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Summary

A concept of normalizing transformations of statistics is constructed
on the basis of the rate of convergence to normality. The concept is
applied to derive a normalizing transformation of a maximum likeli-
hood estimate of intraclass correlation coefficient in a p-variate normal
sample. Numerical comparisons are made to examine whether the
proposed transformation is efficient to achieve normality. The relation-
ship between normalization and variance stabilization is also considered.

1. Introduction

Fisher’s z transformation [4] for the correlation coefficient, r, in
a bivariate normal sample is of practical importance in determining
significance points of the probability distribution or in constructing
confidence intervals for population correlation coefficients. Transforma-
tions of this kind are, in general, made for two different purposes;
partly for stabilizing an asymptotic variance, and partly for normaliz-
ing an asymptotic distribution. Fisher’s z transformation for » is of
particular interest, since the variance stabilization and normalization
can be simultaneously achieved by the same transformation z(r)=

% log {(1+7)/(1—7)}.

An intraclass correlation coefficient is a measure of strength of
relationship and useful in the estimation of the degree of resemblance
between siblings in the biometrical study of inheritance. An explicit
expression for the maximum likelihood estimate, r;, of the intraclass
correlation coefficient can be derived when the sample is drawn from
a p-variate normal distribution and the number of siblings is the same
in each family. It is known (Fisher [5], Chapter 7) that the variance
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stabilizing transformation for r»; is for all values of p

(1.1) z,(r)={(p—1)/(2p)} " log [{1+(p—1)r} /A —7)] -

The question is whether this transformation simultaneously yields a
normalizing one. It must be remarked here that the concept of a
normalizing transformation is ambiguous, while a variance stabilizing
transformation is clear and succinct; we search for a function which
renders an asymptotic variance independent of unknown parameters.
It is the purpose of this paper to construct a concept of normaliz-
ing transformations of statistics and to give a normalizing transforma-
tion for the intraclass correlation. The relationship between normali-
zation and variance stabilization is also considered based on the trans-
formation theory to be suggested here. Some numerical comparisons
are made for approximate distributions of the intraclass correlation.

2. Normalization and variance stabilization

2.1. Transformation theory

Normalizing transformations of some statistics have been considered
by Konishi [8], [9] and Efron [3]. We construct, on the basis of stand-
points discussed in Bhattacharya and Ghosh [1] and Konishi [9], the
concept of a normalizing transformation in the following way: Con-
sider a random variable T, whose distribution depends on the para-
meters n and 6=(6;, ---,0,). Assume that there exist x(f) and o(6)
such that +n {T,—p(6)}/s(f) has a limiting normal distribution with
mean zero and variance 1 as n tends to infinity, and that the rate of
convergence to normality is

Pr [V n {T,— p(6)}/o(6)<x]=0(x)+O0O(n"?),

where @(x) is the standard normal distribution function. If there ex-
ists a strictly monotone function f such that

Pr [vV'n {f(T2) — f((6))—¢/n} [{a(0) f'(1(0))} <z]=D(x) +O(n") ,

where ¢ is an asymptotic bias of the transformed variate f(T,), then
f(T,) is said to be a normalizing transformation of T,.

This means that by making a suitable transformation with an ap-
propriate bias correction ¢, the term of O(» "% in an asymptotic ex-
pansion for the distribution of f(T,) can be made to vanish, so the
error involved is of order n~!. It is known (Rao [12], p. 385) that the
problem of finding a variance stabilizing transformation is reduced to
solving the differential equation ¢(8)f’(x(6))=1 for a continuously dif-
ferentiable function f in a neighborhood of T,=px(6).

Suppose that r is the sample correlation coefficient based on a
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sample of size N=n+1 from a bivariate normal distribution with cor-
relation coefficient p. Taking f(r)=z('r)=-;—log {14+7r)/1—7r)} and c=
0/2, we have (Konishi [9])

Pr [V n {2(r)—2(0)—p/(2n)} <2]=0(x)+0(n™") ,

while the remainder term of the limiting distribution of +n(r—p)/
(1—p% is O(n™"?). Hence the normalization and variance stabilization
for r are simultaneously achieved by Fisher’s z transformation.

Borges [2] has also used the same approach to obtain a normalizing
transformation for a class of one-parameter distributions. The relation-
ship between normalization and variance stabilization for a certain sub-
model of an n-dimensional exponential family has been considered by
Hougaard [7].

