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Summary

The conjugate gradient method is developed for computing station-
ary probability vectors of a large sparse stochastic matrix P, which
often arises in the analysis of queueing system. When unit vectors
are chosen as the initial vectors, the iterative method generates all
the extremal probability vectors of the convex set formed by all the
stationary probability vectors of P, which are expressed in terms of
the Moore-Penrose inverse of the matrix (P—1I). A numerical method
is given also for classifying the states of the Markov chain defined by
P. One particular advantage of this method is to handle a very large
scale problem without resorting to any special form of P.

1. Introduction

We consider the problem of computing the stationary probability

vector a=(ay, a5, -+, a,) of an mXm stochastic matrix P=(p,;) such
that
(1) aP=a,

where a,=0, f‘,atzl, ;=0 and f‘,p”:l for +=1,2, -.-,m. The set
i=1 J=1

C(P) of all the stationary probability vectors of P forms a convex set
in the linear space of m-dimensional row vectors. It is well-known
that if P is a regular or a cyclic ergodic transition matrix then there
exists an unique positive probability vector ¢ which satisfies Eq. (1),
2,>0 and 3la,=1 [2, 6].

i=1

For any initial probability vector a, we have
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(2) lim ¢y P*"=a
and
(3) lim ay(hI+(1—h)P)*=a for 0<h<1,

respectively when P is regular and when P is periodic. These equali-
ties suggest iterative methods for computing a. When P has the
second eigenvalue which is close to one in absolute value the conver-
gence of these methods is tediously slow. For the cyclic ergodic case,
Odell and Decell [5] proposed a method which uses the Moore-Penrose
inverse (I—P)! of submatrices of P—1I, based on the following result

[1].

THEOREM 1 (Decell and Odell). If P is an ergodic (i.e. irreducible)
transition matrixz and

_ YJ—-(P-I)P-I))
1) CTI—P-DP-DN1 '

then a 1is the unique stationary probability vector of P, where 1=(1,1,
cee, 1)

When P is of large order and has not the cyclic partitioned form,
a fairly large amount of computation seems to be required in their
method. In this paper we develop the conjugate gradient algorithm
for computing all the extremal stationary probability vectors which
span the convex set C(P) of a large sparse stochastic matrix P. In
§2 an iterative algorithm is introduced, its behavior is analysed and
the extremal stationary probability vectors are characterized in terms
of the Moore-Penrose inverse of (P—1I). In §3 a numerical method is
given for classifying the states of the Markov chain defined by P.
Our method can handle a large scale problem without resorting to any
special form of P such as required in the method [5]. This is a great
advantage when P is a very large sparse stochastic matrix.

In the following a vector g8 is said to be positive if every entry
is positive, semi-positive if every entry is non-negative and 8+#0 and
semi-negative if every entry is non-positive and A+#0, which will be
expressed by writing >0, 8=0 and <0 respectively.

‘We shall use the following notations.

Im A : The linear subspace spannes by the row vectors of a matrix
A, ie., {r4;7}.

Ker A: The linear subspace spanned by the row vectors annihilated
by A, i.e., {r; rA=0}.

At : The transpose of A.
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At : The Moore-Penrose inverse of A defined by AATA=A, ATAA
=A', (AAYY=AA' and (ATA)'=A'A.

{a, B> : The inner product of two vectors a=(a;, as; ---,a,) and f=
(by byy +++, b,), defined by (e, B)=3 ab,.

i=1

lell: : The norm of a vector a, defined by [e|i=<a, a).

Pg . The orthogonal projector onto the subspace S, defined by P3%
=Pgs, Ps=Pg, Im Ps=S and Ker Pg=G&".

|a| : The vector defined by |a|=(ay|, ||, <+, |@n])-

llal; : The norm of a vector, defined by [|a||,=£‘,|a,|.

EUT : The join of two sets £ and .
&—T : The intersection of £ and the complement of <.

2. Conjugate gradient algorithms for computing stationary
probability vectors

We shall introduce an algorithm for computing the stationary prob-
ability vectors, which is based on the following theorem established by
Kammerer and Nashed [4].

