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Summary

Global analyses are given to continuous analogues of the Levenberg-
Marquardt method dz/dt=—(J'(x)J(x)+3I)"'J*(x)g(x), and the Newton-
Raphson-Ben-Israel method dx/dt=—J*(x)g(x), for solving an over- and
under-determined system g(x)=0 of nonlinear equations. The charac-
teristics of both methods are compared. Errors in some literature
which dealt with related continuous analogue methods are pointed out.

1. Introduction

The problems of finding a solution of nonlinear equations and a
maximum of a nonlinearly constrained function arise in diverse fields
of mathematical sciences and numerous methods have been proposed
for solving the problems in literature. Recently much attention has
been paid to continuous analogues of discrete iterative methods, which
are based on solving the related systems of ordinary differential equa-
tions [3]-[8], [10]-[27]. As was well demonstrated in Branin [7], Meyer
[15] and Tanabe [23], [24], continuous analogues not only have larger
region of convergence than the original discrete methods but also their
analysis provides us qualitative information on the behavior of the orig-
inal methods. Further, an important advantage of the differential equa-
tion approach is that it facilitates global analysis of the behavior of
the methods, which does not seem to be widely recognized. There
have been several papers on global analysis of continuous analogue
methods [7], [8], [12], [15], [17], [18]-[27]. The analyses given in Boggs
[3], [4], Boggs and Dennis [5] are essentially local ones. The results
given in Meyer [15] are not completely global because he considered
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only the cases where solutions of related differential equations exist for
the infinite interval. Branin [7] showed, by numerical experiments, the
global behavior of the continuous analogue of Newton-Raphson method.
In spite of lack of mathematical rigor, his paper is thought-provoking
and an excellent source of information on the method. A theoretical
analysis of the method in the case where a system of nonlinear equa-
tions which is possibly underdetermined was given in Tanabe [22]-[25].
An analysis was also given to the continuous analogue of the gradient
projection method for solving nonlinear constrained optimization prob-
lems in [18]-[20]. In this connection, an analysis was given to a con-
tinuous analogue of the gradient projection method with enforced fea-
sibility in [22], [24], [25]. In the analysis of global behaviors of these
methods, a differential geometric method played an important role.

In Section 2, mathematical errors which were made in some liter-
ature treating continuous analogue methods are pointed out. In Section
3, a global analysis is given to a continuous analogue of the Levenberg-
Marquardt method in both cases where systems of nonlinear equations
are overdetermined and underdetermined. In Section 4, a global anal-
ysis is given to a continuous analogue of the Newton-Raphson method
in the case where a system is overdetermined. The characteristic of
the continuous Levenberg-Marquardt method is shown by comparing
both methods. '

2. Common errors

The problem discussed in this paper is to solve a system of non-
linear equations,

(1) g(x)=0¢ R™,

where g is a twice continuously differentiable mapping from n-dimen-
sional Euclidian space R" to m-dimensional space R™.
Gay [13] proposed the method,

(2) dzjdt=—J} (x)9(x) ,

for solving (1) in the case where m=n, where f,*(x) is the Levenberg-
Marquardt type modification of the inverse of the Jacobian matrix J,(x)
of g. He assumed the following condition to obtain his result,

(3) 9'(x)(J,(x)J (x))g(x)=0|lg(x)|?  for all xR,

which is rather a restrictive condition since Jg(w)j;‘(m) may be a rank
deficient matrix. He claimed in Theorem (23) of [13] that for each 2°
€ R*, there exists a solution x(t) of (2) with z(¢®)=2° for the interval,
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(4) '<t<oo,

and that such a solution has an asymptote z*

(5) x*:ltijn x(t)
with g(z*)=0 and
(6) l|2()—a*|| = (llg(=)||/(0¢)) exp (—67) .

Unfortunately this result is unfounded. His analysis was based on
Theorem (5) of [13] which he erroneously cited from Coddington and
Levinson [9] claiming that if f:R">R" is continuous, then for each
2"€¢ R* and t° € R there exists a continuously differentiable function x:
Ri> R" such that z(t)=2" and dx(t)/dt=f(x(t)) for

(7) —oo<Lt<o0
This is incorrect and (7) should have read,
(8) —M-<t<t'+M*

where M~ and M+ are positive numbers or infinity. A counter example
against his claim in Theorem (5) of [13] is given by

(9) de/dt=x*¢ R .

