CHARACTERIZATIONS OF LIFE DISTRIBUTIONS FROM PERCENTILE RESIDUAL LIFETIMES

HARRY JOE

(Received Aug. 27, 1983; revised Oct. 15, 1984)

Summary

An α -percentile residual life function does not uniquely determine a life distribution; however, a continuous life distribution can be uniquely determined by its α -percentile and β -percentile residual life functions if α and β satisfy a certain condition. Two characterizations in terms of percentile residual lifetimes are given for the Beta $(1, \theta, K)$, Exponential (λ) and Pareto (θ, K) family of distributions.

1. Introduction

Let F(t) be a life distribution. The mean and α -percentile residual life functions at time t are respectively the mean and 100α percentile residual life given survival up to time t (mathematical definitions are given in Section 2). It is well-known that if F has finite mean, then it is uniquely determined by its mean residual life function $m_r(t)$ —see, for example, Meilijson [6], Swartz [9], Laurent [5], Galambos and Kotz [2], and Hall and Wellner [3]. In contrast, it is shown in Arnold and Brockett [1] and Joe and Proschan [4] that there can be infinitely many life distributions with the same α -percentile residual life function $q_{a,p}(t)$. Hence it is impossible to characterize life distributions in terms of a single percentile residual life function. In this paper, we show that a continuous life distribution F is uniquely determined by $q_{\alpha,F}$ and $q_{\theta,F}$ if α and β satisfy a certain condition. The Beta $(1,\theta,K)$, Exponential (λ) and Pareto (θ , K) (of the second kind) distributions are characterized as the only absolutely continuous distributions with (i) linear α -percentile residual lifetimes for an interval of α 's and (ii) the mean residual life function equivalent to an α -percentile residual life function for some $0 < \alpha < 1$. Characterizations in terms of linear mean residual life are given in Hall and Wellner [3] and Morrison [7].

Key words and phrases: Residual life, percentile, beta, exponential, Pareto.

2. Definitions

Let F be a life distribution, that is, a distribution such that $F(0^-) = 0$, and let \overline{F} be the survival function: $\overline{F}(t) = 1 - F(t)$, t > 0. Let F^{-1} be the left continuous inverse of F defined by

$$F^{-1}(u) = \inf \{x: F(x) \ge u\}, \quad 0 \le u \le 1.$$

Then $\bar{F}^{-1}(u)=F^{-1}(1-u)$ is the right continuous inverse of \bar{F} . Let $T_F=\sup\{x\colon F(x)<1\}=F^{-1}(1)$ be the right-hand endpoint of support and for $0\le t\le T_F$, let

$$egin{align*} r_F(t) &= f(t)/ar{F}(t) \;, \ &ar{F}_t(x) = 1 - F_t(x) = ar{F}(t+x)/ar{F}(t) \;, \ &m_F(t) = \int_0^\infty ar{F}_t(x) dx = \int_t^\infty ar{F}(x) dx/ar{F}(t) \;, \quad & ext{and} \ &q_{\sigma,F}(t) = F_t^{-1}(\alpha) = F^{-1}(1 - ar{\alpha}ar{F}(t)) - t = ar{F}^{-1}(ar{\alpha}ar{F}(t)) - t \;. \end{split}$$

be the failure rate, the conditional survival function, the mean residual life function and the α -percentile residual life function, respectively. Whenever possible, we will suppress the subscript F and use T, r, m, q_{α} in place of T_F , r_F , m_F , $q_{\alpha,F}$ respectively.

3. Uniqueness in terms of two percentile residual lifetimes

In Theorem 1 below, a functional relationship is obtained for two continuous life distributions F and G with the same α -percentile residual life function. Using this result, it is shown that a continuous life distribution is uniquely determined by its α - and β -percentile residual life functions if α and β satisfy the condition in Theorem 2.

