 3 the geometric distribution of order k will be extended
to the corresponding one on the binary sequence of order k. Some of
its properties will be also given. We will discuss in Section 4 mutual
relationships among the extended geometric, negative binomial, Poisson
and logarithmic series distributions of order k, which are all extended
on the binary sequence of order k& in a natural manner. In Section 5
we will define the extended binomial distribution of order k, which will
be found to have useful application to the reliability theory.

2. The binary sequence of order k

Suppose we are given an infinite sequence of {0, 1}-valued random
variables X, 1=0,1, 2,.--, which are defined on some probability space
(2, &, P).

DEFINITION 2.1. A binary sequence {X;} is said to be a binary
sequence of order k on (2, F, P) if there exist a positive integer k and
k real numbers 0<p;, ps,- -+, <1 such that
(1) X;=0 almost surely and
(2) PX,=1|X)=2y, Xi=2y,-+, Xo i =%u1)=D;
is satisfied for any positive integer », where j=r—[(r—1)/k]-k, r is
the smallest positive integer which satisfies x,_,=0, and we denote, by
[a], the largest integer not exceeding a.

Remark 2.1. A binary sequence of order k is usually a dependent
sequence. However, it is easily seen that the binary sequence of or-
der k for p,=p,=.-.-=p,=p becomes the independent trials with suc-
cess probability p. Therefore, we can say that the independent trials
with success probability p is a binary sequence of order k for any posi-
tive integer k.

Remark 2.2. From the definition, the conditional distribution of
X, X,i1,--- given X,=0 is equal to the distribution of X, Xj,--- for
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all positive integer n.

Let {X;} be a binary sequence of order k. Then the finite dimen-
sional distributions of the sequence {X;} are given in the following
result.

PROPOSITION 2.1. Let {X,} be a binary sequence of order k with
D1s Dgs* * * 5 Die
(1) For any positive integer m, it holds

P(X.,=1)= r2=1 y Y CRERY S | PP (Xa-,=0) .

(2) Let n be any positive integer. Then, for positive integers i,<1,<
<+ <1, the following formula holds :
@1y PXx=1,---,X; =1)

=P(X,=D+5 8 (-)P(X,=0P(X,,=0)

721 fpeensp€ligyeen,in_y
<<,

X+ XP(X;,_, =0)P(X,_, =1).

PrROOF. We show (1) first.
The event {X,=1} is written as the disjoint union of the events,

U (X,=L X,.=1,++, X =1, X,,=0} .
By Remark 2.2, we have

P(X,=1)=3)P(X,=1, X,.;=1,--+, X,_pu=1, X,_,=0)

=1

<
|

Il
M=

P(X,=1, X,.,=1, -+, Xo_,s1=1|X,_,=0) P (X,_,=0)

I

r=1

3

= ] PPy * Pr—ir/i)(Dr - 'pk)[T/k] P (X.-,=0).

r

Next, we prove (2) by induction with respect to n. When n=1, (2.1)
holds obviously. Assume that (2.1) holds for n—1, (n>1).
Note that

P (X, =1, -, X, =1)
=P (X{2=1, ey th=1)—‘P (Xil‘::O! thzl,' c vy X{n:].) .

From Remark 2.2, it holds
P (Xil=0’ Xi2=1’ tth th__-l):P (Xh:O) P (Xiz—h:l! ) Xin-h:l) .

Then, by induction hypothesis, we have
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P(X, =1+, X, =1)
—P(X,=1)+3% >  (~1yP(X,=0)

=140 dp€ligyee iy g}
11<FJ9< <],

X+ XP(X, _, =0)P(X,_, =1)—P (X, =0) P (X, =1)

n—2

+> 2 . (—1)’+‘P(X,I=O)P(X,l=0)
7=1 Jpperdp€llg=igyeen, iy =1}
IRIR NI
X ce XP (Xjr_]r—lzo) P(Xin'—/r:l)
=P(X, =1)+3) > (=1 P(X,=0)

r=1fy, 00, Jp €l een, iy
j1<j2<...<jr

. 'P (Xjr_jr_1=0) P (Xin"jT:l) .

Consequently, (2.1) holds for every positive integer n. This completes
the proof.

Let {X;} be a binary sequence of order k. According to the case
of independent trials, X, is sometimes called nth trial. And the out-
comes “1” and “0” are called “success” and “failure”, respectively.