If the initial value ' is not zero, the solution of (9) blows up in finite
time. For example, it blows up at t=1 when 2°=1. The present author
includes this simple example, since in many literature [3]-[7], [11], [13],
[27] which dealt with continuous analogue methods, the authors as-
sumed a priori and sometimes erroneously that their solutions exist
for the intervals (4) or (7). Although the errors are subtle and most
of them could be rectified by providing suitable additional assumptions,
which lose the generality of the propositions however, these results are
incorrect or misleading since the assumptions (4) and (7) almost imply
that the solution x(f) of the autonomous system converges as t tends
to infinity. In particular, the proof of Theorem (23) of [13] is invalid
because it depends on the erroneous assumption (4). An alternative
analysis of a related method is given in the next section.

The following theorem, which should replace Theorem (5) of [13],
will frequently be used in the analysis given in Sections 3 and 4.

THEOREM 0. If a mapping f(t, x): R\ R" is continuous and
satisfies the local Lipschitz condition on an open set DC R**', there exists
a unique solution z(t, x°), 0<t<M, of

(10) dx/dt=f(¢, x) , teR and x € R,
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with 2(0, x°)=x°, (0,2°) € D and the integration curve of the solution
can be prolonged until it reaches the boundary oD of D.

In this paper we consider only solutions with maximum interval of
existence in the positive direction for given initial values.

3. Continuous analogue of Levenberg-Marquardt method

We consider a continuous analogue of the Levenberg-Marquardt
method,

(11-1) dw/dt=—(J; (x)J,(x)+ L)~ "J;(x)g(x)
(11-2) = —J;(@)(Jo(x)J; () + 0 1,) "9 () =D(x)

where >0, I, and I, are identity matrices of respective dimension m
and n. Note that the expressions (11-1 and 2) are equivalent.

THEOREM 3.1. For each '€ R*, there exists a solution x(t, x°), 0=
t<M, with =0, x°)=2", of (11). As t temds to M, its trajectory will
either (i) comverge to a solution x* € V,NS;, in which case M=o, or
(ii) approach the set E—(V,NS;)CS,UV,, of certain equilibrium points
of the system (11), or (iii) diverge, where V,, S, S, and E are possibly
empty sets defined respectively by

(12) V,={x e R*: g(x)=0},
(13) S,={x € R*: rank J,(x)<n},
(14) S;={x € R*: rank J,(x)<m} ,

E={xeR": J}(x)g(x)=0}CV,US;,
and S¢ is the complement of S in R".

Note that if V, is empty then the set E contains the possibly
empty set L, of all the least squares solutions of the system (1). Be-
fore proving the theorem we prepare a few lemmas.

LEMMA 3.2. If rank J,(x*)=n for a solution x* €V,, then x* is an
asymptotically stable point of the system (11).

PROOF. By the continuity of J,(x), there exists a neighbourhood
U of x* such that z* is the only solution of (1) in U and

rank J,(x)=n for xeU.
Let us consider the function,

V(z)=|lz—az*|2
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defined in U. Then

dVidt=<{dx/dt, x—x*)
={0(x), z—x*)
= — () (x)+3L,) "' (g(x) — g(x*)), Jo(x) (x —=*)) .
Since g(x)—g(x*)=J,(x)(@—x*)+o(||x—x*||), we have

aVidt=—{(Jy(@)J;(®)+ 3 L.) ' (x) (@ — %), Jo(%) (x — 2*))
+olllw—a*|°) .

Hence there exists an open ball,
B={xecR": ||x—a*||<e}CU,

such that dV/dt<0 for x € B—{x*}. This implies that the function V
is a strict Liapunov function for x*, hence we have the desired result.

LEMMA 3.3. If a solution xz(t, 2%), 0=<t<M, of (11) is bounded then
M=co and the positive limit set I' of the solution is contained in the
set E of equilibrium points. Note that EDL,DOV,.

ProoF. By Theorem O it is obvious that M=oco. Let us consider
the function,

L@)=lg@)l2=(3 6@) [2
Then
(15)  dLjdt=—T=)@), (J@M,@)+IL) (@) <0
for z=x(t, 2°), 0=<t<oo

and the equality holds if and only if «'e E, because if the equality
holds at t=T>0, then (T, z°) ¢ E and

z(t)=a(T, ="

is obviously a solution of (11), hence by the uniqueness of the solution
we have

z(t)=2(t, 2)=2'€¢ E .

Thus we have either that xz(t, «°)=x"¢ E or that L(x(t, «°)) is a strictly
monotone decreasing function of t. Therefore there is no periodic solu-
tion of (11). In both cases, there exists the limit

(16) ltim L(x(t, x°))=k=0 .

Hence by the continuity of L(x) we have
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(17 L=k .