THEOREM 1. Let F and G be continuous life distributions and let $0 < \alpha < 1$. Then $q_{\alpha,F} \equiv q_{\alpha,G}$ if and only if there exists a periodic function $\Delta(x)$ with period $-\log(1-\alpha)$, such that

(1)
$$\overline{F}(x) = \Delta(-\log \overline{G}(x)) \cdot \overline{G}(x), \quad x \ge 0.$$

PROOF. (Necessity). Suppose that $q_{\alpha,F} \equiv q_{\alpha,G}$. Then $\overline{F}^{-1}(\overline{\alpha}\overline{F}(t)) = \overline{G}^{-1}(\overline{\alpha}\overline{G}(t)), t \geq 0$, which implies

(2)
$$\bar{\alpha}\bar{F}(t) = \bar{F}\bar{G}^{-1}(\bar{\alpha}\bar{G}(t)), \qquad t \ge 0$$

since F and G are continuous. The hypotheses imply that F is constant on any interval where G is constant and vice-versa so that (2)

implies

(3)
$$\bar{\alpha}\bar{F}\bar{G}^{-1}(u) = \bar{F}\bar{G}^{-1}(\bar{\alpha}u), \quad 0 < u < 1.$$

The function

$$\Delta(x) = \bar{F}\bar{G}(e^{-x})e^x, \quad x \ge 0$$

satisfies (1), and $\Delta(x) = \Delta(x - \log \bar{\alpha})$, $x \ge 0$, if and only if

$$\bar{F}\bar{G}^{-1}(e^{-x}) = \bar{F}\bar{G}^{-1}(\bar{\alpha}e^{-x})/\bar{\alpha}$$
, $x \ge 0$

which is equivalent to (3).

(Sufficiency). Suppose that (1) holds for a periodic function with period $-\log(1-\alpha)$. Then

$$ar{F}ar{G}^{-1}(ar{a}ar{G}(t)) = \Delta(-\log ar{a}ar{G}(t)) \cdot ar{a}ar{G}(t)$$

$$= \Delta(-\log ar{G}(t)) \cdot ar{a}ar{G}(t) = ar{a}ar{F}(t) , \qquad t \ge 0 ,$$

and equation (2) holds. For fixed $t \ge 0$, $\bar{F}^{-1}(\bar{a}\bar{F}(t)) = \bar{F}^{-1}(\bar{F}(y))$, where $y = \bar{G}^{-1}(\bar{a}\bar{G}(t))$. Let $I = [t_1, t_2]$ be the interval of u's for which $\bar{F}(u) = \bar{F}(y)$. Then $\bar{F}^{-1}(\bar{F}(y)) = F^{-1}(F(y)) = t_1$. (2) implies that $\bar{F}(x)$ is constant on an interval $I \Longleftrightarrow \bar{G}^{-1}(\bar{a}\bar{G}(x))$ is constant on $I \Longleftrightarrow \bar{G}(x)$ is constant on I. Therefore, $\bar{G}(t_1) = \bar{G}(y) = \bar{G}(t_2) = \bar{a}\bar{G}(t)$ and $\bar{G}^{-1}(\bar{a}\bar{G}(t)) = t_1 = y$. Hence $\bar{F}^{-1}(\bar{a}\bar{F}(t)) = \bar{G}^{-1}(\bar{a}\bar{G}(t))$ and $q_{a,F}(t) = q_{a,G}(t)$.

THEOREM 2. Let F and G be continuous life distributions. If $q_{\alpha,F} \equiv q_{\alpha,G}$ and $q_{\beta,F} \equiv q_{\beta,G}$ for α and β in (0,1) such that $\log (1-\alpha)/\log (1-\beta)$ is irrational, then $F \equiv G$.

PROOF. Let $\Delta(x)$ be defined as in (4). By Theorem 1, Δ is periodic with periods $-\log(1-\alpha)$ and $-\log(1-\beta)$. Since $\log(1-\alpha)/\log(1-\beta)$ is irrational, Δ is periodic with a dense set of periods and hence is constant (Semadeni [8]). The hypotheses of the theorem imply that F(0) = G(0) = 0 and therefore, from (1) of Theorem 1, $F \equiv G$.

Remarks. 1. Arnold and Brockett [1] have a proof of Theorem 2 assuming that F and G are strictly incresing.

- 2. A corollary of Theorem 2 is: If F and G are continuous life distributions such that $q_{\beta,F} \equiv q_{\beta,G}$ for all $\beta \in I$, where I is a subinterval of (0,1), then $F \equiv G$. This generalizes Theorem 13 of Joe and Proschan [4].
- 3. Theorem 2 generalizes the following result in Joe and Proschan [4]: If $q_{\alpha,F}$ and $q_{\beta,F}$ are constant functions and $\log(1-\alpha)/\log(1-\beta)$ is irrational, then F is an exponential distribution.