THEOREM 2. The conjugate gradient process

ro=b—Ax,
Dy=A'r,
w= || A'r:[l}/|| Ap.llz

(5) Tip =+ UD; (=0,1, ---)
P =b— A%, =1, —uAp,
vi= || Ao |3/l A3
Di=A'T 0,

gives the least squares solution

(6) =AM+ (I,—A'A)x,

of the linear least squares problem

(7) min [[b—Az|,

where A is a matriz, b and r are column vectors, and x, is the initial

colummn vector of the process (5).

Noting that the stationary probability vectors « are solutions of
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the system of linear equations
(8) (P'—I1)at=0,

we apply the process (5) to this system to obtain the following al-
gorithm for computing the fixed point a.

CG ALGORITHM. Starting with B,, generate a sequence {8;} of m-
dimensional row vectors g; by the recurrence formula

po=8u(I—P)
mo=py(P'—1I)
=l P'= D)3/ ||=(P —I)|2
(9) Burs=PBit+uim,
pri1=Pi(I — P)=p—umy(P —I)
v=|lpui(P* =D}/l o P*— D3
1= pu(P* —I)+vym;
stopping if p, vanishes, where 8,, p; and =, are m-dimensional row vectors.

THEOREM 3. The sequence {B;} generated by the algorithm (9) con-
verges to the vector

(10) B=BI—(P—I)(P—I)")=sPruce-1 5
which satisfies
11) BP=4

or equivalently
(12) BeKer(P-I).

PrOOF. Noting that A4, z, and b in (7) correspond to P‘—1I, o'
and 0 in (8) respectively and that (P'—I)'=((P—I)'), we can easily
deduce the result from Theorem 2.

PROPOSITION 4. If P is an irreducible transition matrix in the
previous theorem then we have

(13) B=pBil(e)/llel) = ({Bo ad/llalB)e: .
Further we have B=(by, by, - - -, b,)#0, iff,
(14) B¢ Im (P'—1I),
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iwn which case the vector,

(15) a= (316" F=1AI1A)
18 the unique stationary probability vector of P.

PrOOF. Under the condition, the dimension of the subspace
Ker (P—1I) is one and the subspace is spanned by the stationary prob-
ability vector a. Hence Pg.(r-5,=(a’a)/||e|; and Eq. (13) follows direct-
ly from Eq. (10). Since

Ker (P—I)'=Im (P'-1),

the condition (14) implies 3+0, in which case it follows from the form
(13) of 3 that either B>0 or B<0 is satisfied. Hence i b,;#0 and « is

=1

given by the formula (15).

COROLLARY 1. Under the same condition, if we put either p=0 or
By=0 then the condition (14) is satisfied, hence we can obtain the station-
ary probability vector a by the formula (15).

PrOOF. Let B=(b’, by, «+-,bs). When 5,=0 we have

(B @) =33 ab? >0,

since a,>0 for any 4+ and there exists an integer j such that b,>0.

Hence it follows from (13) that 3#0. The case where 8,<0 is similar-
ly proved. Now we obtain a generalization of Theorem 1.

COROLLARY 2. If P is an irreducible transition matrix, the unique
stationary probability vector a s given by

_ aI—(P—DP-I)"
(16) = e I—(P=I)(P=DI

for any vector B, which satisfies either
B0 or B=0.

Before proceeding to the discussion of general case we recall the fol-
lowing result [6, 10].

THEOREM 5 (Romanovsky). Ewery stochastic matrixz P has the fol-
lowing standard form
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-To Tl Tg"'T,-_
E,

a7 P=D E, D

E,

where D is a permutation matriz, T, is a square matrixz of order m,
and E.'s are irreducible transiton matrices of order m, respectively.

Let & be the unique positive stationary probability vector of Ei,
2=1,2, .--,r. Then the m-dimensional semi-positive vectors

no nl nz s 'n,
a;=(0;a;0;---;0)D,
a,=(0;0;é; --+;0)D,
(18) e
d,=(0;0;0; "';&r)D

are mutually orthogonal stationary probability vectors of P. Every o,
has =, positive entries which correspond to the states in the same
ergodic class &,. Every stationary probability vector of P is a convex
combination of ay, @y - -+, a,.

For a vector B=(by, b, - - -, b,) the set of states
Supp (B)={y; b,#0}

is said to be the support of 8. It should be noted that the supports
of o, 1=1,2, - -+, 7, are mutually disjoint ergodic classes and {1,2, ---,

m} —‘CJ Supp () is the set of transient states of P.
=1
The following theorem is a generalization of Proposition 4.

