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Summary

Derivatives of statistical functionals have been used to derive the
asymptotic distributions of L-, M- and R-estimators. This approach is
often heuristic because the types of derivatives chosen have serious
limitations. The Gateaux derivative is too weak and the Fréchet de-
rivative is too strong. In between lies the compact derivative. This
paper obtains strong results in a rigorous manner using the compact
derivative on Cy(R). This choice of space allows results for a broader

class of functionals than previous choices, and the fact that {JW(F’,,—
F)} is often tight provides the compact set required. A major result
is the derivation of the compact derivative of the inverse c.d.f. when
the range space is endowed with the uniform norm. It has applications
to the asymptotic theory of L-, M- and R-estimators. We illustrate
the power of this result by applications to L-estimators in settings in-
cluding the one sample problem, data grouped by quantiles, and cen-
sored survival time data.

1. Introduction

L-estimators, M-estimators, R-estimators, and minimum distance
estimators can be expressed as functionals of estimates of the cumu-
lative distribution function. The asymptotic distribution theory of such
estimators, therefore, may be studied with the aid of functional analysis.
Serfling [26] and Huber [17] both provide good expositions of the sta-
tistical functional approach to estimation. Derivatives of functionals
(in various senses) and Taylor-like expansions have been useful tools of
robust statistics. Unfortunately, their value has often been heuristic
because of the limitations of the type of derivative used or of the space
on which it was defined. Serfling (p. 216) notes that the Gateaux de-
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rivative Taylor-like expansion is “ Utilized rather imformally, merely
as a guiding concept ”, and (p. 220) that the Fréchet derivative is “ some-
what too narrow for the purposes of statistical applications”. Huber
(p. 37) says “Unfortunately, the concept of Fréchet differentiability
appears to be too strong: in too many cases the Fréchet derivative
does not exist, and even when it does, the fact is difficult to establish ”.
On the other hand, he notes (p. 40) “ Mere Gateaux differentiability does
not suffice to establish asymptotic normality.... The most promising
intermediate approach seems to be the one by Reeds [23], which is based
on the notion of compact differentiability”. However, the space on
which Reeds defined the compact derivative forced restrictions on the
functionals to which it applied (see remarks after Theorem 2).

The goal of this paper is to demonstrate the power and generality
of the compact derivative along the space Cy(R) for purposes of rigor-
ously deriving the asymptotic distributions of robust estimators in real-
istic, applicable settings. A major result is the derivation of the com-
pact derivative of the inverse c.d.f. when the range space is endowed
with the uniform norm (Theorem 1). Consequences include rigorous
derivations of the asymptotic distributions of L-, M- and R-estimators.
We use robust L-estimators to illustrate the power of this approach.
M- and R-estimators can be studied similarly and will be the subject
of another paper. The hypotheses of this approach are simple and
easily verified. If the true c.d.f. has a continuous positive derivative
over a specified interval, the conclusions hold for a wider class of esti-
mators than previous functional approaches (Theorems 2, 3, 4 and 5).
Particular applications to one sample problems (Theorems 6 and 7), data
grouped by quantiles (Theorem 8), and censored survival time data
(Theorem 9) are given.

In the next section we explain why the compact derivative on Cy(R)
is the appropriate derivative on the appropriate space, and we give the
background and notation of the statistical functional approach to L-
estimation. Section 3 contains the major theoretical results, uninter-
rupted by proofs, which are in Section 4. The featured application to
L-estimators is in Section 5, which contains results that are more gen-
eral than any previously available. The final section contains a discus-
sion of potential generalizations and applications.

2. Motivation and background

The statistical functional approach to estimation is important be-
cause parameters of distributions can be expressed as functionals of the
c.d.f. For instance, the median is given by T(F)=F"(1/2) and the

mean of a nonnegative random variable by T(F):S:I—F(x)dx. Con-
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tinuity of T at F (with the “right” norm on the space of differences
of c.d.f.s) is the definition of robustness (Huber [17], p. 10). Differ-
entiability of T at F is intended to permit an expansion of /7% (T(F.)
—T(F)), where F, is some estimate of F, in terms of a linear func-
tional of yv7 (F,—F) and a remainder term converging to 0 in prob-
ability. Then 7 (T(F,)—T(F)) will converge to the corresponding
linear functional of the limit of 47 (F,—F), which is often tractable.
For instance, in the one sample problem when F, is the empirical dis-
tribution function the limit of 47 (F,—F) is a Brownian bridge and
T(F,) is asymptotically normal.

There are several types of derivatives which may be tried. The
Gateaux derivative, which yields the “influence curve”, and parallels
the directional derivative of functions on R?, is too weak to complete
rigorous proofs since (F,—F) is not in any particular direction. Another
popular candidate, the Fréchet derivative, is strong enough to prove
results, but too strong to obtain the most general results because there
are important functionals for which it fails to exist, for instance, the
median. On the other hand, Boos [8], restricting attention to the one
sample problem and a certain class of L-estimators, used the Fréchet
derivative to prove useful asymptotic distribution theorems.

In between the Gateaux and Fréchet derivatives lies the compact
derivative (Averbukh and Smolynov [2], [3]). It is strong enough to
prove very general results and if {yn (F,—F)} is tight (which it is in
many cases including the motivating one-sample data problem) the tight-
ness provides the compact set of functions required.