2.2. Transformations of intraclass correlations

Let X,=(2 +++, Xpo), @a=1, -+, N, be a random sample of size
N=n+1 from a p-variate normal distribution with mean vector 4 and
covariance matrix 3. We assume that 3 has homogeneous variances
and homogeneous covariances, so that

2=0*{(1—p)I +pec'}

where e=(1, ---, 1)’ is the p-dimensional vector. For the mean vector
¢ we consider the following two cases; (i) elements of p are all equal
and (ii) g is unrestricted. In the case where all of the elements of g
are equal, the maximum likelihood estimate, r,, of the intraclass cor-
relation coefficient p is

a=1

n=3 3 Xu-X.~2)lo-1 2 3 X.— 3}

where X=3 > X../(Np). Let f(r) be a strictly monotone and twice

continuously differentiable function in a neighborhood of r,=p. Follow-
ing a similar line of approach discussed in Fujikoshi [6] and Konishi
[10] with the help of Theorem 2 of Bhattacharya and Ghosh [1], we
obtain an asymptotic expansion for the distribution of f(r,) in the fol-
lowing ;

2.1) Pr[vVN {f(r)—f(p)—c/N}/r<a]
=0(x)— N~""[(T—5p)/ {8kp(p—1)} —c[z +alp, f', f")2"]p(x)
+O(N-)

where ¢(x) is the standard normal density function and
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E=vVZ {plp—D}",  T=R(L—p){L+E—1p} ()
alp, £, )= Z(r-2)=3(— D)o} +1—p) (1-+ (- el /@) o)) |

{kp(p—1)} .

We first search for a function which makes the coefficient a(p, f’, f”)
of #* in (2.1) vanish. The problem of finding f is, noting that f"(p)-
(o) *=d{log f'(0)} /do, reduced to solving the differential equation

(2.2) _d_f_‘z (1—p)~He—/@» (] 4 (p—1)} p~21+P/GD>
do
where 1>p>—(p—1)"'. The solution yields
a(r) =3 log (A+r)/1—r)}  for p=2

and
By(r)=3(»—2)"'[{1+(—1)r}/Q—r)]*>  for p=3.

Calculating bias correction factors given by c¢=7(7—5p)/{3kp(p—1)} in
(2.1) for each transformation, we see that if p=2,

Pr [W {zz(rl)—z,(p) +%N“} <w] — () +O(N )

and if p=3,

(2.3) Pr (VN[B(r)—By0)—N~"=(7T—5p)/ {8kp(p—1)}]/r <)
=0(x)+O(N)

where r=k[{1+(p—1)p}/(1—p)]"">/¢?, so that the remainder terms are
of order N~!. Thus, it can be shown that the transformations to
achieve normality are z,(r,) for p=2 and Byr,) for p=3.

A variance stabilizing transformation is obtained by solving the
differential equation

r=k(1—p){1+(p—1)p}g—f=1

in (2.1) and the solution may be found to be the Fisher z transforma-
tion z,(r) given by (1.1). It is of interest to note that in the case
p=2 this differential equation is exactly the same as that of (2.2).

Taking f(r)=z2,(r) in (2.1) and choosing a correction factor suit-
ably, we have

(2.4) Pr (VN [2,(r)—2,(0) — N ~(1—5p)/ {8kp(p—1)} 1 <)
=0(x)—N~""[(2—p)/ {8kp(p—1)}]x’¢(x)+ O(N ) ,
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so that the term of O(N~'?) in the expansion cannot be made to vanish
except for the case p=2 by z,(n).

It is worth pointing out that Fisher’s z transformation satisfies,
only in the case where p=2, the two requirements of the normalizing
and variance stabilizing transformation simultaneously.

In the case where the mean vector x is unrestricted, the maximum
likelihood estimate of p has the form

r=3 3 (X)X~ %)/ [0-1 £ B (X Xy

where X,=3) X,./JN. An asymptotic expansion for the distribution of
f(r;) is given by

Pr[vn {f(r)—flo)—c[n} [z <z]
=0(z)—n"""[(4—2p)/ {8kp(p— 1)} —c/t+alp, f', f")a"]g(2)+O(n™")

where n=N—1 and =, ¢, ¢(x), a(o, f', f"") are given in (2.1). By an
argument similar to that used for »,, we have that if p=2,

_ Pr [V n {2(12) —2:(p)} <2]=0(2)+O0(n™)
and if p=3,
Pr (v n[By(r;)— B,(p)—n"'t(4—2p)/ {8kp(p—1)}]/r <2)=0(x)+O(n™")

where =k[{1+(p—1)p}/(1—p)]*2/®» with k given in (2.1). Hence a
similar result holds for the problem of finding transformations of the
maximum likelihood estimate of p in the case where p is unrestricted,
except that the bias correction terms are slightly different.

