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Summary

Estimation of the vector B of the regression coefficients in a multi-
ple linear regression ¥=Xp+e is considered when B8 has a completely
unknown and unspecified distribution and the error-vector & has a mul-
tivariate standard normal distribution. The optimal estimator for B,
which minimizes the overall mean squared error, cannot be constructed
for use in practice. Using X, Y and the information contained in the
observation-vectors obtained from n independent past experiences of
the problem, (empirical Bayes) estimators for B are exhibited. These
estimators are compared with the optimal estimator and are shown to
be asymptotically optimal. Estimators asymptotically optimal with rates
near O(n™') are constructed.

1. Introduction

Empirical Bayes (EB) approach to a statistical problem, introduced
by Robbins [22], and later developed by Johns [7], Robbins [23], [24],
Samuel [25] and Johns and Van Ryzin [8], [9], among others, has re-
cently drawn considerable attention in the literature. Suppose there
is a pair (X, 6) of random variables, where X is observable and 6, called
the parameter, is unobservable. The r.v. X given 6 has a specified
distribution P, on the observation space ¥ and 6 has a completely un-
known and unspecified distribution G on the parameter space 6. Based
on an observation on X (which could be a sufficient statistic for §), the
problem is to decide about § with respect to a nonnegative loss func-
tion. If the prior distribution G were known, the statistician would
use the Bayes procedure ¢, which achieves the minimum Bayes risk,
say R(G), with respect to G. (We assume such a ¢, exists). But since
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G is not known, the optimal procedure ¢, is not available for the use
to the statistician. In the EB context we assume that the above prob-
lem, called the component problem, has occurred independently in the
past, say m times, so that there are n-+1 independent pairs (X, 6)),
-+, (X,, 0,) and (X, 0). The object is to utilize the information con-
tained in the past observations (Xj,---, X,) and the present observation
X to produce a decision rule for the present parameter ¢ so that for
large n this rule is “nearly” as good as the unavailable optimal rule
¢ in the sense that the overall risk, say R,, of this rule approximates
the Bayes envelope R(G) achieved by ¢q. If R,—R(G) as n— oo then
the rule is called asymptotically optimal (a.0.), (Robbins [22]). If for a
>0 R,—R(G)=0(n"*) as n— oo we will say that the rule is a.o. with
rate O(n™).

Johns and Van Ryzin [8], [9] considered EB linear loss two-action
hypothesis testing problems in one parameter discrete [8] and continu-
ous [9] exponential families and exhibited a.o. test procedures with rates
near O(n!) in both cases. Lin [13], [14] considered EB squared error
loss estimation (SELE) in the two families considered by Johns and
Van Ryzin and obtained EB estimators with rates near O(n™'%). Yu
[84] and Singh [27], [29] exhibited a.o. EB estimators in the one param-
eter Lebesgue exponential family with rates near O(n~'?), O(n~*) and
O(n™) respectively. O’Bryan and Susarla [20] considered EB estimation
with varying sample sizes in component problems in the univariate nor-
mal distribution and obtained estimators a.o. with rates near O(n™'%).
Recently Monte-Carlo simulations performed by Clemmer and Krutchkoff
[2], Maritz [16], Martz and Krutchkoff [18], Griffin and Krutchkoff [5],
Bennet and Martz [1] and Maritz and Lwin [17], among others, have
shown how for certain priors the EB procedures often perform better
compared to the usual procedures whenever there is at least one past
experience of the problem.

We, in this paper, consider EB approach to the SELE problem in
a multiple linear regression model Y= Xp+e with loss function L(8, B
=(8—BY(B—B). Using the information contained in (¥;,---,Y,) from
the past problems and (Y, X) from the present problem we will ex-
hibit for each n>0 two classes of estimators ¢ and ¢ for B8, one for
the case when nothing is known about the support of the prior distri-
bution and the other for the case when it is known that the prior dis-
tribution has a compact support. We show that ;5 are a.o. with rates
O(n~'*") uniformly over the class of all priors satisfying certain moment
conditions dependent on 7, whereas ¢ are shown to be a.o. with rates
O(n~'*") uniformly over the class of all priors with compact support.
Thus we have given procedures for constructing EB estimators a.o. with
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rates arbitrarily close to O(n™') in the above multiple linear regression
model. As pointed out in Singh [29] EB procedures a.o. with rates
O(n™") have not yet been exhibited in any EB problem other than that
involving discrete distributions.