Compact differentiation is most easily done when the arguments lie
in a space of continuous functions. Thus, for continuous F, we let our
estimate of F, F,, also be a continuous c.d.f. so that (F,—F) is in
Cy(R), the space of continuous functions vanishing at infinity. Since
the usual empirical distribution function in the one-sample data problem
is discontinuous, this choice of space has been overlooked. But, when-
ever F', is discontinuous, a continuous version, F,, can easily be created
for which the theory holds. Then a proof that y#@(T(F,)—T(F,)-0
shows that T(F',,) has the same asymptotic theory as T'(F,). This may
often be proven directly. For the L-estimator case we state a result
(Theorem 3) that allows the conversion of results for continuous esti-
mates of F to results for discontinuous estimates of F. The choice of
the space Cy(R) greatly simplifies matters compared to the use of the
space D of discontinuous functions that are right continuous and have

right hand limits, the space in which (F,—F) lies. Previous investi-



112 W. ESTY, R. GILLETTE, M. HAMILTON AND D. TAYLOR

gators have tended to focus on D.

The value of the compact derivative to asymptotic statistical theory
was apparently first noticed by Reeds [23]. In his dissertation he
thoroughly investigated the functional approach in the one-sample set-
ting using the compact derivative on the space D. Reeds focused par-
ticularly on M-estimators. Fernholz [13], following Reeds, derived the
asymptotic normal distribution for R-estimators in the one-sample prob-
lem. We also use the compact derivative, but we use a smaller domain
for T than do Reeds and Fernholtz and thereby overcome the main
difficulties in choosing a topology.

As Huber [17] points out, asymptotic results for L-estimators have
not been completely established. There is no blanket statistical func-
tional asymptotic distribution theorem covering all of the interesting
cases simultaneously. For example, the results in Reeds [23], Boos [8],
Mason [21], Reid [24] and Huber [17] cannot provide an asymptotic
distribution for the L-estimator that is calculated by taking a weighted
average of the median and the trimmed mean, both of which are L-
estimators. Serfling [26] combines two approaches to get the result,
but the variance is not expressed in closed form and is cumbersome to
apply and his result only applies to the one-sample case. As indicated
by Jaeckel [18] and Dodge and Lindstrom [10], weighted averages of
L-estimators may be quite useful.

This article presents a general asymptotic distribution theorem for
L-estimators with simple and clearly stated hypotheses and a rigorous
mathematical proof. The theorem may be applied in a variety of esti-
mation settings, three of which are treated in Section 5.

L-estimators will now be defined as certain functionals on the set
of continuous c.d.f.’s. It can often be verified that the corresponding
functionals of discontinuous c.d.f.’s, such as the empirical distribution
function, have equivalent asymptotic results.

Let M be the collection of finite, regular (signed) Borel measures
with compact support. Let & be the set of continuous c.d.f.’s. Con-
sider the functional Ty; Ty: F— R, defined by

@.1) T,,,(F):S FYt)M@dt), FeF, Mec M,

where F~'(t)=inf {x|F(x)=t}, for all t¢(0,1). Because F~! is mono-
tone, T is well-defined.

DEFINITION 1. Let F¢F be a data-based estimate of the true

underlying c.d.f. Fe <. Any estimate Ty(ﬁ') of form (2.1) is said to
be an L-estimate of the parameter T,(F'). Moreover, any functional
Ty of form (2.1) is said to be an L-estimator.
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By varying the choice of M, one can use this definition to gener-
ate all classical L-estimators (for specific examples, see Section 5 and
Andrews et al. [1] and Huber [17]).

Although much research on robust estimation has been done with
the assumption of a symmetric F, we make no symmetry requirements.
Bickel and Lehmann [4], [5] demonstrate that the assumption of sym-
metric F' is unnecessarily restrictive.

We now proceed with the definition of compact differentiability and
the statements of theorems asserting the compact differentiability of
the inverse functional and of L-estimators.

3. Asymptotic distribution theory

Under mild regularity conditions we show that the inverse map
F—F-! is compactly differentiable (Theorem 1). As the featured ap-
plication we show that L-estimators are compactly differentiable (The-
orem 2). This leads to easily applied asymptotic results for a very
broad class of L-estimators in Section 5.

We now define compact differentiability. Let X and Z be Banach
spaces and let Y be a closed linear subspace of X.

DEFINITION 2. Let x€¢X. A map T: 2+Y—Z is said to be com-
pactly differentiable at x along Y if and only if there exists a continu-
ous linear map D?: Y—Z such that

(3.1) lim sup [|[T(z+ty)— T'(x)— D7 (ty)]/t]|=0
t-0yeX

for each set A ZSY for which the closure of X is compact. If Y=X,

then we just say that T is compactly differentiable at wx.

We are almost ready to state one of the major results of this paper.
But first we need to present some more notation. Let a, b be real
numbers with 0<a<b<1. Let DL[a,b] denote the space of all bounded
left continuous real valued functions defined on [a, b] which have right
hand limits (DL[a, b] is the left continuous version of D). The space
DL[a,b] is a Banach space under the uniform norm | .. Now let
Cy(R) denote the bounded real valued continuous functions defined on
the reals and let C(R) denote those functions in C,(R) that vanish at
infinity. The space C,(R) is also a Banach space under the uniform
norm || |l.. and C(R) is a closed subspace of C,(R). For a discussion
of these spaces see Simmons [27]. Next let G € C,(R) such that lim G(s)
=0 and lim G(s)=1. For each ¢, a<¢=<b, let

§—00

G (@)=inf {3|G(s)=4q} .
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It is easy to establish that G~'e¢ DL[a, b], G~ is always monotone in-
creasing on [a, b], and G(G™'(q))=q for all ¢q in [a, b].

