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Summary

An a-percentile residual life function does not uniquely determine
a life distribution; however, a continuous life distribution can be unique-
ly determined by its a-percentile and g-percentile residual life functions
if @ and B satisfy a certain condition. Two characterizations in terms
of percentile residual lifetimes are given for the Beta (1, ¢, K), Expo-
nential (1) and Pareto (6, K) family of distributions.

1. Introduction

Let F(t) be a life distribution. The mean and a-percentile residual
life functions at time t are respectively the mean and 100a percentile
residual life given survival up to time ¢ (mathematical definitions are
given in Section 2). It is well-known that if F' has finite mean, then
it is uniquely determined by its mean residual life function m(t)—see,
for example, Meilijson [6], Swartz [9], Laurent [5], Galambos and Kotz
[2], and Hall and Wellner [3]. In contrast, it is shown in Arnold and
Brockett [1] and Joe and Proschan [4] that there can be infinitely
many life distributions with the same a-percentile residual life function
¢..r(t). Hence it is impossible to characterize life distributions in terms
of a single percentile residual life function. In this paper, we show
that a continuous life distribution F' is uniquely determined by ¢, r and
¢s,» if @ and B satisfy a certain condition. The Beta (1,4, K), Ex-
ponential (1) and Pareto (4, K) (of the second kind) distributions are
characterized as the only absolutely continuous distributions with (i)
linear a-percentile residual lifetimes for an interval of «’s and (ii) the
mean residual life function equivalent to an a-percentile residual life
function for some 0<a<1. Characterizations in terms of linear mean
residual life are given in Hall and Wellner [3] and Morrison [7].
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2. Definitions

Let F' be a life distribution, that is, a distribution such that F(0-)

=0, and let F be the survival function: F(t)=1—F(¢), t>0. Let F-!
be the left continuous inverse of F defined by

FY(u)=inf {x: F(x)=u}, 0=uzl.

Then F-(u)=F-'(1—u) is the right continuous inverse of . Let Tr
=sup {: F(x)<1}=F"'(1) be the right-hand endpoint of support and
for 0t Ty, let

re(t)=FR)F (),

F(#)=1-F(2)=F(t+2)/F(),

mp(t)= S: Fn)da= S:" F(x)dz/F(t), and

0. r()=F )= F'(1—aF(t))—t=F-'@F()—t,

be the failure rate, the conditional survival function, the mean residual
life function and the a-percentile residual life function, respectively.
Whenever possible, we will suppress the subscript ¥ and use T, r, m,
q. in place of Ty, 75, My, q.r respectively.

3. Unigueness in terms of two percentile residual lifetimes

In Theorem 1 below, a functional relationship is obtained for two
continuous life distributions F' and G with the same a-percentile re-
gidual life function. Using this result, it is shown that a continuous
life distribution is uniquely determined by its - and B-percentile re-
sidual life functions if @ and B satisfy the condition in Theorem 2.

THEOREM 1. Let F and G be continuous life distributions and let
0<a<l. Then q.r=4q..c tf and only if there exists a periodic function
d(x) with period —log (1—a), such that

(1) F(x)=4(—1log G(x))-G(x), =2=0.

PROOF. (Necessity). Suppose that ¢, r=q.,. Then F-'(aF(t))=
G Y(aG(t)), t=0, which implies

(2) aF(t)=FG'@Gr), t=0

since F' and G are continuous. The hypotheses imply that F is con-
stant on any interval where G is constant and vice-versa so that (2)
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implies
(3) aFG'(w)=FGau), O<u<l.
The function
(4) A(x)=FGe e, =20
satisfies (1), and 4(x)=4(x—log @), x=0, if and only if
FG(e*)=FG'@e)fa, x=0

which is equivalent to (3).
(Sufficiency). Suppose that (1) holds for a periodic function with
period —log (1—a). Then

FG'@G(t))=4(—log aG(t))-aG(t)
=4(—log G(t))-aGt)=aF(t), t=0,

and equation (2) holds. For fixed t=0, F-'aF(t))=F-'(F(y)), where
y=G%aG(t)). Let I=[t,t,] be the interval of u’s for which F(u)=
F(y). Then F-YF(y))=F-'F(y))=t. (2) implies that F(x) is con-
stant on an interval I< G~'(aG(x)) is constant on I<= G(x) is con-
stant on I. Therefore, G(t)=G(y)=G(t,)=aG(t) and G '@G(t))=t,=y.
Hence F-'aF(t))=G(aG(t)) and q. (t)=4.,q¢(t).