Now, we give some examples.

Example 2.1 (Urn model). An urn contains w white and r red
balls. Let k& be a fixed positive integer such that k<r. A ball is
drawn at random. If it is a white ball, it is replaced. And if it is a
red ball, it is not replaced but laid beside the urn. A new random
drawing is made from the urn. If it is a red ball, it is not replaced
but laid beside the urn. But if it is white, then it is replaced and,
moreover, all red balls outside the urn are replaced if they exist. This
procedure is repeated while the number of red balls outside the urn is
less than k. If the number of red balls outside the urn becomes k,
then all red balls outside the urn are replaced and the above procedure
is continued again. A binary sequence of order k is defined by record-
ing 0 or 1 for each random drawing according to whether it is a white
ball or a red ball. It is easy to see that p,=(r—i+1)/(w+r—i+1),
1=1,2,---, k. In this example, occurrence of consecutive k successes
means that the number of red balls outside the urn becomes k.

Example 2.2. An electric bulb is lighted at some spot. It is check-
ed once a day at a certain given time whether it has failed or not.
If it is found to be burnt out, then a new one is lighted immediately.
And when an electric bulb has been lighted for % days consecutively,
it is replaced with a new one even if it has not failed. Let us assume
that the distributions of the lifetimes of the electric bulbs are identical.
We define a binary sequence of order k by recording 0 or 1 every day,
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according to whether the electric bulb has failed or not. Then, p,---,
p. are given as follows:

Let X be the lifetime in days of an electric bulb. And let F be the
cumulative distribution function of X. Then, we have

n=P(X>1)=1-F(1),
p=P(X>2|X>1)=1-F(2))/1-FQ)),

and
»:=P(X>k|X>k—1)=1—F(k))J1—F(k—1)) .

In this example, occurrence of consecutive k successes means that an
electric bulb which is not failed is changed with a new one.

We have the following results relating to Example 2.2.

PROPOSITION 2.2. If the lifetime X has nondecreasing (nomincreas-
ing) hazard rate, then p=Zp,=- - =p; (resp. p=P,<- - - =p;) holds, where
p’s are the conditional probabilities given above.

PRrROOF. Let h be the hazard rate of X. Since % is nondecreasing
(nonincreasing), we have for any integers ¢ and j (1=1<j<k),

i+1 Jj+1
S h(x)dx§g hz)de  (resp. =).
i J

Note that

S:“ h(w)dz= S:“ (;_x(—log (1—F(x)))>da:
=—log (1-F(:+1))/(1-F(z))) .
Hence, we have
p;2p; for any integers (1=<1<j5=k) (resp. ).
This completes the proof.

The following is an immediate consequence of Proposition 2.2 and
Remark 2.1.

COROLLARY 2.1. If the lifetime X has an exponential distribution,
the resulting binary sequence of order k is an independent trials with a
constant success probability.

Example 2.3. A manufactured product (e.g. an IC chip) is produced
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by a sequence of k manufacturing processes. As soon as each process
is finished, the material is to be examined whether it is defective or
not. If it is not defective, the material immediately goes on to the
next process. But if it is found to be defective, the material is given
up and the first process is started for a new one. We define a binary
sequence by recording 0 or 1 for each examination according to the
material is found to be defective or not. If all materials pass the ex-
amination for the ¢th process with identical success probability »;, (=
1,2,---,k), the sequence is the binary sequence of order k with p,,
«++, 9. In this example occurrence of consecutive k successes means
that a product is perfectly produced.

3. The extended geometric distribution of order %

We introduce a geometric distribution on a binary sequence of order
k and give some of its properties.

DEFINITION 3.1. A distribution is said to be the extended geomet-
ric distribution of order k, to be denoted by EG.(p,, s, - -, D), if it is
the distribution of the number of trials until the first occurrence of
the kth consecutive success in the binary sequence of order k with p,,

Daye ey Die

Remark 3.1. By Remark 2.1, if p,=p,=--.-=p,=p holds, then the
extended geometric distribution of order %k is reduced to be the geo-
metric distribution of order % which was defined by Philippou, Georghiou
and Philippou [10] and is denoted by G.(p). If k=1, then the corre-
sponding distribution is the usual geometric distribution.