We will now state a regularity condition and the first major the-
orem. Henceforth let a and b be fixed real numbers such that 0<a=<
b<1.

CONDITION A. Let F be a c.d.f. with a continuous positive deriv-
ative F'(s) at all points s in a closed interval [¢, d], where c<Fa)<
F-i(b)<d.

THEOREM 1. Let F be a c.d.f. that satisfies Condition A, and let
T: F4+Cy(R)— DL[a, b] be the map defined by

T(F+H)=(F+H)™

Jor each He C(R). Then T is compactly differentiable at F along Cy(R)
with compact derivative DL(H)=—H(F~'(-)/F'(F(-)), HeC(R) or
equivalently, for each subset K SCyW(R) with compact closure it follows
that

: F+tH)(@—F"q) , HF(9) |_
@2 I (H,0) ¢ Hxla,5] t T FE ) 0

A variation of Theorem 1 already exists. Reeds [23] (unpublished)
showed that when F' is the uniform distribution on [0, 1] and DLla, b]
is endowed with an LP-norm instead of the uniform norm, then T is
compactly differentiable at F. Reeds’ result for the uniform ec.d.f.
cannot be extended to a general c.d.f. unless further restrictions on
F are imposed. Clearly, our case implies the case studied by Reeds.
The fact that we are able to use the uniform norm instead of an L*-
norm is of fundamental importance.

ConDITION B. Let M be a finite, regular (signed) Borel measure
with support contained in the interval [a, b].

There are fundamental obstacles to allowing F to be discontinuous
when dealing with the broad class of measures in Condition B, since
the derivative may fail to exist (see the remark following Theorem 2).
For discontinuous F, the results of Boos [8], Serfling [26], Mason [21],
and Huber [17] remain the best available.

The next theorem gives the compact derivative for L-estimators.

THEOREM 2. Let F and M satisfy Conditions A and B, respectively.
Let T: F+Cy(R)— R be the map defined by

T+ H)=|F+ By @QMdd),  HeC(R).
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Then T is compactly differentiable at F along Cy(R) with compact de-
rivative

Di(H)=— Sw] [H(F(q))/F'(F~(q)IM(dg) , HeCy(R).

Theorem 2 follows immediately from Theorem 1 by passing limits
through the integral sign, which is permissible because (3.2) yields uni-
form convergence and M is a finite signed measure.

Remark. The usual approach to deriving D% allows H to be a dis-
continuous function. To accomplish this, one could attempt to replace
CyR) in Theorem 1 by a suitable Banach space D, of discontinuous
functions (see the discussion of the space D in Billingsley [6]). This
tactic cannot succeed without restricting M since, as simple examples
show, if H has discontinuities in common with discontinuities of M,
even the directional derivative may fail to exist, that is,

lim %[T,,<F+ tH)— Tu(F)]

may fail to exist. For instance, the median is not compactly differen-
tiable along such a space D,. The situation is different if we restrict
M to be absolutely continuous (see Theorem 6.3.1 of Reeds [23]).

A

The asymptotic theory for L-estimators with discontinuous F' con-
cerns the expression

VA (Tu(F) — T F) = V1 (Tl ) — Tl F)) + V7 (Til F) — Tod F))

where F' is a continuous version of F. The theory in this paper ap-

plies to the second term and will therefore apply to discontinuous Fif
the first term converges in probability to 0. That this is so for many
statistical functionals may be proven directly. For the L-estimator
case it follows easily from the conclusion of the next theorem and the
definition, (2.1), of Ty, if M is a finite signed measure. Moreover,
under some lenient regularity conditions, the next theorem may be ap-
plied to M-estimators and R-estimators as well (Taylor [28]). Its appli-
cation to L-estimators is illustrated in Section 5.

Before stating the next theorem, we need to present the following
condition and additional notation.

ConpITION C. Let (2, A, P) be a probability space. Let F be a
c.d.f. that satisfies Condition A. For each positive integer n and w € 2

let F,(») be continuous and let F’,,(w) be a c.d.f. that is a step func-
tion with a finite number of steps. The following assumptions about
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F,, F, and F are made:
1) (I7’,,—F): 2—Cy(R) is measurable with respect to P;

2) c,,(ﬁ',,—F) is tight in Cy(R), where {c,} is a sequence of positive
numbers such that ¢,— oo,

3) ”cn(ﬁvn_Fn)”wJ—'O‘
Usually ¢, will be 7.

THEOREM 3. Suppose {F.}, {F.}, and F satisfy Condition C. Then
sup, el Fi7(q)— F(q)| 0.

The proof will be given in the next section.

THEOREM 4. Let T be as in (2.1) and let F and M satisfy Condi-
tions A and B respectively. Suppose that the sequence of random ele-

ments {7 (F,—F)}:, is tight. Then for each € 2

6.3) vRTE@)-TEN=~| SIEELID = bds) r.(a)

where r,=o0,1) as n— oo.
The proof is given in Section 4.