THEOREM 6. Let a;’s be defined in (18) then the sequence {B;} gener-
ated by the algorithm (9) converges to

(19) B=ho( 5 el
g (<Bos @/l ev|[3)es

where B, is the initial vector of the process (9). If
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(20) By ¢ Im (P*—1I),
then B=(by, by, « -+, b,)#0 and the semi-positive vector

L -1 o -~ ~
&) a=(3115) 131=1A1714]
18 a stationary probability vector of P where

|81= (1B, [Bo], + -+, [ba]) -

ProoF. Since E,’s are irreducible stochastic matrices and T,—I is
non-singular, Ker (P—1I) is spanned by the mutually orthogonal vectors
a;, a -+, a,. Hence we have

(22) I—(P—-I)P—I)=Pgeu-n
=3 (@)l

which, together with Eq. (10) of Theorem 3, implies Eq. (19). Since
Im (P*—1I) is the orthogonal complement of Ker (P—I), the condition

(20) implies 80, in which case the vector

1B1=22 (<80 e /e

is also a semi-positive vector such that |3|P=|§|. Hence normalizing it
by the factor ||§||1=ii‘, [<Buw e l/lles]l} we have a stationary probability
=1

vector a.
The unit vectors will be denoted by

€1=(1, 0! 09 * Yy O) ’

62=(07 17 0) *t 0) ’
and en=(0,0,0,---,1).
Now we have the main result.

COROLLARY 1. Under the condition of the previous theorem if we
put By=ce; (c#0) then

| =0, 'ifje{l,z,--o,m}——LrJSupp(a,),
(23) B =
+0, otherwise .

If B+0, there exists the unique integer k such that
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J € Supp (o)
m o~ \=-1lo ~ ~
and a=(315) " A=IAI1A,

where B=(by, by, - -+, b,) and a;’s are defined in (18).

Proor. If the state j is transient, (e;, ;=0 for all 4, otherwise
there exists the unique extremal stationary probability vector «, such
that (e,, @;)#0 since Supp (e;)’s are mutually disjoint. This implies
the desired result, since in this case

.§=c gl (Kegr app/llelB)e; -
The following corollary is a restatement of the previous corollary.

COROLLARY 2. For every ¢;,, j=1,2, ---, m, either of the following
propositions holds.
1. The vector

— e(I-(P-=I)P-I)
(24) 7= e,j(I—(P—I)(P—I)T)l

coincides with ome of the extremal stationary probability vectors a,’s of
P defined in (18), in which case the state j belongs to the ergodic class

Supp (r,)-
2. The vector

(25) Bi=e(I—(P—INP-I))

vanishes, in which case the state j is transient. The Moore-Penrose in-
verse (P—1I)' in the formula (24) can be replaced by an arbitrary least
square type generalized inverse (P—I); of (P—I), that is defined by

EP-I)P-I)(P—I)=(P—I) and
(P—=I)P—-I))=P-I)P-I) .

(26)

COROLLARY 3. The probability vector

1'(I—(P—I)(P—1)")

@0 1'I—(P—I)(P—I)"1

R

18 a convex combination of all the extremal stationary probability vectors
a,’s such that

(28) a= ;} ci
a=]1
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where c,=na,||;=/<g l|a¢[[;’). We also have the inequalities
(29) mZlll‘(I—(P—I)(P-—I)*II1=?_.";||¢!¢||z"27‘-

In this case Supp (&) is the set of all the ergodic states of P.

PROOF. The inequalities in (29) are easily deduced respectively
from the Schwartz inequality, ||a|in.2||i=1, (+=1, ---, r), and from
thelinequality, |le|i<|el;=1, (¢=1, -, 7).

It 'should be noted here that given a state j, using the algorithm
(9) we can determine whether the state is recurrent or transient and
if it7is recurrent we can determine the ergodic class to which it be-
longs. Hence theoretically we can completely classify the states of an
arbitrary stochastic matrix P in the following way.

CONCEPTUAL ALGORITHM.

1) PutU={1,2, ..., m} and l=0. U is a set of unlabeled states.
2) Draw a state, say 5, from .