168 HARRY JOE

4. Characterization for Beta, Exponential and Pareto distributions

In Remark 3 following Theorem 2, a characterization is given in terms of 2 constant percentile residual lifetimes. The next simplest form of a percentile residual lifetime is a linear one, and for a characterization we will need to consider a continuum of α 's. The characterization is for the Beta $(1, \theta, K)$, Exponential (λ) and Pareto (θ, K) (of the second kind) distributions. The survival functions for these 3 families together with the corresponding failure rate, mean residual life and α -percentile residual life functions are stated next before the characterization result. Note that a Beta $(1, \theta, K)$ distribution is the distribution of K times a Beta $(1, \theta)$ random variable.

(i) Beta
$$(1, \theta, K)$$
, $0 \le t \le K$, $\theta > 0$, $K > 0$:
$$\bar{F}(t) = (1 - t/K)^{\theta}, \qquad r(t) = \theta/(K - t),$$

$$m(t) = (K - t)/(\theta + 1), \quad \text{and} \quad q_{\sigma}(t) = (1 - \bar{q}^{1/\theta})(K - t).$$

(ii) Exponential (λ), $t \ge 0$, $\lambda > 0$:

$$ar{F}(t) = e^{-\lambda t}$$
, $r(t) = \lambda$, $m(t) = 1/\lambda$, and $q_{\alpha}(t) = (-\log \overline{\alpha})/\lambda$.

(iii) Pareto (θ, K) , $t \ge 0$, $\theta > 0$, K > 0:

$$ar{F}(t) = (1+t/K)^{-\theta}$$
, $r(t) = \theta/(K+t)$, $m(t) = (K+t)/(\theta-1)$, $(\theta > 1)$, and $q_a(t) = (\overline{\alpha}^{-1/\theta}-1)/(K+t)$, $m(t)$ does not exist for $0 < \theta \le 1$.

THEOREM 3. Suppose that F is absolutely continuous and that $q_{\alpha}(t)$ is linear in t for all $\alpha \in I$ for some subinterval I of (0,1). Then F is either a Beta $(1, \theta, K)$, Exponential (λ) or Pareto (θ, K) distribution.

PROOF. Suppose that for $\alpha \in I$, $q_{\alpha}(t) = a_{\alpha} + b_{\alpha}t$, $0 \le t < T$, where $a_{\alpha} > 0$ and $b_{\alpha} > -1$. Note that $q_{\alpha}(t) + t = \bar{F}^{-1}(\bar{\alpha}\bar{F}(t))$ is increasing in t. Since F is continuous, then

(5)
$$\bar{\alpha}\bar{F}(t) = \bar{F}(q_{\alpha}(t)+t) = \bar{F}(a_{\alpha}+(b_{\alpha}+1)t), \quad 0 \leq t < T.$$

It follows that a_{α} and b_{α} are differentiable in α . Let the two derivatives be denoted by a'_{α} and b'_{α} . Differentiation of (5) with respect to α and with respect to t yield

$$\bar{F}(t) = f(a_{\alpha} + (b_{\alpha} + 1)t) \cdot (a'_{\alpha} + b'_{\alpha}t)$$
 and $\bar{a}f(t) = f(a_{\alpha} + (b+1)t) \cdot (b_{\alpha} + 1)$.

The ratio of these two equations leads to

$$1/r(t) = \overline{\alpha}(\alpha'_{\alpha} + b'_{\alpha}t)/(b_{\alpha} + 1)$$
, $0 \le t < T$, $\alpha \in I$.

Thus $\bar{a}a'_a/(b_\alpha+1)$ and $\bar{a}b'_a/(b_\alpha+1)$ are constants, say, c_1 and c_2 , with $c_1>0$. Since a failure rate function uniquely determines a survival function, the only possibilities for F are:

- (i) F is Beta $(1, \theta, K)$ if $c_1 = K/\theta$, $c_2 = -1/\theta$,
- (ii) F is Exponential (λ) if $c_1 = 1/\lambda$, $c_2 = 0$, and
- (iii) F is Pareto (θ, K) if $c_1 = K/\theta$, $c_2 = 1/\theta$.