The approach used here was also applied to derive normalizing and
variance stabilizing transformations for r; in the case where the num-
ber of siblings varies among families. However such a transformation
does not seem to be expressible as an elementary function.

3. Numerical comparisons

To examine whether the transformations given in the last section
are efficient to achieve normality, we compare the accuracy of the ap-
proximations to the distribution of 7, in terms of values of the prob-
ability integral. It is known (Olkin and Pratt [11]) that

N(N-1)"[{1+@—1)r}/A-r)[(1—p)/{1+(p—1)o}]

has the F distribution with N—1 and (p—1)N degrees of freedom.
We use as a measure of the approximation error: Max|Pr (r,<7; N, p)
—A(ry)|x10* where A(r) is obtained by using the approximate distri-
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butions discussed in Section 2. Exact and approximate values are cal-
culated at intervals of 0.001 between —(p—1)~! and 1.0 for various
values of p, N and p. Table 1 gives an overall comparison of the four
approximations concerning the maximum error. In the table, AD, ZI,
Z1I and BT are the notations standing for the following:

AD: the case that VN(r,—p)/[v2 {p(p—1)} " (A1—p){1+(p—1)p}] is
approximated by a normal variate with mean 0 and variance 1,

Z1 : the case that N {z,(r)—z2,0)} is approximated by a normal
variate with mean 0 and variance 1,

ZII: the case that the values of Pr (r,<7) are approximated by us-
ing the leading term &(x) of (2.4),

BT : the case that the values of Pr (r,<7,) are approximated by (2.3).

Table 1. Comparison of maximum errors in approximating the values of
Pr(r1<7): Max |Exact value— Approximate value|x 104, where
the maximum is over the values 7,=—(p—1)"1(0.001)1.0.

) p=2 p=3 p=4 p=6 p=8 p=10
N=25

AD 427 632 722 804 842 865
0.1 ZI 422 637 729 812 852 875
: ZII 73 129 154 178 190 196
BT 61 55 48 4 42
AD 546 671 745 820 857 878
0.5 Z1 422 637 729 812 852 875
. ZII 73 129 154 178 190 196
BT 61 55 48 4 42
AD 766 877 931 985 1012 1028
0.9 Z1 422 637 729 812 852 875
. YA 73 129 154 178 190 196
BT 61 55 48 44 42

It may be seen from the table that the approximate distribution
BT is the most accurate of these approximations for various values of
o and p, and provides high accuracy over the whole domain of r,, We
observe that in comparison with ZI the approximation ZII can be
markedly improved by adding the correction factor.

Fig. 1 shows the error between approximate and exact values of
Pr (r,<m,), for which the approximations (2.3) and (2.4) neglected the
term of O(N~'%) are used.

From the results presented in Table 1 and Fig. 1, it is interesting
to note that the maximum error of BT decreases steadly as p increases,
while other approximate distributions depart from normality. The
curve in the case p=2 of Fig. 1.(b) based on 2,(r,) has the same pat-
tern as ones in Fig. 1.(a) based on B,(r). It must be remembered
that the transformation of the form of z,(r,) yields a normalization
only in the case where p=2.
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Fig. 1. Errors in approximating the values of Pr(r1<7) by using (2.3); (a), and
the leading term of (2.4); (b), for N=25 and p=0.7: Error=(Approxi-
mate value—Exact value)
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It may be concluded that the transformation B,(r,) derived here
is successful in normalizing the distribution of »,, although the effect
of the variance stabilizing transformation is lost. Similar comparisons
were made for the approximate distributions of 7,. In consequence
we found the results to be unchanged essentially.

Remark. It follows from the result of Olkin and Pratt [11] that
the distributions of B,(7)/B,(0) and z,(r;)—z2,(p) are independent of the
population intraclass correlation p. This shows immediately that the
approximations ZI, ZII and BT are also independent of p and that
z,(ry) yields the variance stabilizing transformation. Hence the maxi-
mum errors for the approximations ZI, ZII and BT are independent
of the values of p unlike the case of the sample correlation coefficient
in a bivariate normal sample.
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