3) Compute E,, putting By=e¢, in the algorithm (9).

4) If B,=0 then the state j is transient, so label it ‘T’ and

eliminate it from U, otherwise Supp(8,) is the ergodic class
of P to which the state 7 belongs, so set l:=[+1, label the
states in Supp(r,) ‘€.’ and eliminate them from U.

5) If U is empty the classification is completed otherwise return
to 2).

Since only a numerical approximation B_, to E, is obtained practically
one might suspect that we can neither check whether E, vanishes or

not, nor determine the set Supp (ﬁ,) accurately. In the next section
we will give a practical algorithm to overcome the difficulty.

3. Practical algorithm

Before introducing an algorithm for computing extremal stationary
probability vectors and classifying the states of a stochastic matrix P,
we give some results which will be used in the algorithm.

Let P2 be the Boolian matrix of zeros and ones defined by
1 if p,,>0
(30) P*=(p?;),  where pf;=
0 if D, j=0 .

Given a vector £=(x,, y, - - -, Z,), let £Z be the Boolian vector defined by
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1 if 2,>0
(31) g8=(x?, x?, -+, x8),  where xf= ‘
0 if 2,<0.

Let @ and ® be denote the Boolian addition and multiplication, where
the product é2QP2=(2,, 23 -+, 2n) of &% and PZ? is defined by

(32) 2=27 QPP RV5D* - - DTaQPm,: -

Given a set R of states, let ¢ a=(f1, f2 **+, fm) be the Boolian vector
defined by

1 ifieR

0 if 1¢R.

We will identify ¢ with the vector .2364- Given a set R of states
t€

(33) ft={

and a vector B=(b;, by, - -+, by), let Bla=(cy, ¢ -+, ¢») be the vector de-
fined by

{ b, ifieR
C=

(34)
0 if1¢R.
Given a vector B=(b, by, + -+, by), let |B]*=(cs, €5 + -+, cn) be the vector
defined by
b, if b,>0
(35) c¢={
0 if 5,<0.

The following two statements are easily seen.

PROPOSITION 7. If R s a nonempty subset of some ergodic class
of the states of P, i.e., RCE=Supp (a)) for some 1, then
(36) ¢o,=92DP2RQP*DYaQRP’QP?D: - - Dya®P Q- - -QP7,
k
for some k. If R coincides with one of the ergodic class of the states
of P then
@37 PaQP*=¢gq .

PROPOSITION 8. Let the maximum and the minimum values of the
dements g’s of a vector y=(gi, gy +**,» gn) be denoted by maxy and
min ¢ respectively. Then for amy wm-dimensional positive probability
vector v we have

(38) max y=1/m=miny and
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(39) mz|rlla*z1.

PROPOSITION 9. Let 8, be defined by (25), then if the state j is
transient, ||8,],=0, otherwise

(40) l8,li=mina,,  for some k.
For any ergodic class &£, there exists a state | such that
(41) |3, =max a,z1/m .

PrOOF. Since we have by (19)

Bi=31 (e e lledes

if 7 is transient then E,:O, otherwise there exists the unique «, such
that

By=(ep ardlllenlDa »

hence we have

118 lli= (e gr e/ lltel) letells
={e;, /||l
=min ak/”ak”;
=min ay .

The inequality (41) is similarly proved. It should be noted that the
vector

f=a(I—(P—I(P-I))
which is generated by the algorithm (9) starting with g,=a,, satisfies
(42) 18ll=llelli=1
and that if &,=Supp (a;) then the vector
f=ge(I-(P—I(P-I)),
which is generated by the algorithm (9) starting with gy=¢¢,, satisfies
(43) I8ll=lal*=1 .

PROPOSITION 10. If the state j is ergodic and let the vector y,=
9, g2, + -+, g) be defined by (24), then we have

(44) R={i: g?*z1/m} CE,=Supp (@)

for some k.
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Proor. The result is easily deduced from Corollary 2 of Theorem
6 and Proposition 8.