THEOREM 5. Let T be as in (2.1) and let F and M satisfy Condi-
tions A and B respectively. Suppose that the sequemce of random ele-
ments {7 (F,—F)}., is tight and that the finite dimensional distribu-
tions of JW(F',,—F) converge weakly to those of some Gaussian process

G with E[G(s)]=0 and a continuous covariance kernel Cov [G(s), G(t)]
on [¢c,d]x[c,d]. Then

(3.4) VEIT(E)—T(F)]-Z-NO, o) ,
where
oo Cov [G(F~\(s)), G(F-'(¢))]
(3-5) T, r= S B D) M(ds)M(dt) .

[a,0]x[a,b]

The proof is given in Section 4.

In many statistical settings the limiting Gaussian process G is al-
ready known, at least for the more popular c.d.f. estimators. This fact
makes Theorem 5 particularly easy to apply. Examples are given in
Section 5.

4. Proofs

The following technical lemma is used in proving Theorem 1.
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LEMMA 1. Let K be a subset of Cy(R) having compact closure. Then,
under Condition A,

(1) lim sup {(F+tH) @)~ F@)[|(H, o) € J x[a, b} =0 .

PrROOF. By the Arzela-Ascoli Theorem (Billingsley [6], Appendix 1),
K is uniformly bounded. Set K= 13113( |H|l. and let ¢>0. Choose 7,
€

>0 so that » K<min {a(a— F'(c)), b(F(d)—b)}. From now on let ¢t e[—»,
n]. Then for x<¢, y=d, He K, we get

F(x)+t-H(x) S F(x)+t]- | Hl« < F(2)+nK
<F(c)+a(a—F(c))=1—a)F(c)+a®
<(1—a)a+at=a<b=(1—b)b+b
<(A-bd)F(d)+b*=F(d)—b(F'(d)—b)
SF(@)—nK
=F(y)+tH(y) .

Thus ¢<(F+tH)'(¢)=d for all He K and q € [a, b]. Define p=inf {|F’(s)||
sele,d]}. For the moment assume (F+tH) ' (q)#F'(g). Then

|(F+tH)™(@)—F~(9)|

= F(@F+tH) @)~ F 0| 7 EHE @I 0

=|F(F+tH)™(@)—al|F" (x4l »

by the mean value theorem, where &, ,, lies between (F'+tH)'(q) and
F~'(g) and therefore lies in [¢,d]. Thus

(4.2) |(F+tH) ™ (@—F(9)lsp | F(F+tH) () —4q| -

If (F+tH)'(q)=F"'(q), then clearly (4.2) still holds. Because ¢=(F+
tH)(F+tH)™(@)=F(F+tH)™(¢))+tH((F+tH) (), it follows that

(4.3) F((F+tH)(9)—9=—tH(F+tH)™(9)) -
By combining (4.2) and (4.3), we get
(4.4 |(F+tH) (@) —F ' @|sp It H||l.<|t|K]g .

Finally, choose 7, <7, so that »,K/u<e. For |t|<n, sup {|(F+tH)™(q)—
Fq)||(H, g) € X x[a,b]} <e; and therefore, (4.1) holds.

PRrROOF OF THEOREM 1. Since for any function g and sets U and
v, ( sup Vlg(u, v)|=su5) suglg(u, v)|, it will suffice to show (3.2) holds.

Let K be a subset of Cy(R) having compact closure. By the Arzela-
Ascoli Theorem, X is uniformly equicontinuous.
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By Condition A, ¢<Fg)<d, for a<q=<b. Therefore, for fixed
€>0, there exists a 4>0, d<min {FY(a)—c, d—F~'(b)}, so that if |s—
F-'(g9)|<8, then

(4.5) |H(s)—H(F~(q))|<ep/2 ,

for every He K and g€ [a,b]. Here, as in the preceding proof, p=
inf {|F'(s)||s € [¢, d]}.
Now choose 8,, 0<3,<3, so that

(4.6) |F'(s)—F'(F(@)|<ep’/2K) ,

for every q € [a, b], whenever |s—F~'(q)|<d;,. This can be done because
F' is continuous, and hence uniformly continuous, on [¢,d]. Now, by
virtue of Lemma 1, there is an >0 such that |(F+tH) ' (¢)—F*(g)|<d,
for all (H, q) € X X[a, b] and [t|<». We now wish to show

(FtH) (@) —Fq) . HFq)
i ’
WD e Rxian ) T FE) 1=

whenever [t|<7.

First, assume H(F'(q))=0, for some H ¢ K, and assume (F'+¢tH) '(q)
#F(q). Note that the argument between the absolute value signs
of (4.7) is exactly zero if (F+tH)(¢)=F"'(q). Now, using (4.3), (4.5),
and the mean value theorem, we get

|(F+tH) (@—F(9)l/it|

_|__ (F+tH)(9)—F(q) [t H(F+tH) (@)
F(F+tH)(@)—F(F () I¢l

=|H((F+tH)™(q))—HF )N F'(¢x,q.0)|
Splep[2=¢[2,

where &5 .. lies between (F+tH)™'(q) and F~(g).