Suppose I' is not contained in E, then there exists a point '€ I'NE°
and there exists a solution (¢, «'), 0=<t<M’, with 2(0, «’)=2'. Because
the positive limit set I' is an invariant set of the system (11), the trajec-
tory of x(t, 2’) is contained in I'. However, L(x(t, ")) is a strictly mono-
tone decreasing function of t € [0, M’), since «' ¢ E. This contradicts the
fact that L(x) is constant k¥ on I'. Thus we have I'CE.

Combining these two lemmas and Theorem 0, we obtain Theorem
3.1.

COROLLARY 3.4. If the connected component C(x°) of the level set,

{we R llg@)l=llg@)},

that contains x°, is bounded, the conclusion of Lemma 3.3 is valid. Fur-
ther if ENC(x°) consists of tisolated points, the solution converges to a
point in E as t tends to infinity. Hence in the case where E=L,, it
converges to a least squares solution of (1).

THEOREM 3.5. If a solution x(t, "), 0<t<oco, of (11) with (0, x°)
=2, converges, as t tends to imfinity, to a solution x* €V, such that
rank J,(&*)=m, then there exist positive numbers k and 6 such that

(18) (¢, 2")—2*|<kllg@@’)| exp (—6t) ,  0=t<co,

PROOF. There exists a neighbourhood U of x* such that the to-

pological closure U of U is compact and rank Jy(x)=m for all x¢ U.
Considering the function L(x) defined in the proof of Lemma 3.3, we
have

dLjdt = —{g(x), I(2)J; (x)g(%)) ,

where j;(x)=(J,,’(x)J,(x)—l—aIn)“J;(x). Since Ja(x)j;(w) is non-singular
and continuous on the compact set U, there exists a positive number 6,
such that

19) (@), T@) Sy (@)g(x)) 20, ]lg@)|F  for zeT.

On the other hand, there exists T such that x(¢,2°) € U for t=T. Let
us consider the function defined on Vj,

4(@) = <g(x), J(x)J; (*)g(x)>/l|9(x)|*Z0 ,

which does not vanish on the trajectory of a solution with an initial
point in E°, by the proof of Lemma 3.3. Since g(z(¢, «°)) is a continu-
ous function of t on the closed interval [0, T'], there exist the minimum



GLOBAL ANALYSIS OF CONTINUOUS ANALOGUES 195

0, of q(x(t, 2°)) on the interval. Let
0=min (01, 02) y

and let the topological closure of the trajectory of thelsolution be de-
noted by A(z'), i.e.,

A)=( U {2} U {=*} .
Then we have
(g(@), J(@)J; (@)g@)>20lg@)|*  for x € Aa").
Thus we have
dL(x(t, 2°))/dt< —20L(x(t, %)), O0=t<oco.
Therefore
lg(=(t, ) I*<llg(=’)|* exp (—26¢) ,  0=<t<oo.

Since A(x’) is a compact set and j,*(w} is continuous on A(z°), there
exists a positive number k such that

I (@) Sk<oo .

Thus we have
latt, ) —a|1=| | @sldtyit]
=(" ndwiaey at
=[" 1 @a@)at
<k " ltatt, i at
<kllg(@)| | exp (—0t)

=k|lg(«")|| exp (—01) ,

which completes the proof. Finally note that if 2° ¢ E then ||g(z(z, )|
is a strictly monotone decreasing function of ¢ ¢ [0, M) in all cases.

4., Continvous analogue of Newton-Raphson method

In this section we consider a continuous analogue of the Newton-
Raphson-Ben Israel method,

(20) dzjdt=—J; (x)g(x)=T(x) ,
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where J(x) is the Moore-Penrose inverse of Jy(z), to clarify the char-
acteristics that distinguish the Levenberg-Marquardt modification (11)
from the Newton-Raphson method. The autonomous system (20) was
analyzed in Tanabe [22]-[24] in the case where m=<n and the following
local and global theorems were obtained without assuming such a re-
strictive assumption as (3). For proofs and a more detailed treatment
see [22]-[24].

THEOREM 4.1. Let us assume that g(x) is a twice continuously dif-
Sferentiable mapping from R" to R™, where m<mn. If rankJ,(z*)=m
for a solution x* eV, then there exists a neighbourhood U* of x* such
that for each '€ U* there exists a solution z(t, x°), 0<t<oo, of (20)
with x(0, 2°)=a°, and as t tends to infinity it always converges to a point
wn V, which may be different from x* in the case where m<n.

THEOREM 4.2. Under the same assumption as the previous theorem,
Jor a given x° € S5, there exists a solution x(t, x°), 0<t<M, of (20) with
2(0, x°)=xa". As t tends to M, its trajectory will either (i) converge to
a solution x* € V,NS;, in which case we have M=o and

(21) (¢, ') —o*||=k|lg(«")| exp (—2) ,  0=t<oo,

for some positve number k, or (ii) approach the set,
S;={x € R*: rank J,(x)<m},

of singular points of (20), or (iii) diverge.