PROPOSITION 11. Let 7; and ¥, be approximations to y, and 7, re-
spectively such that

(45) 17,—71;hi<d and |7.—71:li<d,

Sfor some positive number d, where each v, and y, is defined in (24) and
coincides with one of the extremal probability vectors a,'s defined in (18).
If the two states j and k are in the same ergodic class, 1i.e.,

Supp (r,)=Supp (r.) and 7,=7,,

then
(46) 17;—7:lli=2d ,
otherwise
(47) 21-d)=[7;—7li=2(1+d) .
ProOOF. It is easily seen that
(43) lrs=relli— (7= 7l 17e—rell)
=77l

§|l?’1_7’k”1+”')_’j“7’;”1+ N7e—7ells -

Hence we have (46) and (47). This implies that if ||7,—7.[;>2d then
the states j and k are in different ergodic classes, and if ||7,—7:[,<
2(1—d) then these states are in the same ergodic class, and that the
quantity ||7,—7:||; does not take a value in the open interval (2d, 2(1—d))
when d=1/2.

Now we give a practical way of computing e,’s and of classifying

states of P. We assume that approximations B,’s to §,’s, which are
computed by the algorithm (9), are accurate enough to make the in-
equalities (58)-(62) hold. We define

(49) e=max 18,4l
It should be noted that ||7,—7,|l; is of the same order as e in this case.

A COMPUTATIONAL ALGORITHM.

1) 1:=0,
U:={1,2, ---,m}.

2) Draw a state, say j, from the set U and compute an ap-
proximation 8,=(b", b§”, ---,b) to B, by the algorithm (9)



(50)

(51)

(62)

(63)

(54)

(56)

(56)

3)

4)

5)

6)

7

8)

9)

10)
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starting with e;.
If

Ny,

Ms
s

-
il

1

then go to 12).
If

(18,1 =185 11Bsll >t

then go to 12).
Form an approximation 7,=(g”,g”, -+, g%) to r, by the
formula

—T_J=|H§j|+nl-llﬁ_jl+ .
If
I7,P =7, >,

then go to 12).
If

I7,—a lli<t,  for some 4=l,

then go to 11).
If

7, —a i <ts for some 4,1,
then go to 12), otherwise
l:=l+1,
Eui=1{i: g2t} U {3} .
If
e, QP =g, ,
then go to 9), otherwise

6_’,:=Supp (¢él@¢’€’;®P3) ’

return to 8).
o= "(?llél)_”l—l(?jlé—’,) ,
‘{]2=q]—€; .

If U is empty the classification is completed, in which case

- 1 -
q:={1,2, ---,m}—tL=Jl€¢,
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is the set of transient states of P, and &, i1=1,2, ---,1 are
ergodic classes of P, otherwise go to 2).

11) &,:=E,U {j)

12) U:=U—{j}
go to 2).

The statement 3) is to check whether j is transient or not. If we
choose ¢, so as to satisfy

(B57) e<t, <miin (min a;)

then it works perfectly. However, this condition need not to hold be-
cause, by Proposition 7, since if only we can pick up at least a single
state in each ergodic class then we can find out all the other states in
the same ergodic class in the statement 8). Hence by Proposition 9,
we may set ¢, so as to satisfy

(58) et <1l/m—e.

The statements 4) and 5) are to check whether 3, and 7, are reliable

approximations to ,§, and 7, respectively on the assumption that j is
ergodic state. We may choose

(59) t,=100e(say) and ¢;=100e(say) .

The statement 6) is to check, based on Proposition 11, whether j be-
longs to some ergodic class which has already found out, where ¢, is
set to satisfy

(60) 2e<t, 1.

The statement 7) is to check, based on Proposition 11, whether j is
ergodic or not, where ¢; is set to satisfy

(61) t<t;<2(1—e).

If j is ergodic it is a state in a new ergodic class. If we set ¢; so as
to satisfy

(62) eLt<l/m—e

then &, is not empty by Proposition 10. Hence we can find out, in
the statement 8), all the states in the new ergodic class to which j
belongs.

If we want only to discriminate ergodic states from transient
states and to obtain a stationary probability vector, or if we have
a prior knowledge that there is only a single ergodic class we had
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better start the algorithm (9) with g=1%, since ||3], is expected to
be much larger than » by the inequality (29). Finally it should be
noted that the algorithm is not self-correcting. However this does
not affect our method seriously since it is self-correcting with respect
to the component in the subspace Im (P*—1I) and we can restart it
without affecting too much on the error of the final approximation

E/ to 1§J~
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