Second, assume H(F%(q))#0. By virtue of (4.3), (F+tH)(q)#
F-Yq) as long as t+0. Then using |t|<7n, (4.3), (4.5), (4.6), and the
mean value theorem, we have

l (F+tH)(@—F(9) , H(F )

i P (g)
_1 (FHEYD~FQ) i 1 EE@)
TR @)~ O g

_ | H(F+tH)(q)) _ HF ()
F'(§x,0,0) F'(F~(9))
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H((F +tH) () — H(F'(9)) |
F'(F~(q))
HA@E ) ()| D=L
<(e/Dpp~+ (K] ) (e[2) (] K) = ,
where &5 ,, lies between (F+tH)'(q) and F(g).

Putting these two cases together, we have proved (4.7) and con-
sequently proved

4.8) lim sup (F+tH)(@—Fg) H(F:‘(Q))
£—0 (H, g) € K x[a, 8] t F'(F-Y(q))

This proves Theorem 1.
The following technical lemma is used in proving Theorem 3. We

shall assume F’,, and F, are defined as before and for fixed w € £, ﬁ‘,,(w)
jumps at x;, @3-+, Tp.
LEMMA 2. Let d(0)=|F(0)—Fyo)|.. Suppose sup | Fo(@s1r @)
18ism~1
—Fy(%;, 0)|<2d,(0)<min {a/4, (1—b)/4}. Then for all g in [a,b]

@9 1Fg o)~ B, o)|SIFr(g—3d0), o)~ Frig, o)
+|FY(q+3d.(0), 0)—F (g, w)| .

PROOF. Let a<q=<b. Let 7 be the positive integer for which ¢,<
4<du, Where ¢,=F(%;, 0), k=1,2,---,m. Note 0<g—3d,(») and ¢+
3d.(w)<1l. Now set r=F(¢—8d.(w), »). We claim 2=z, Suppose
not, that is, suppose x;<x. Then

—d(0)=F\(#;, 0)—d(0) S Fy(w,, 0)<Fy(z)=g—3d.(0) ,

0:29—2d.(0)<qis1—2d(0)=¢i11—(%+1—¢:)=¢:, a contradiction. Thus
Fri(g—3d.(0), 0)=252,=F (g, 0)<FY(q, 0), so FiY(g—8d.(0), ©)<
F:Y(q, w). By using a similar argument we can also show FrY(q, 0)<

F:(q+3d.(w), ©). These two inequalities clearly imply our assertion,
hence our proof is complete.

PrOOF OF THEOREM 3. Let 8 and ¢ be positive real numbers.
Since {c.(F,—F)} is tight in C(R), there is a set HSC(R) with com-
pact closure so that

P {w € 2|c.(F,—F)(w) ¢ K} < 3/2

for n=1,2,--+. Set 24={we2|cF,—F)(w)eKX}. By the Arzela-
Ascoli Theorem (Billingsley [6], Appendix 1), X is uniformly bounded
and uniformly equicontinuous. Now let a’, b’ be real numbers such
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that 0<a’'<a=<b<b'<1l and c<F Y a')<F Y a)SF ()< F'(b')<d. Next
for each He K, define the continuous function G, on [@/, ] by the
formula Gg(q)=H(F'(¢))/F'(F~(q)). By virtue of the above fact it is
easy to deduce that {Gy|H € K} is a uniformly bounded and uniformly
equicontinuous family of functions defined on the interval [a/, b']. Hence
there is an >0 so that

H(F(q)) _ H(F(q))
F'(Fq) F'(F@)

whenever |g—¢'|[<7, ¢,¢ €[a’,b]. Let M= sup |F'(F-'(q))| and set
a'Sqsb’

<ef6,

a=min {/3, (a—a')/4, (' —b)/4, ¢/18M}. Since co(F,—F,)—2.0, there ex-
ists a positive integer N so that for n=N

P {o € 2|[le(Fi(0)— Fy(o)]l.2a} <3/2 .

Set 2.= {0 € 2|llc(F\(0)—F()].<a}. For the moment assume that
we have already shown

(4.10) 2.n2< {0 € 2|lle Ft (@)= F (@) lmn<e}
where ||G||wq,n= s;uEbIG(ac)[. Thus

P {o € 2|lleu(F (@)= F (@) e 12 €}
<P(29)+P(2%)<3/2+8/2=3, n=N,
so (4.10) implies ||c,,(ﬁ;1—ﬁ,,-i)u[.,,,,]—l’»o, which completes the proof.
Thus we need to establish (4.10).
Now let w € 2,N 2 and set d,(w)=|Fy(0)—Fy(o)|l.. Because €
2., d(w)<alc,, which implies for suitably large n that a’<q—3d,(0w)<
q+3d,(0)<b, for all q, a<qg=<b and that d,(w)<min{a/4, (1-0)/4}. It

is easy to see that Iﬁ'n(xi+1, w)——F‘,,(x,-, w)|=2d,(w) for all ¢ and therefore,
by Lemma 2,
411)  |Fg, 0)—Fig, 0)|S|Fri(g—3d.(0), 0)—Fii(g, o)
+F7 (g +3dA(0), 0)—F7(g, »)]
for all ¢, a<q=<b. Now for q in [a, b]
c.| Fir'(g—3d.(0), ) —F; (g, 0)|

(F+(1/e)H)(q—8d.(w))— F(q—3d(w))

=4 e,

He X

+

H(F~'(q—3d(w))

F'(F~(q—3dw(w))

i (F+Qfe)H) )= FHq) | HEF(q))
(1/ex) F'(F~(q)

+ sup
He X
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+ sup | HEa=8d(w)) _ HEFq))
Hex | F'(F(q—3d.(0)) F'(F(a)
+c,| FH(g—3d.(0))—FY(q)| .
Remember w € 2,N2.%. So |¢g—38d.(0)—q|=3d.(w)<min {7, ¢/6c,M}. By
virtue of equicontinuity of {Gy} and the mean value theorem
cal Firi(g—3d.(0), ©)— F7'(g, o))
s (F+(1/e)H)(¢)—Fq) , HF(q)
(H,¢)e K x[a’,b] (/ea) F'(F(q)

+-!é—s+—2;—e .