Remark. We conjecture that the conclusion of Theorem 3 is still valid if the hypothesis of absolute continuity is replaced by F(0)=0, F is nondegenerate and F has no mass at $T=F^{-1}(1)$.

Finally, we characterize all absolutely continuous distributions for which m(t) is equivalent to $q_a(t)$ for some $0 < \alpha < 1$. We first note the following.

- (i) Within the Beta $(1, \theta, K)$ family, $m(t) \equiv q_a(t)$ if $\alpha = 1 (1 + 1/\theta)^{-\theta} = \alpha_1(\theta)$. $\alpha_1(\theta)$ is strictly increasing in $\theta > 0$ with $\lim_{\theta \to 0} \alpha_1(\theta) = 0$ and $\lim_{\theta \to 0} \alpha_1(\theta) = 1 e^{-1}$.
- (ii) Within the Exponential (λ) family, $m(t) \equiv q_{\alpha}(t)$ if $\alpha = 1 e^{-1}$.
- (iii) Within the Pareto (θ, K) family, $m(t) \equiv q_{\alpha}(t)$ if $\alpha = 1 (1 1/\theta)^{\theta} = \alpha_{2}(\theta)$. $\alpha_{2}(\theta)$ is strictly decreasing in $\theta > 1$ with $\lim_{\theta \to \infty} \alpha_{2}(\theta) = 1 e^{-1}$ and $\lim_{\theta \to \infty} \alpha_{2}(\theta) = 1$.

THEOREM 4. Suppose that $m(t) \equiv q_{\alpha}(t)$ for some $\alpha \in (0, 1)$. If F is absolutely continuous, then there is a $\mu \geq 0$ $(\mu = F^{-1}(0))$ such that $G(t) = F(t-\mu)$ is either a Beta $(1, \theta, K)$ or an Exponential (λ) or a Pareto (θ, K) distribution.

Remark. A Pareto (θ, K) distribution shifted by $\mu = K$ is a Pareto distribution of the first kind with $\bar{F}(t) = (K/t)^{\theta}$, $t \ge K$.

PROOF. If F is absolutely continuous, then from the definition of m(t) and the equation

$$|\bar{F}(t)| = \exp\left\{-\int_0^t r(y)dy\right\} = [m(0)/m(t)]\bar{F}(0) \exp\left\{-\int_0^t [m(y)]^{-1}dy\right\},$$

m'(t) exists and

(6)
$$r(t) = (1 + m'(t))/m(t), \quad 0 \le t < T.$$

170 HARRY JOE

From the hypotheses of the theorem,

$$\bar{\alpha}\bar{F}(t) = \bar{F}(q_a(t)+t) = \bar{F}(m(t)+t)$$
.

Differentiation with respect to t leads to

(7)
$$r(t) = r(t+m(t)) \cdot (1+m'(t)), \quad 0 \le t < T.$$

Let $t_1=\sup\{t\colon 1+m'(t)=0,\ 0\leq t< T\}$. This is well-defined since the continuity of m(t) implies that $\bar{F}^{-1}(\bar{\alpha}\bar{F}(t))$ is continuous which in turn implies that $F^{-1}(u)$ is continuous for $u\geq \alpha$ or 1+m'(t)>0 for $t>F^{-1}(\alpha)$. Equating (6) and (7) yields

(8)
$$r(t+m(t))=1/m(t), t_1 < t < T.$$

Substitution of (6) on the left-hand side of (8) results in

(9)
$$m'(t+m(t)) = [m(t+m(t))-m(t)]/m(t), t_1 < t < T.$$

Since m(t) is differentiable, then by (8), r(y) is continuous and differentiable for $y>t_2=t_1+m(t_1)$. By (6), m'(y) is continuous and differentiable for $y>t_2$. Hence both sides of (9) are differentiable,

(10)
$$m''(t+m(t))(1+m'(t)) = [m'(t+m(t))-m'(t)]/m(t)$$

for $t_1 < t < T$, and m''(y) is continuous for $y < t_2$. By Taylor's theorem, for $t < t_2$,

(11)
$$\frac{m(t+m(t))-m(t)}{m(t)}=m'(t+m(t))-\frac{1}{2}m''(s(t))m(t),$$

where s(t) is between t and t+m(t) and can be assumed continuous. Equations (9) and (11) together imply that m''(s(t))=0, $t>t_2$, so that m''(y)=0 for $y>t_2+m(t_2)$. Hence there is a constant b>-1 such that m'(y)=b for $y>t_2+m(t_2)$. By (10), m'(y)=b for $y>t_2$. Substitution into (9) yields

(12)
$$bm(t) = m(t+m(t)) - m(t), \quad t_1 < t < T.$$

Differentiation of (12) results in m'(t)=b, $t_1 < t < T$. There is a constant a such that

(13)
$$m(t) = a + bt$$
, $t_1 < t < T$.