PROPOSITION 3.1. Let X be a random variable distributed as EG.(p,,
Dy D). Then the following recurrence relation holds for any monneg-
ative integer x:

0 for 0=suz<k,
(8.1) P(X=x)={ PP D for x=k,
ﬁ} Dy 0 P (X=2—9)"  otherwise,

where ¢;=1—p, (1=1,2,---, k).

ProOOF. Let {X,} be the binary sequence of order k. When 2k,
(3.1) is obvious. If x>k, the event {X=w} is written as the disjoint
union of the events,

t The summand for /=1 means ¢q; P (X=x—1). Such a convention is frequently used
in the following.
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il:Jl {X=2« and X, is the first failure} .
By Remark 2.2, we have
P(X=ac)=é_,: P (X, is the first failure) P(X=x|X, is the first failure)
=i=§l PPy P P (X=2—17) .

This completes the proof.

The recurrence formula (3.1) is useful for computation of the values
of probabilities of the extended geometric distribution of order k.
Furthermore, by Remark 3.1, the formula (8.1) is available for calcu-
lation of the geometric distribution of order k. However, the recur-
rence relation which is given by setting p,=p,=---=p,=p in (3.1) is
different from the recurrence relation derived by Aki, Kuboki and
Hirano ([2], Proposition 2.1). Though the latter is proved using the
independence of the trials, the former is proved without assuming it.

PROPOSITION 3.2. Let X be a random variable distributed as EG(p;,
Dy, Di). Then the probability gemerating function (p.g.f.) of X 18
given by

DDy P A
B (gi<1).
1—1_% DDy + - Di1qil"

PRrROOF. Let ¢zq(t) be the p.g.f. of X; that is,

(3.2) ¢ea(t)= 3 P (X=0)t.

r=k

Since EG.p:, P+, px) is a probability distribution, the series (3.2)
converges for all ¢ such that |[¢|<1. Let ¢ be a fixed number such that
|t|<£1. For all =k, we multiply both sides of (3.1) by t*. By sum-
ming each side of such a system of equations, we get

k
Pee(t)=DDs" - 'Pktk+i=21 DD+ Dimilit'Pra(t) -
This equation implies the desired result.

Putting p,=p,=---=p,=p, we obtain the next result.

COROLLARY 3.1. The p.g.f. of the geometric distribution of order
k is given as
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pktk

o (tI=1).
1-> piqti+1
i=0

The result in Corollary 3.1 was first proved by Feller ([5], page 323).
And another proof was given by Philippou, Georghiou and Philippou
[10]. Our proof is very simple and we do not assume the independ-
ence of the trials.

Now, we give the probability distribution of EG.(p;, 05 ---, D) €x-
plicitly by expanding ¢z4(t).

PRrOPOSITION 3.3. Let X be a random variable distributed as EG(p,,
Dy Di). Then the probability of X at x is written in the form,

i+
PX=)= 5 (%P T pgigp g
Tyyeen, Ty 1y ’» Yk
x1+2x2+---+k.'ck=z—k
X pfataatetopplat gt o, P, x2k,

where (ah o a,,) =r(a+1)/ (ﬁ F(a,.-|-1)>.

i=1

ProOF. By Proposition 3.2, the p.g.f. of EG.(py, ps- - -, pi) 18 writ-
ten as

o o 0 k
(3.3) kplpz it .
1-3ppee - - Piagt’

k
Noting that |3 »p,- - pi_lq,-tt‘ <1 for |t|<1, we have
i=1

=) k n
dea(t)=0:10;" « - Dit* ,E, (E DiPe- - 'pi—IQ£ti>

— otk S n Mgtz T
=P, Dl Z_:J, n1+n2+§+nk=n <n1, oo, nk>Q1IQZ2 ac*
X p;‘2+"3+‘"+"kp;‘3+"4+'“+"k . _plzlfltnl+2n2+~--+knk .
By setting x,=n, 1=i=k) and x=n,+2n,+---+kn,, we obtain
Pea(t)=DD2 D 2 > <x;;+ .. .. _i;;xk
1y y Vg

)qf:q;’z. . .q,fk,
r=0 zl+2zz+~--+k.1:k=z
Xpf2+I3+.“+xkp:3+x‘+."+zk' . .pkz!fltz-l—k .
But from the definition of ¢z4(t), it holds
Ir)=31 " P (X=2+k)= 3" P (X=2) .
x=0 z=k

This completes the proof.
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Now we calculate the mean and variance of the extended geomet-
ric distribution of order k. It is easy to see the following lemma.