Note that the Liapunov methods are of no use when m<mn be-
cause then the rank of the Jacobian matrix (the first derivative) of
the right-hand-side, Z'(x) of (20) is always less than » at a solution of
(1). The proofs of the theorems depended heavily on a differential geo-
metric treatment [22]-[24]. Note also that the inequality (21) is essen-
tially the same as (6) but it is obtained without assuming such a con-
dition as (3).

The proof of the inequality (21) depends also on a distinctive fea-
ture of the continuous analogue of the Newton-Raphson method, that
a solution z(t, "), 0<t<M, of (20) with (0, 2")=2" satisfies the *first
integral’ of (20),

(23) g(x(t, x°))=exp (—t)g(x) for 0<t<M,

which does not hold in the case of the continuous analogue of the
Levenberg-Marquardt method (11). Let the topological closure of the
trajectory of the solution be denoted by A(x?), i.e.,

A@)=( U_{a(t, s} U {a*}
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where

x*=lim x(¢, 2°) .

t—o0

Since A(x’) is a compact set and J,f(x) is continuous on A(x°), there
exists a positive number k such that

I @)=k for x € A(x°) .

Thus we have
(¢, 2°)— ¥ :“ S” (dx/dt)dt"
=(" nazjatyat
{1 @gtlae
<k | lote(t, =)t

=kllg@)] | exp (—t)dt
=kllg(@")]| exp (—1) .

Incidentally, if V, is empty in Theorem 4.2, the set S; of singular
points contains the set L, of all the least squares solutions of the sys-
tem (1) if they exist.

Note also that for any solution x(¢, 2°), 0=t<M, of (20) with (0,
)=, we have, by the equality (23),

(29) Sign (gi(x(t, 2°)))=8ign (g:(=’))  for 0sti<M,
where Sign (x)=13f 2>0), =0(f x=0), =—1(if #<0), and
9(@)=(9:(2), 9:(), - - -, gu())" -
This implies that the trajectory of a solution of (20) never crosses any
of the hyperplanes V; defined by
V.={x e R*: g(x)=0} .

COROLLARY 4.3. Under the same assumption as the previous theo-
rem, if the connected component C*(x°) of the level set,

{x € R*: 0<Sign (g.(x"))g:(x) =Sign (g:(2"))g9(2°) for all 1}

that contains x°, i3 bounded and does mot contain a point in S, then
M=oo and the trajectory of the solution x(t, 2°), 0=t<oo, of (20) with
2(0, x°)=2", converges as t tends to infinity, to a solution x* € V,NS; of
(1) and the inequality (21) holds.
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In the case where m>n however, solutions of the autonomous
system (20) behave quite differently in general. The following theorem
describes its behavior in this case.

THEOREM 4.4. For each '€ S, there exists a solution x(t, "), 0=
t<M, with (0, 2°)=2". As t tends to M, its trajectory will either (i)
converge to a solution x* € V,NS;, in which case M=oo, or (ii) approach
the set E, or (iii) approach the set S,, or (iv) diverge, where V,, S, and
E are defined in Theorem 3.1. In all cases ||g(x(t, 2°))|* 18 a strictly
monotone decreasing function of te€ [0, M).

Before proving the theorem we prepare a few lemmas.

LEMMA 4.5. If rankJ,(x*)=n for a solution x*eV, then xz* is
an asymptotically stable point of the system (20).

Proor. The Jacobian matrix J,(x) of the right-hand-side Z(x) of
(20) is given by

Jr(2)=—[3J (x)/0x]g(x) —J; (%) o(%) ,
where [0J;(x)/0x]g(x)=[(aJ;(x)[0x,)g(x) : - - -2 (3 (x)[0x,)g9(x)]. Hence
Je(@*)=—J (@*)J(2*)=—1I, .
Thus by Liapunov’s first method, we have the desired result.

LEMMA 4.6. If a solution xz(t, "), 0=St<M, of (20) with (0, z°)=
2', is bounded, then as t temds to M, its trajectory will either (i) ap-
proach the set S,, or (ii) approach the set E im which case M=oco and
its positive limit set I' is contained in the set E. Note that EDL,DV,.