<2

Now by virtue of Theorem 1 with ', playing the role of a,b in
Theorem 1, there is an integer N;>N so that for n> N, we have

(F+ o H) ¢)—F-(@) . HE@) | o g
(Ha)e Bxia,¥] W) TFEay <

Thus .| B (g—2d.(w), ©)—F; (g, w)|<e/2.  Similarly, we can show
)| Fri(q+2d,(0), 0)—Fi' (g, 0)|<e/2. Tt follows from (4.11) that
c,,||ﬁ',,“(w)—f',,“(w)llw,b]< e, that is, (4.10) holds and our proof is complete.

PRrOOF OF THEOREM 4. Choose any ¢, 3>0. By (3.3)

r@=y AT (F ) - TN+ | SHEE A= ps)

By hypothesis {1/7[(13',.——F)} is tight. Therefore, there exists a com-
pact set K SCyR) such that

Ploc2|vn(F(o)—-F)¢ K}<8  for n=1,2,38,..-.
By Theorem 1, there is a positive integer N such that, for n>N and
we {0 €2V (Fy0)—F)¢ K}, |ri(w)|<e. Thus, for n=N,
(o € 2|V (Fi(0)—F) € K} S {0 € 2]|ru(w)<e},
which implies that P {w’€ 2||r (0’)|=e} <P {0’ € 2|y n (F(o)—F) ¢ K}

<3 i.e., r,-2»0 as n—oo. This proves Theorem 4.

Note how the compact set K required by the definition of “com-
pact derivative” arises directly from the tightness of (Vm(F,—F)}.
This is precisely the reason that the compact derivative is the appro-
priate definition of D% to use as a means of finding the asymptotic
distribution T.
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LEMMA 3. Let Q be a regular Borel measure on the real line with
compact support contained in the imterval [c, d] (see Condition A). Let

L: C(R)—R be the continuous linear functional given by L(f )=S fdQ
Sfor feCyR). Let G be a Gaussian random element in Cy(R) such that
E[G(s)]=0 for each se€[c,d] and the covariance kernel Cov [G(s), G(t)]
18 continuous on [c,d]X[c,d]. Then the random variable L(G) is dis-
tributed as N(O, o ), where az,,,G=S S Cov [G(s), G(£)]Q(ds)Q(ds).

ProOOF oF LEMMA 3. Although we do not know of an appropriate
citation, Lemma 3 seems to be well-known. The proof is straight-
forward; only a sketch is given here. Define a sequence {L,(f)} such

that L.(f) is a Riemann-Stieltjes approximating sum for S fdQ and such

that L,(f)—L(f) as n—oo. Then, L,(f) is normally distributed, and
it is easy to show that the characteristic function of L,(f) goes to a
characteristic function of the appropriate normal random variable as
n— oo,

Proor oF THEOREM 5. For each Borel set E in [F~'(a), F'(b)],
define the Borel measure MF(E)=M(F(E)). By Billingsley ([7], Theo-
rem 16.12) and Theorem 4,

IEE)—FO) yrpds)+r.

(4.12) VR[T(F,)—T(F)]=— SEF-lm,F-l@n F'(s)

where 7,=o0,(1). The hypotheses of tightness and convergence of the
finite dimensional distributions of /% (F,—F) imply that v7 (F,—F)-2.
G. Therefore, by Corollary 1, (4.12), and Billingsley [6], Section 5,

VE(T(F,)—T(F))-2- S[F_lw_l(m —%%MF(ds) :

Define the measure Q by

QE)= SE — It r-100y, P-10051(8) * —F—-I—]C;)—MF(ds) .

Then

—G(s)
SEF"(a),F“(bJJ F'(s) MF(ds)

=, 6O (~ L s F@) " MF@9)=|_6le)ds)
which, by Lemma 3, is distributed as N(0, ¢% ), where

=§ S Cov [G(s), G()]Q(ds)Q(dt) .
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Finally, by Billingsley ([7], Theorem 16.12), we see that ¢% ;=0% ».

5. Applications of Theorem 1

In this section, the symbol T denotes the functional representation
of an L-estimator (see Definition 1) where the subsecript M is suppressed.
The proofs of the results of this section are found in Esty et al. [12].

APPLICATION 1: One-sample data. Let {X;};-, be i.i.d. with com-
mon distribution function F, which is continuous and strictly increasing
on the interval {¢|0<F(x)<1}. For sample size n, let X,, <X, ,<---
<X, . be the ordered X,,---, X,. Let ﬁ',.(x) be the empirical distribu-
tion function given by F‘,,(a;):O, if 2<X,;, ﬁ',.(x):k/n, if X, .S2x<X, 11
and F’,.(x):l, if #=X,,. Choose any sequence of positive numbers
{d} such that limd,=0. Define X,,=X,,—d, Let F(x) be the
continuous, piece-wise linear version of ﬁ’,,(x) formed by linearly inter-
polating between (X, ., Fi(X,..)) and (X, 1, Fu(X111)), for k=0, -+, n—

1. The c.d.f. estimator F, will now be used in Theorem 5. The F',,—
F is not in Cy(R) and therefore cannot be used directly in applying
Theorem 5. The following two lemmas are apparently known, but,
because we cannot find published proofs, they are given here for com-
pleteness.