LEMMA 3.1. Let p;, Dy -, D are real numbers such that 0<py,- - -,
2.<1. Then the following hold :

k
(1) Zp@y - Psdi=1—DP1y: -+ Pis
k k-1
(2) g VPP pt—1qz'+kp1pz"'pk=1+§ DD Do
k k-1
(3) X i—1)pwy - Pt k(E—1)pps - D=2 2 Py + - Pse

PROPOSITION 3.4. The mean and variance of the extended geometric
distribution of order k are given respectively by

k-1
<1+i=21 DD . 'Ih)/(plpz' *Dx)
and
k-1 . k-1 2
[2(171172‘ “ D) z_l: 1Dy - Pyt <1+§ Dip;- - 'pi>
k-1 °
+ @1 —2k) (D2;- - -pk)<1+§ DiDs* - -m)]/(plpz- D)t
PRrOOF. Since we know the p.g.f. ¢z4(t), for getting the mean and
variance, it suffices to calculate ¢%¢(1) and ¢%s(1)+ ¢%e(1)—(¢%e(1))’. In-
deed, we have

k
Pra(t)= [Ihpz‘ . 'pkktk—!<1_§1 PP - 'pi—IQtt‘>

k ’ k 2
+ DDy - Dt g DiDe- * -pi_lqﬂtf“] / <1— DIV R -pi_lqit‘)

and
k
Lo®)=[pps- - D=1 (13 pipr- et
k .
— DDz - Pt gl DDy * + PiQitt
k .
+kpip,- - - pet*! Z}l DDy DGt !
k . .
+010: - - Dit* E DiPe - .pt_lqﬂ(@_l)ti-z]
k 2
X <l—i§ PP . -pf_lqtt‘)

k k
+2(§ DD, - 'pt—l‘It'iti-l) (1— DIV VI -pt_lqtt‘>
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k
X [pxpz' . -p,,kt""(l—:u:l PiD; 'pi-ﬂhti)
k . k '
+Ppy Pt 2Py -pt~1qﬂt“‘]] / (1 —5Pe -pi_xqft‘> .

By using Lemma 3.1, we can easily obtain the desired result. This
completes the proof.

We now discuss higher cumulants of the distribution. Let X be
a random variable distributed as EG.(p:, P -+, P). We denote by
EG.(p,, s+ -, p) the distribution of X—&.

ProroOSITION 3.5. Let u be any positive integer. Then the shifted
distribution EG(py, Da- -+, Dp) has uth cumulant, which is represented as

i n1+°"+nk—1 nrgrQgiz. - Q%
e 1'q Qi
n=1ny+2ng+eet+kng=n nl! ’ nlc
)(p:‘2+"3+"'+"kp;’3+"4+"'+"k- .. :El .

PrROOF. Let ¢(t) be the cumulant generating function of EG.(p,,
-+, p); that is,

(3.4) plt)=log (—— PP x
1=3 piye - Pi-sdie”

By similar argument as the proof of Proposition 3.3, we can expand it
in the following form,

¢(t)=log (p,p:- - 'pk)+i > <n1+ e +n"—1>qf1q;‘z. Qi

n=1n)+2ng+ecetkng=n nlv sy, nk

xp;,3+n3+...+nkp;|3+n4+<--+"k. . .p:fl exp (’nt) .

Let # be any positive integer. If we differentiate formally the right
hand side of (3.4) u times with respect to t, we get

(35) i 2 <n1+ tte +'nk_1>q';llq;'3. <o qQik

A=1 ny+Ang eeetkng=n (TR (7

)(p;’z+"3+”'+"’kp;'3+"4+"'+"k- . :f;’n’u exp ('nt) .