Proor. If its trajectory does not approach the set S;,, then by
Theorem 0, we have M=oco. Let us consider the function

L(x)=|lg(x)|"/2
then
(25) dL[dt=—{g(x), J,(x)J; (x)g(x)) = —[|J () (x)g(x)|'<O0 .
Hence we have
dL(x(t, 2°)/dt<0 , for 0<t< o,

and the equality holds if and only if 2°¢ E, because if the equality
holds at ¢=7T, then at the point a'=2x(T, 2°) we have

J(x")J;(x")g(z")=0,
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which implies
JF(x")g(x")=0 and  J/(x")g(x")=0.
Hence
2t)=2(T,2") e E

is obviously a solution of (20). The rest of the proof is exactly the
same as the latter part of the proof of Lemma 3.3, so it is omitted
here.

Combining these two lemmas and Theorem 0, we obtain Theorem
4.4.

COROLLARY 4.7. If the conmected component C(x°) of the level set,

{zeR": lg@l=llg@)},

that contains x°, is bounded then the conclusion of Lemma 4.6 is valid.
Further, if SiNC(x,)=¢ and ENC(2") consists of isolated points, then
the solution comverges to a point in E as t tend to infinity. Hence in
the case where E=L,, it converges to a least squares solution of the sys-
tem (1).

In general, the equality (23) does not hold in the case where m>mn.
However, if the very restrictive condition,

(26) Im J,(x) 3 g(%) , for any €D,

is satisfied, then (23) hold for a solution of (20) which starts from a
point in D, where Im J,(x) is the range space of Jy(x) and D is a do-
main in R*. Note that the condition (26) is similar to (3).

Now we compare the two methods (11) and (20). We consider the
case where m<n. The trajectories of the solutions of the systems (11)
and (20) approach E and S,UYV, respectively if they don’t diverge. We
have

E=(V,nS)U(E—-(V,nS5)>L, DV, .
Since
E—(Va n S?)Csz ’

the method (11) seems to have a better chance to converge to a solu-
tion #* € V, than the method (20). In conclusion, the Levenberg-Mar-
quardt method (11) resolves the singularity of the Newton-Raphson
method at the cost of the equality (23). To see this in more detail,
we consider the following example,
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@7) g(x):(%):(mz—%):o cR,
g L2— T
which has the solution set,
Vv= {(07 0)! (11 1)} .

The continuous analogue of the Newton-Raphson method for (27) is
given by

d <x1> _ <2x§x2—x§—xl>/
2 — = 1—4 R
( 8) dt X, 2x§x1 —_ xf — Xy ( wle)

which has the singular set,
S2= {(xl, xz): 1—4&71&32:0} .

Trajectories of the solutions are shown in Fig. 1, which was given in
[22], [24]. The domains of attraction of the solutions (0, 0) and (1, 1)
are respectively

{(2y, ©,): 1—422,>0 and 2,+2,+1>0},
and
{(x;, ,): 1—42,2,<0 and x,>0} .

o
o

.00

s

Fig. 1. Trajectories of the continuous Newton-Raphson method.
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However, any trajectory emanating from a point in the region,
{(2y, 25): @+ 2,+1=0}
converges to a singular point which belongs to the branch,
{(xy, %5): 1—42,2,=0, and z,<0},

of the set S, in finite time. Note also that by (23) any solution of (20)
is contained in the set C*(z?) defined in Corollary 4.3 and that C*(z°)
for this example is always a bounded set for a given z°.

The continuous analogue of the Levenberg-Marquardt method for
(27) is given by,

(29) d <xl> _ <4x§+1+6 —2(x1+a:z)> “‘(2@'1 —1> (xf—%)
e - 2
dt —2(x,+2;) 4xi+1403 -1 2, —

which has the set E of equilibrium points,
E={(0,0),(1,1),1/2,1/2)} .

Corollary 3.4 applies in this example. Note that E—V,={(1/2, 1/2)} C
S; is smaller than the singular set S,. Further, the equilibrium point
(1/2,1/2) is an unstable point of the system (29). Hence there is little
danger of a numerical solution of (29) converging to a point which is

o
o

Y

o
=]

'\\

Fig. 2.1. Trajectories of the continuous Levenberg-Marquardt method (5=0.01).

0
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.00

57

-5.00

=

1

-3.00

-5.00

Fig. 2.2. Trajectories of the continuous Levenberg-Marquardt method (§=1.0).

not the solution of the system (27). See also Figs. 2.1 and 2.2 which
show trajectories of the solutions of (29). Thus, the Levenberg-Mar-
quardt method (29) is preferable to the Newton-Raphson method (28)
as far as convergence region is concerned. Note also that when 8 is
smaller the trajectories of (29) are locally more similar to those of (28),
which is expected because the system (28) is the limit of (29), in the
sense,

Ji (@) =1lim (J;(2)J (%) +3L) 75 (@) -
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