THEOREM 2. Let F and G be continuous life distributions. If q.r
=q,¢ and @, r=q; ¢ Jor a and B in (0,1) such that log (1—a)/log (1—B)
18 irrational, then F=G.

PROOF. Let 4(x) be defined as in (4). By Theorem 1, 4 is peri-
odic with periods —log (1—ea) and —log (1—8). Since log (1—a)/log (1—5)
is irrational, 4 is periodic with a dense set of periods and hence is con-
stant (Semadeni [8]). The hypotheses of the theorem imply that F(0)
=G(0)=0 and therefore, from (1) of Theorem 1, F'=G.

Remarks. 1. Arnold and Brockett [1] have a proof of Theorem 2
assuming that F and G are strictly incresing.
2. A corollary of Theorem 2 is: If F and G are continuous life dis-
tributions such that g, ,=gq,, for all eI, where I is a subinterval of
(0,1), then F=G. This generalizes Theorem 13 of Joe and Proschan
[4].
3. Theorem 2 generalizes the following result in Joe and Proschan [4]:
If q..» and g, » are constant functions and log (1—a)/log (1—p) is irra-
tional, then F is an exponential distribution.
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4. Characterization for Beta, Exponential and Pareto distributions

In Remark 3 following Theorem 2, a characterization is given in
terms of 2 constant percentile residual lifetimes. The next simplest
form of a percentile residual lifetime is a linear one, and for a charac-
terization we will need to consider a continuum of a’s. The charac-
terization is for the Beta (1, 6, K), Exponential (1) and Pareto (4, K)
(of the second kind) distributions. The survival functions for these 3
families together with the corresponding failure rate, mean residual
life and a-percentile residual life functions are stated next before the
characterization result. Note that a Beta (1, 6, K) distribution is the
distribution of K times a Beta (1, ) random variable.

(i) Beta (1,0, K), 0<t<K, 6>0, K>0:
F)=-t/Ky, r®)=0/(K~1),
m(t)=(K—t)/(f+1), and g()=(1—a” K—t).
(ii) Exponential (1), t=0, 1>0:
Fity=e™, rit)=2,
m(t)=1/A, and q.(t)=(—loga)/a.
(iii) Pareto (4, K), t=0, 6>0, K>0:
F)=A+t/K)~*,  r)=0/(K+t),
mE)=(K+)/(6—1), (6>1), and q¢.()=@""-1)/[(K+t),
m(t) does not exist for 0<4<1.

THEOREM 3. Suppose that F is absolutely continuous and that q.(t)
18 linear in t for all a €I for some subinterval I of (0,1). Then F is
either a Beta (1, 6, K), Exponential (1) or Pareto (6, K) distribution.

PROOF. Suppose that for a €I, ¢.(t)=a.+b.t, 0<t<T, where a,>0
and b,>—1. Note that g¢,(t)+t=F-'@F(t)) is increasing in ¢. Since
F' is continuous, then

(5) aF(t)=F(g.)+t)=F(a.+(b.+1)t), 0st<T.

It follows that a, and b, are differentiable in @. Let the two deriva-
tives be denoted by a/ and b.. Differentiation of (5) with respect to
a and with respect to ¢ yield

F(t)=f(@.+(0.+1)t)-(@.4bt) and &f(t)=rf(@.+0b+1))-(b.+1).
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The ratio of these two equations leads to
1/r(t)=a(a,+bt)/(b.+1), 0=t<T, acl.

Thus aa’/(b,+1) and ab./(b,+1) are constants, say, ¢, and ¢;, with ¢,>0.
Since a failure rate function uniquely determines a survival function,
the only possibilities for F are:

(i) Fis Beta (1,6, K) if ¢,=K/8, c,=—1/0,
(ii) F is Exponential (1) if ¢,=1/1, ¢;=0, and
(iii) F' is Pareto (6, K) if ¢,=K/0, c,=1/6.

Remark. We conjecture that the conclusion of Theorem 3 is still
valid if the hypothesis of absolute continuity is replaced by F'(0)=0,
F is nondegenerate and F has no mass at T=F"'(1).

Finally, we characterize all absolutely continuous distributions for
which m(t) is equivalent to ¢.(t) for some 0<a<1l. We first note the
following.

(i) Within the Beta (1, 6, K) family, m(t)=q.(t) if ea=1—(1+1/6)""=
a,(0). af) is strictly increasing in >0 with lim«,(6)=0 and
0—0
lim ,(0)=1—e"".
G—c0

(ii) Within the Exponential (2) family, m(t)=q.(t) if a=1—e.