If we can show that the infinite series (3.5) converges uniformly in ¢
on a region which contains zero, then we can see that the wth cumu-
lant of the distribution exists and it is written as

2

n=1n+2Mg+eeo+kng=n

<n1+ ceem—1

nigmqta. - - Q%
Mgy vy My > 1'q3 qx

Mo+t oo e+ Np gt N+ ore+n n
Xpyzt™s k3T koo Dok

Now, we show the uniform convergence of (3.5) on a region which
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contains zero. For that, it suffices to show the uniform convergence of

< n
ny+ngtecetng=n Mgy ey

36 L
n

n. . P n
= nk)‘h g2« *Qi®
X Ppatret it it e DR (21t - - - A Ro)*

X exp ((ny+2n,+ - - - +kny)t) ,

since (3.6) is a series obtained by a derangement of the terms in the
series (3.5). If n+ny+---+n,=n, then n,+2n,+ - +kn,<kn holds.
Hence, each term of (3.6) is less than

L eny exp (ent) (33 - i)’
which, by Lemma 3.1 (1), is equal to

L [(emy* exp (k) (1—pips- - DI
Then, it is sufficient to show that the series,
(3.7) 3 (k)" exp (k) (L—pips- - P

converges uniformly in ¢ on a region which contains zero. Set 5=1-—
Pps- - -Pe. Then 0<7<1 holds from the definition of the binary se-
quence of order k. Put t,=—(1/4k)log». Then we have £,>0. Note
that it holds exp (kt)<exp (kt)=5""* for any t<t,. Since lim (kn)/"=1,

n—co

there exists a positive integer m, such that (kn)”"<5~"* holds if n>mn,.
Consequently, if t<t, and n>mn,, then

(kn)u/n exp (kt) (1 —DD;e pk) < 7]1/2< 1.

But if |x|<1, then the power series Ej}l-q-lim" (=—log (1—x)) converges

absolutely. Therefore, (3.7) converges uniformly for any t<t. This
completes the proof.

4. The extended negative binomial distribution of order k and
some related distributions

In the previous section some properties of the extended geometric
distribution of order k, which is naturally defined on the binary se-
quence of order k, were discussed almost analogously to those of the
geometric distribution of order k. We recall that there exist other
fundamental distributions of order k such as the negative binomial, the
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Poisson, the logarithmic series distributions of order k, etc. and that
they preserve mutual relationships which are similar to those of cor-
responding usual distributions (of order 1).

We now define some other distributions of order k& based on the
binary sequence of order k and discuss mutual relationships among them.

DEFINITION 4.1. Let X, X;,---, X, be independent random vari-
ables identically distributed as EG.(p,, p»- -+, ). Then the distribution
of X,+X;+---+X, is called to be the extended megative binomial dis-
tribution of order k and denoted by ENB(7, Dy, D2y Di)-

Remark 4.1. The class of the extended negative binomial distri-
butions of order k contains as a special case the usual negative bino-
mial distributions of order %, which was defined by Philippou, Georghiou
and Philippou [10]. Indeed, from Definition 4.1 and Remark 2.1, it is
easy to see that, if py=p,=---=p,=p holds, then the corresponding
extended negative binomial distribution of order k is equal to the nega-
tive binomial distribution of order k.

The definition immediately implies that the p.g.f. of ENB(r, p,,
Dy +» Px) 18 given by

. o0 k r
Pons®)=(—RBUBE)T <),
1’% DDy Dyl

Now we give the probability distribution of ENB(7, pi, D2\ Dr)
explicitly. By the binomial expansion, we have

o — k \m
¢enst)= 0y - P 3 ( mr) (— DIV T -pi-lqct‘) :

Note that, for any nonnegative integers r and s,

of —7\_[(r+s—1
o(F)=("F)
holds. Then, we can easily see that

Gens)=(pipr DY 3 (T+$_l>

X 5 (m,;;,'.'_',-l'm?f")q{"lq;"z---qk”k

my+eeedmp=m

Mo+ Matses+MpaaMy+Myt oo +m My $My+2Mo+see+Em
X pretTs kPgaT ™ k...pk51t1 2 k

=@yt 3 (M)

myteeetmy=m

M g™ My Mg+ mMgteestm, My £M+2Mot e +km
X qPigya. - - qEplat et e < - itk g k.
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By setting y,=m, 1<i<k) and y=kr+y,+2y,+--- +ky,, we obtain

— S y1+°"+yk+r—1>
¢rns(t) FEMt ”1,§vk ( Yo't Yo 7—1
Y+ 2ot kY =y—kr

ra¥1Y Yot ygtee+y, gt . o mY,
X (D2« D) qtrqlz- - - qleplatys kpYstUate Ve, o ple

Thus we have the following result.