LEMMA 4. Let Y,(%) be the random element in Cy(R) defined by Y,(x)

=y (F(x)—F(x)), —co<x<oco. Then {Y,}o, is a tight sequence of
random elements.

LeMMA 5. Y,-2.G, where G is the random element in Cy(R) such
that G° s a (tied-down) Gaussian process with E[G'(t)]=0, for every t ¢
R, and Cov [G'(s), G'(t)]=F(s)[1— F'(t)], for every s<t.

This lemma is an extension of Theorem 13.1 in Billingsley [6].
THEOREM 6. Under Conditions A and B.
VRIT(F)—T(F)]-2-NQ, o%.5) ,
where
Gl)  he= S" S" [(s At—st)/[F"(F-s)) F'(F-\(t))| M(ds)M(dt) .
Here sAt=min {s, t}.

The hypotheses of Theorem 3 are satisfied and Theorem 6 will hold
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for both the continuous and discontinuous versions, ¥, and F..

Theorem 6 agrees with all previous asymptotic results for L-esti-
mators for the one-sample problem (Reeds [23], Chapt. 6, Boos [8],
Serfling [26], Mason [21], Huber [17]). It is more general, however,
because it holds for a wider class of L-estimators.

As a specific case that is covered by Theorem 6 consider a weighted
average of the median and the 100-2% trimmed mean. In other words,
let T'(2) be associated with M(s)=2AM,(s)+(1—2)Mys), 0<i<1, where
M(s)=0, if 0<8<1/2, M(s)=1, if 1/2<s<1, and where Mys)=0, if 0<
s8<a, Mys)=(8—a)/(1—2a), if sc[a,1—a], and My(s)=1, if 1—a<s<1
all for fixed a€(0,1/2]. By substituting the above M into (5.1) and
then simplifying the resulting expression, the asymptotic normal vari-
ance of yn T(2) is

Tronr=QUA)IFE U+ 20— D] F(F-2)]
x| atF1—a) - F@)+ (" @ a-9)- @)y

+[20- 27/ -207 | " [ty FE )]
x S [s/F'(F“(s))]dsdt] :

A useful, by-product of this calculation is the asymptotic covariance
between the sample median and the sample 100-a% trimmed mean,

|aF- 10—~ F@)+ (" T 1—9)—F- @)y enF @)

This form is much more convenient than that of Serfling ([26], p.
280). This method could be used to find the covariance of, for instance,
the trimmed mean and the interquantile range.

Unfortunately, the asymptotic normal variance (5.1) depends on the
true, unknown F. In order to form large sample confidence intervals
for T(F'), a consistent estimator of o} , is required. The following
statements describe one such estimator of % ;.

DEFINITION 3. Choose a sequence of real numbers {k,}>, such that
h,—0 and 4y 7%h,—oco. Define

(5.2) Fu@)=[Fy(x+h,)—F(x—h,)]/2h,, @€(—o00,00).

Then an estimator of o} - is
(5.3) az,=§: S (s At—st)[[Fu Firi(s)) Fo(F ()| M(ds)M(de) -

LEMMA 6. Under Condition A,
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sup {| S (s) — F(F ()} -0 .
THEOREM 7. Under Conditions A and B,
VA (T(F)—T(F))}5,-2- N0, 1) .

As in Theorem 6, T(Fn) may be replaced by T(F‘,,).
Notice that Theorem 7 allows one to calculate an approximate con-
fidence interval for the unknown parameter T(F').

APPLICATION 2: Data grouped by quantiles. Use the same notation
as for the preceding one-sample application. In some situations, the
statistician does not have access to the individual values X, i=1,---,
n. For example, to protect the confidentiality of respondents, the in-
terviewer may provide only the sample deciles or sample percentiles
when releasing the survey data for analysis. It will now be demon-
strated that the L-estimate can easily be calculated from the quantile
information and that the associated large sample theory follows directly
from Theorem 6.

The following notation is convenient. For sample size m, choose
the k(n) quantities &,,, j=1,---, k(n), where k(n)<n and 0=§,,<&u<
v Zbnpw<Enrmwsr=1. Define e,=min{¢,,—&,,4, J=1,---, k(n)+1}.
Let e¢,>1/n and let Y,,<Y,,<--- <Y, .m be the associated set of sample
quantiles defined by Y,;=max (X, | FAX, )8 1=1,--+,m}, j=1,---,
k(n). Thus, the sample deciles correspond to k(n)=9, &,,=3j/10 the
sample percentiles correspond to k(n)=99, &,,=3/100, etc. The esti-
mate of F is F,, a function formed by linearly interpolating between
the points (Y., &,;) and (Y, ;415 &n j41), for j=0,1,---, k(n). Here, in a
manner similar to that used to form F,, define Y,,=Y,—d, and Y, s
=Y, ww+d,, where {d,} is a sequence of positive values with d,—0.