(ili) Within the Pareto (4, K) family, m(t)=q.(t) if a=1—(1-1/0)Y=
ay(0). ayf) is strictly decreasing in 6>1 with lim ey(f)=1—e"
f—oc0
and lim y(0)=1.
6-1
THEOREM 4. Suppose that m(t)=q.(t) for some a€(0,1). If F s
absolutely continuous, then there is a p=0 (p=F"0)) such that G(t)=

F(t—p) 18 either a Beta (1,6, K) or an Exponential (1) or a Pareto
(0, K) distribution.

Remark. A Pareto (6, K) distribution shifted by =K is a Pareto
distribution of the first kind with F(t)=(K/t)’, t=K.

ProOOF. If F is absolutely continuous, then from the definition of
m(t) and the equation

Fty=exp |~ || )y} =Im(©@m(NF (O exp {~| mw)1ay].
m'(t) exists and

(6) rt)=1+m'(t))/m(t) , 0=t<T.
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From the hypotheses of the theorem,
aF(t)=F(a.(t)+1)=F(m(t)+1).

Differentiation with respect to ¢ leads to

(7) r(t)=rt+m(t)-1+m'(t)), 0st<T.

Let t,=sup {t: 1+m'(t)=0, 0<t<T}. This is well-defined since the
continuity of m(t) implies that F -Y@F(t)) is continuous which in turn
implies that F'-!(u) is continuous for u=e or 14+m/(t)>0 for t>F (a).
Equating (6) and (7) yields

(8) rt+m(t))=1/m(t), L<t<T.
Substitution of (6) on the left-hand side of (8) results in
(9) m/(t+m(t))=[m(t+m(t) —m@)/m@E),  u<t<T.

Since m(t) is differentiable, then by (8), 7(y) is continuous and differ-
entiable for y>t,=t,+m(t). By (6), m/(y) is continuous and differen-
tiable for y>t,. Hence both sides of (9) are differentiable,

(10) m"(t+m(¢))A+m/(t)) =[m/(E+m(E) —m'()l/m(?)

for t,<t<T, and m"(y) is continuous for y<t,. By Taylor’s theorem,
for t<t,,

(1) ot m(E) =MlE) — g (g4 mt)) — " (s()mE)
m(t) 2

where s(t) is between t and t+m(t) and can be assumed continuous.
Equations (9) and (11) together imply that m'(s(t))=0, t>t;, so that
m"(y)=0 for y>t,+m(t,). Hence there is a constant b>—1 such that
m/'(y)=>b for y>t,+m(t;). By (10), m/(y)=>b for y>t,. Substitution into
(9) yields

12) bm(t)=m(t+m(t)) —m() , L<t<T.

Differentiation of (12) results in m/(t)=b, t,<t<T. There is a constant
a such that

13) m(t)=a+bt, t,<t<T.

We now prove by contradiction that F(¢)=0. If F(t,)>0, then
there are constants s;<s,<t, such that

(14) 14+m'(t)=0 for s,<t<t,,
and F(s)>0, 14+m/(s)>0 and s+m(s)>t, for s,<s<s;. By (6) and (7),
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r(s+m(s))=(1+b)/(a+bfs+m(s))=1/m(s), 8 <s<8,
or
(15) m(s)=a+bs, 8,<8<s,.

(13), (14), (15) together contradict the fact that m(t) is continuous, and
therefore F'(t,)=0 and t,=F~'(0).

COROLLARY. If F s absolutely continuous and F(x) is a sym-
metric distribution for all 0Zt<T, then F is a Uniform [g, p+K]
distribution for some p>0, K >0.

PrOOF. By Theorem 4, m(t)=q,s(t) if and only if F(t—p) is a Beta
(1,1, K) or Uniform [0, K] distribution. Therefore F' is a Uniform
[¢, #+ K] distribution ; the conditional distribution F is Uniform [max (0,
g—t), p+K—1).

Remark. If the assumption of absolute continuity in Theorem 4
is replaced by F(0)=0 and F is nondegenerate, then the condition
m(t)=q.(t) for some a is also satisfied by a subclass of the Geometric
family of distributions. If F is Geometric with parameter 0<p<1,
that is, F(j)=1—p), §=0,1, .-+, then m(t)=q.(t)=p ' —t+[t], t=0,
provided p~'=mn is a positive integer and 1—(1—p)*'<as1—-(1—p)"
Except for scale and location modifications of these Geometric distribu-
tions, we conjecture that there are no other distributions satisfying
m(t)=q.(t) for some o under the weakened hypothesis.
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