PROPOSITION 4.1. Let X be a random variable distributed as ENB,(r,
Dy Dose*+5 D). Then the probability of X at x is written in the form,

N Tyt T+ r—1
(4.1) PX=2)= 3, < By oo, By 1 )
T +2Tg+ o0+ kT =T—k7

X (plpz' * ‘pk)'qflq;‘z- . -qgkpfz+»"73+---+zk
Xp;’a+x‘+...+zk_ . 'p:fl , xgk'r .

Remark 4.2. When we take into consideration the complexity of
the summation, the formula (4.1) may not be suitable for computing
the probability. We can indeed calculate the probability easily by the
r-time convolution of EG.(p,, P, - -, »,;) Which can be computed by the
recurrence formula (3.1).

DEFINITION 4.2. Let X be a discrete random variable. Let i,,---,
A: be nonnegative constants. We say that X has the extended Poisson
distibution of order k with 2,,---, ,, to be denoted by EP,(i, 45,
A:), if it holds for any nonnegative integer z,

P(X=1)= 5 AT1AZ2e A
), C AL ARRRY M|
2\ +2Tgt oo +ET =T

Remark 4.3. This distribution, which had been introduced by

Adelson [1], was called the ¢ stuttering’ Poisson distribution by Johnson

and Kotz [8]. In this paper we however call it the extended Poisson

distribution of order %, because it is natural to regard it as an exten-

sion of the Poisson distribution of order k, which was defined by Philip-
pou, Georghiou and Philippou [10].

It is easy to see that the p.g.f. of EP.(2, 4,---, 4;) is given by
k k
dsr(t)=exp (— 3 At 3 A .

For further properties of EP,(4;, 45---, A:), see, for example, Aki,
Kuboki and Hirano [2].

The following is an extension of Theorem 3.2 in Philippou, Georghiou
and Philippou [10].
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PROPOSITION 4.2. Let S, be a random variable distributed as ENB,(r,
Dy D). Assume that q¢,—0 and rq,— 1, (20) (7=1,2,---,k) as r—
oo. Then S,—kr converges weakly to EPy(A, Ay -+, A)-

ProOF. It suffices to show the characteristic function of S,—kr

converges to that of EP.(4;, 2;,---, 4) as r—oo. The characteristic
function of S,—kr is given by
8.0=( PPy P ).

k
1—12=1 PiPz* * *P;-14; €XPp (151)
where i=+—1. We set &(r, j)=rq;—2,, 7=1,2,---, k. Then, it holds

{1 (1- 2 S0y

r r

k

¢T(t): 1 . .. r °
(1L % b Pyl elr, 3) exp (i)
But it is not difficult to see that, if z is a complex number and {e,}3,

be a sequence of complex numbers which converges to zero, then

lim <1+-z—+ﬁ)n=e‘ .
pa— n n

This implies that
’ & k
lim g,(8)=exp ( — 3] 4,31 4 exp (i3t))
which completes the proof.

Since the usual negative binomial distribution is defined for any
positive real », let us define the extended negative binomial distribu-
tion of order % for any positive real . Then we can see more precise
correspondence between distributions of order k. We note that, for a
positive real r, (¢z4(t))” does not necessarily become a p.g.f. of a dis-
crete distribution, because it may not be a power series.

DEFINITION 4.1’. Let » be any positive real number. A random
variable X is said to have the extended negative binomial distribution
of order k with parameters 7, p;, Ds, - -+, Dx, to be denoted by ENB,/(r,

Dy Do+ -+, D), if, for every positive integer x greater than or equal to
[kr], it holds
PX=m)= > <”‘;f,'.'.'.Effiﬁ{l)qf:q:n---q:x

172 k
Ty +2Zg+ e +ka:k=x—[kr]

T Tot Tt ss+TpmTa+ T+t z
X (PiPy + + Pp) PR o pist keooDTE
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Remark 4.4. The p.g.f. of EBN(r, py, Dy -+, Px) is given by
(¢za(t))etrri=r

which immediately implies that Definition 4.1’ is equivalent to Defini-
tion 4.1 for any positive integer 7.

Aki, Kuboki and Hirano [2] defined the logarithmic series distribu-
tion of order k as a limiting distribution of a conditional negative bi-
nomial distribution of order k. They discussed its properties based on
independent trials. We now derive some analogous properties of the
corresponding distribution on the basis of the binary sequence of or-
der k.