It is important that the £,’s be far enough apart that the Y,’s
are distinct (remember e,>1/n) and also that the &,’s be close enough

together that {F,} is consistent for F. Let w,=max {,—&.,_1, J=1,
ov, k() +1}.

THEOREM 8. Suppose Conditions A and B hold. If u,=o(n"'?), then
J(T(F)—T(F) -2 N, o% ), where o 5 is given by (5.1).

It seems clear that a result similar to Theorem 7 could be found
for this quantile data case. Apparently, Theorem 8 is new. We know
of no other work done of L-estimators for data grouped by quantiles.

APPLICATION 3: Censored survival time data. Let the X,’s be as
defined in the one-sample data example. Let F(0)=0. Let {V.,}r., be
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i.i.d. with common distribution F,, which is continuous and strictly
increasing on the interval {z|0<F,(x)<1}. Let {V.} be independent
of {X;}. Observe the sequence of random variables W;=X;AV,. Then
the distribution function of W, Fy, is given by Fy(z)=1—(1—F(x))-
(1—Fy(x)). The variable W, is the type of measurement that one ob-
serves in right-censored medical follow-up studies or in product life
testing, when the censoring is random. (Here V is the random censor
time and X is the life time.) Such experiments are often conducted
to estimate the survival distribution function F' or to estimate some
parameter related to that distribution. See Kalbfleish and Prentice
[19] for a complete discussion of survival time data.

Let 0,=1I_..,v5(X;), where I is the indicator function. That is, 3,=
0, if the ith observation is censored, and 8,=1, if the ith observation
is not censored. ‘ Because the experimenter knows whether or not each
observation is censored, the data actually consists of the pairs (W, 9,),
1=1,---,n. Let W,,<---<W,, be the ordered W,,---, W, and let 4,
be the censoring indicator variable that goes with W,,. Define m=

ﬁ‘, 8:n; m is the number of uncensored, observed survival times, m<n.
i=1

The Kaplan-Meier product-limit estimator of F' (Kaplan and Meier
[20]) is given by

Fyx)=0, if a<W,,,

1T (= n—i+ D)5,  Wo,SE<Wojs G=1,--,n—1,
=1-T[ [(n—D)(n—i+ 1)},  W,.<z.

-,
]

1

Notice that ﬁ',, is a step function that jumps only at the m observed
survival times. )
We shall use some of the large sample theory for F, as derived

by Breslow and Crowley [9]. Let F*(z)= S (1— F,(v))dF(v) be the “sub-

distribution function” of censored observations.

LEMMA 7. Let r<oo satisfy F(z)<l. Then the random element
Ja (B —F)-2.G*, over the interval (0,7), where G* is the Gaussian
process with E[G*(t)]=0, for te (0, z) and

Cov [G*(s), G*(D=(1— F&) 1~ F®) || (1—Fy(@)*dF*)

0<s=st<r.

ProOOF. See Breslow and Crowley [9].
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In order to use Theorem 5, we need an estimator that is close to
ﬁ’,, and is in Cy(R). Consider the estimator F, created by linear inter-
polation between (W, ,, FA’,L(W,,J)) and (W, ,.1, ﬁn(Wn,,+1)), 1=0,1...,n—1,

where W, ,=F,(W,,)=0. Let F.(x)=F(W,.,), if =W,,. Then F,¢
C[0, z], the set of continuous functions on [0, 7].

LEMMA 8. If F(z)<1, then
yw sup {|Fy(z)—Fy(x)[} 20 .
0srst

Thus the hypotheses of Theorem 3 are satisfied and Theorem 9 will
hold for both the continuous and discontinuous versions, F, and ﬁ',..

THEOREM 9. Suppose Conditions A and B hold. If t satisfies b<
F(r)<1, then J%‘(T(F’n)—T(F))—g)»N(O, o% r), Where

. (1—8)(1—)R(sAt)
(5.4) b p= S o ey MM

[a,b]1x[a,bd]
where

F1

Rw=| " 1~ Fy@) dF @)= [1- F,(F )" (1—2) "z

This result agrees with Reid [24] ((5.4) is identical to Reid’s (3.6)),
who used the Fréchet definition of Df and required that M be ab-
solutely continuous.

The asymptotic Gaussian process for the Kaplan-Meier estimator as
derived by Meier [22] could be used in a manner analogous to Lemma
6 to produce a result similar to Corollary 5 if the censoring times are
fixed rather than random.

6. Discussion and extensions

The results of this article are easily extended to the simultaneous
estimation case, where the range of T is in R*. For example, one can
use the preceding theory to determine the asymptotic bivariate normal
distribution of the interquantile range and the trimmed mean.

It should be a straight forward matter to allow the weighting
function M to depend on n as do, for example, Groeneboom et al. ([15],
Theorem 6.2). It would be more useful, but more difficult mathemat-
ically, if M were data dependent so that the associated L-estimator is
adaptive. (See Hogg [16]).

Also, it may be possible to let M depend upon F. Cases where
trimming is at a fixed distance from T'(F') (rather than, say, the ex-
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treme 109%) can be shown, by a change of variable argument, to cor-
respond to such M’s.
It also appears feasible to generalize the theorems of this article

to cover the case where F, lies in the product space C*R) (see Whitt
[30).

One of the authors (Taylor [28]) has used Theorem 1 to derive asymp-
totic distributions for a very broad class of estimators which includes
L, M, R-estimators.
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