We now prove by contradiction that $F(t_1)=0$. If $F(t_1)>0$, then there are constants $s_1 < s_2 < t_1$ such that

(14)
$$1+m'(t)=0 \text{ for } s_2 < t < t_1,$$

and F(s)>0, 1+m'(s)>0 and $s+m(s)>t_1$ for $s_1 < s < s_2$. By (6) and (7),

$$r(s+m(s))=(1+b)/(a+b[s+m(s)])=1/m(s)$$
, $s_1 < s < s_2$

 \mathbf{or}

(15)
$$m(s) = a + bs$$
, $s_1 < s < s_2$.

(13), (14), (15) together contradict the fact that m(t) is continuous, and therefore $F(t_1)=0$ and $t_1=F^{-1}(0)$.

COROLLARY. If F is absolutely continuous and $F_t(x)$ is a symmetric distribution for all $0 \le t < T$, then F is a Uniform $[\mu, \mu + K]$ distribution for some $\mu > 0$, K > 0.

PROOF. By Theorem 4, $m(t)=q_{0.5}(t)$ if and only if $F(t-\mu)$ is a Beta (1,1,K) or Uniform [0,K] distribution. Therefore F is a Uniform $[\mu,\mu+K]$ distribution; the conditional distribution F_t is Uniform $[\max(0,\mu-t),\mu+K-t)$.

Remark. If the assumption of absolute continuity in Theorem 4 is replaced by F(0)=0 and F is nondegenerate, then the condition $m(t)\equiv q_a(t)$ for some α is also satisfied by a subclass of the Geometric family of distributions. If F is Geometric with parameter $0 , that is, <math>\bar{F}(j)=(1-p)^j$, $j=0,1,\cdots$, then $m(t)=q_a(t)=p^{-1}-t+[t]$, $t\geq 0$, provided $p^{-1}=n$ is a positive integer and $1-(1-p)^{n-1}<\alpha \leq 1-(1-p)^n$. Except for scale and location modifications of these Geometric distributions, we conjecture that there are no other distributions satisfying $m(t)\equiv q_a(t)$ for some α under the weakened hypothesis.

Acknowledgements

Research was supported by NSERC grant A8698. Theorems 1 and 2 are due to the referee who improved a result in the earlier version of this paper. This and other comments by the referee have led to an improved presentation.

University of British Columbia

REFERENCES

- Arnold, B. and Brockett, P. L. (1983). When does the βth percentile residual life function determine the distribution. Opns. Research, 31, 391-396.
- [2] Galambos, J. and Kotz, S. (1978). Characterizations of Probability Distributions, Lecture Notes in Mathematics #675, Springer-Verlag, New York.
- [3] Hall, W. J. and Wellner, J. A. (1981). Mean residual life, Statistics and Related Topics (edited by M. Csorjo, D. A. Dawson, J. N. K. Rao and A. K. Md. E. Saleh), North-Holland, Amsterdam, 169-184.
- [4] Joe, H. and Proschan, F. (1984). Percentile residual life functions, Opns. Research, 32, 668-678.

172 HARRY JOE

- [5] Laurent, A. G. (1974). On characterization of some distributions by truncation properties, J. Amer. Statist. Assoc., 69, 823-827.
- [6] Meilijson, I. (1972). Limiting properties of the mean residual life function, Ann. Math. Statist., 43, 354-357.
- [7] Morrison, D. G. (1978). On linearly increasing mean residual lifetimes, J. Appl. Prob., 15, 617-620.
- [8] Semadeni, Z. (1964). Periods of measurable functions and the Stone-Cech compactification, Amer. Math. Monthly, 71, 891-893.
- [9] Swartz, G. B. (1973). The mean residual life function, IEEE Transactions on Reliability, R-22, 108-109.