DEFINITION 4.3. A random variable X is said to have an extended
logarithmic series distribution of order k, if there exist k real numbers
0< Py Por- - +» P<1 such that, for every positive integer z, it is satis-
fied that

(4.2) P(X=2x)= S @42+ - - +a,—1)!
eetim, _ —log (pipr - pYTT! -]
X GEigis - QR I
The distribution is denoted by ELS.(py, P+ -, D).

The following is an extension of Proposition 3.2 in Aki, Kuboki and
Hirano [2].

PROPOSITION 4.3. Let X be a random variable distributed as ENB,(r,
Dy, Dy +*+» D) and assume that r—0. Then

P(X=z|X=[kr]+1)
converges to the right hand side of (4.2).

PROOF. Since
P(X=[kr)=(pp: - -D¥)"
we have

P(X=x|X=[kr]+1)
_ P(X=g, X2[kr]+1)
1—P (X=[kr])

= 5 (w; » ;*xffﬁ;l)qflq;,. g

1t Ty
Ty +28y+ e+ kT =2—[k7]

X DD+« 0a) P Tpis T ke Pk [(L—(D1D2 + D))
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_ = L@+ +ze+7) 70D D)
P Xl e -2 D (r4+1) 1—(py- - - D1)

Ly +2Tg+ s e+ kT =2—[k7]

Z X, Lot oo+ T Lot ooe+ T, z
X qhgse. - - qikpTe kP33 ke DTk

Note that

lim _T®@Pe D) _ -1 _
r~0 1—(pp;- - -2)"  log (pi0y- - - 1)

Then we get the desired result. This completes the proof.

Remark 4.5. When the binary sequence is generated by independ-
ent trials (that is, when p,=p,=---=p,), the result was proved for
any k by Aki, Kuboki and Hirano [2]. When k=1, the corresponding
relation was shown by Fisher, Corbet and Williams [6].

PROPOSITION 4.4. The p.g.f. of ELSy(py, Do+, D:) 1S expressed as
1
k
— 2P *Diagitt

1

Perst)=a(p, 5y - -, D) log (

where a(py, D, - -, D)= —1/log (D0, + - ).
PrOOF. Noting that

log(1—g)=—3> ¥,
n

n=1
we have

log < = 1
1-3 oo - - pgit?

1 /& m
=2 — E DDy pi—lqiti>
m=1 M \i=1
= i —1-— Z ( >qiﬂ1q;n2. . -q;‘"k ;n2+...+mk
m=1 M, my+eetmp=m My, s vy My

Mgt eeetm, My $M+2Mog+ 0o +km
X pgs k...pkflt 1 2 k
oo (wl+...+xk_1
n=1 &) +2Ty+ee s +kTy=n w“ LI xk
d oot Tp ot eret T
xpfz kp23 k...pkflt .

)qflq;’z. . .q:k

This completes the proof.
We have the following result for moments of ELS.(p;, D -+, Dx)-
PROPOSITION 4.5. Let n be any positive integer. Then the nth mo-
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ment of ELSy(py, ps,- -+, D) 18 equal to
a(py, Doy -+ +, D) X (nth cumulant of ETGk(pb Doty D) -

PrOOF. By Proposition 4.4 and (3.4), we can easily see that

drrs(€)=a(py, Dy - -, D) X (log ¢za(ef)—log (Do, - - 14)) .

This equation implies the result. This completes the proof.

Remark 4.6. By using Proposition 4.5 and Proposition 3.4, mean
and variance of ELS,(p;, ps,- -+, D) are immediately given.

Now we give a recursion formula which is useful for calculation
of the extended logarithmic series distribution of order k.
As we saw in the proof of Proposition 4.5, it holds that

$rrs(@)=a(py, Py, - -, Bi) X (log ¢ a(t) —log (P2, - - p4)) -
By differentiating both sides, we get

¢’ﬁ(t)‘/’}:LS(t)=a(ply Y OTRRRR plc)ﬂb;:—(;(t) .

Therefore, the same argument as in the proof of Proposition 3.3 in
Aki, Kuboki and Hirano [2] implies the following :

PROPOSITION 4.6. The values of probabilities of the extended log-
arithmic series distribution of order k at n» (n=1,2,---), which are de-
noted by Pz.s (n), satisfy the following recursion formula,

Pers (m)=a(py, Dy -+ +, P [Pra{n)/Pze (0)]

— L5 jIPse (m—3)/Prs (O] Prss ()
n j=t

where Pzg (1) is the value of probability of EG(p,py---, D) at 1.

5. The extended binomial distribution of order k&

In this section we investigate some properties of the extended bi-
nomial distribution of order k# and give an application to the reliability
theory.

DEFINITION 5.1. Let » be a positive integer. Let {X,}i, be a bi-
nary sequence of order k with p, p; -+, p,. A distribution is said to
be the extended binomial distribution of order k, to be denoted by EB,(n,
Dy, Doy« +y D), if it is the distribution of the number of occurrences of
consecutive k successes until the nth trial of the binary sequence of
order k.
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Remark 5.1. When p,=p,=--=p,=p, the corresponding distribu-
tion obviously coinsides with the binomial distribution of order k, which
was defined explicitly by Hirano [7]. The binomial distribution of order
k, which is denoted by B(n, p), was firstly introduced by Feller [5] and
its normal approximation was discussed.

From the definition, EB.(n, i, D5+, Dx) is a distribution on {0, 1,
2,--+, [n/k]}. We denote, by EBy(n, Dy, D, -+, Ds; 1), the value of prob-
ability of EB«(n, P, Py, D) at 4 (3=0,1,2,---,[n/k]). Bun, p;1),
ENB, (7, Py, Dy -+, Di; 1), ete. are also defined similarly.

Let Y,,Y;, -+, Y, be independent random variables identically dis-
tributed as EG.(p:, D+, D). Then, for any positive integer r not
greater than [n/k], the following equation holds,

(5'1) z:ikr ENBk(rs Dis Doy Pis w):-P (Yl+lf2+ ot +Yr§n)

[n/k]
=,§- EBk(n’ D1y Doy Prs .’D) .

Therefore,
[n/k]
(5.2) EBy(n, pi, Doy + +y D 0)=1— E EBy(n, i, D2y *» Di; %)
=1—§ EG(py, Doy -+ 5 Di; ) -

From (5.1), we can immediately calculate the value EB(n, D, D;: -+, Ds;
z) for every z, by using Proposition 3.1 and Remark 4.2.

Furthermore, we have an explicit representation of EB.(n, p;, D
-++, px; ). The following is an extension of Proposition 2.2 in Hirano
[7]. Since it can be similarly proved, we omit the proof.

PROPOSITION 5.1. For every nonnegative integer x mot greater than
[n/k], the value of EB(n, p;, Dy -, Di; ®) 18 written in the form,

= 20 SRR o o
2.z |

Ty, Ly T )qf*qfﬂ- QPP P

zl,...,xk
Zy+2Tg+ 0o +EZp=n—m—kZ

F Tt e+ T Lat Tyt x, z
X Pt Ts kg3t ""‘pkfl(plpz"'pk) .

We can easily derive some characteristics of the distribution. For
example, the mean and the second moment of the distribution are given
as follows: Set

N=[n/k],

A'=z=2k'r ENB,,(”', D1y Pos* * *y Dis x) ’
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Br=Ar—Ar+l ’ ”'-_—'1, 21"': n_ly
By=Ay,
and
BO"—"‘]-_A!. .

Then, the mean is equal to

M=

rB,=3) (A,—A,.)+ NAy=31 4, .
r=1 r=1

r=0

The second moment is given by
N N
}‘_‘(.) rB,=3> 2r—1)A, .
r= r=1

As an application of the extended binomial distribution of order k,
we now consider a problem on the reliability of a system which is call-
ed consecutive-k-out-of-n: F' system. The system, which was introduced
by Chiang and Niu [3], consists of » components in sequence and fails
whenever k consecutive components are failed. The reliability, that is,
the probability that the system is functioning, was calculated by Chiang
and Niu [3] and Derman, Lieberman and Ross [4] on the assumption
that all components fail independently with an identical distribution.

It is easily seen that the reliability of the system is equal to B(n,
p; 0) on the above assumption and it can be written explicitly by Pro-
position 5.1, where p is the probability that each component fails.

Moreover, we need not assume the independence of each component
for getting the reliability of the system. If we assume that the bi-
nary sequence generated by the failure of each component becomes a
binary sequence of order k, then the reliability of the system is given
by EBy(n, P, D2 -+, Dx; 0), which immediately be calculated by (5.2) and
Proposition 3.1.
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