Martz and Krutchkoff [18] have considered EB estimation in the
general linear model considered here. They have, however, not proved
any consistency or asymptotic optimality of their estimators, but have
shown, through a Monte-Carlo simulation, that for certain priors their
EB estimators perform better than the usual least square estimator.
Wind [33] has considered EB estimation of 8 when the error vector e
is assumed to have 0 mean and covariance oI but is not assumed to
take on a specific parametric form, e.g. Normal. For priors specify-
ing their means and variances or specifying their second moments, he
has exhibited restricted asymptotically optimal EB estimators of 8, that
is estimators whose Bayes risks converge to the risk of the restricted
minimax estimator at each component stage.

Some other important related contributions worth mentioning here
are due to Stein [31], James and Stein [6], Cogburn [3], Kantor [10],
Wind [32], Efron and Morris [4] and Rao [21], among others, where
problems related to estimation of regression coefficient 8 or of a multi-
variate normal distribution mean are considered.

2. The model and preliminaries
We consider the following multiple linear regression model
2.1) Y=XB+e

where Y is an Ix1 vector of random observations, X is an I X p matrix
of known constants so that X'X is invertible, 8 is the px1 vector of
unknown regression coefficients having an unknown and unspecified prior
distribution G on (E?, $*), $* being the Borel-field of subsets of E?,
the p-dimentional Euclidean space, and e is an [ X1 vector of unobserv-
able random variables. We will assume that the conditional distribu-
tion of & given B is N0, ¢°’I), the p-variate normal distribution with
mean vector 0 and variance-covariance matrix ¢*I, where ¢* is assumed
to be known. The object is to estimate 8 with respect to the quadratic
loss function

(2.2) LB, ¢)=18—9l:
where ¢ is an estimate of B8, and for a 1xp vector #=(¢,---,t,) and

P 1/m
m>0, [[tl=(S1tr) "
For an estimator ¢ of B, let R(@, G) be the (Bayes) risk of ¢ with



74 R. S. SINGH

respect to the prior distribution G, i.e.,

(2.3) R(g, G)=E||¢—Bl:

where E stands for the expectation operator with respect to all the
random variables involved in the expression. The Bayes envelope with
respect to G is given by

R(G)= igf R(¢, G)

where the inf is taken over the set of all estimators ¢ for which (2.3)
exist. The estimator which achieves the Bayes envelope R(G) is the
Bayes estimator, also called optimal estimator (o.e.) ¢s given by

(2.4) $(Y)=E(@B|Y).

Thus R(¢e, G)=R(G). Notice that R(G) can be exactly achieved only
if the prior distribution G is known and B is estimated by the o.e. ¢q.
Unfortunately G is completely unknown, and hence ¢, is not available
to us for use. This motivates us to use the EB approach to exhibit
estimators whose risks are close to R(G) achived by ¢..

3. Empirical Bayes approach

Suppose we have incurred » independent experiences of the above
estimation problem, called the component problem, in the past. That
is we have independent pairs

{171’ ﬂl}r" Ty {Ym ﬁn}

from the past experiments, and (Y, 8) from the present experiment,
with

K‘.‘:Xﬂt_l'sir i=1,"'7'n-

The vectors Y;, B,, e behave like Y, B, e described above; B;,---, 8,
and B, are i.i.d. according to the same unknown prior distribution G ;
and given Bi,---, 8, and B, the vectors e;,---, e, are i.i.d. according to
N0, ¢*I) and Y;~N,(XB;, o’I). We will exhibit (EB) estimators for 8
on the basis of X, the past observations Y;,---,Y, and the present
observation Y ; and show that for large »n these estimators can be con-
sidered as good as the unavailable o.e. ¢g.

In Section 4 we will show how the problem of approximation of
the optimal estimator can be reduced to the problem of estimation of

the marginal density of ﬁ, the maximum likelihood estimate of 8, and
its first partial derivatives. In Section 5 we exhibit for each integer
r>1 uniformly mean squared consistent estimators of the marginal den-
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sity of ﬁ and its partial derivatives. Using these estimates we will

introduce two EB estimators ¢ and ¢ of B, one for the case when
nothing is known about the support of the prior distribution G of B8
and the other for the case when the support of G is a known compact

subset of E?. In Section 6 we will show that the excess risk of ¢
over the minimum risk R(G) is of order n~"—07/?*» for every 0<r<2,

and that of ¢ is of order n~¢r~¥/Ar+» for every y in (0, 2) for which
S | Bllzr+/-"dG(B) is finite. Thus the rates of convergence can be sharp-

ened to any desired degree by choosing appropriately a larger value of r.

4. Reduction in the problem

Recall from Section 1 that an EB estimator based on the observa-
tions from the past n experiences of the problem and the present ob-
servation is a.o. if its risk approaches to the minimum Bayes risk R(G)
as n gets large. The following known lemma therefore reduces the
problem of searching an a.o. estimator for B to the one of searching
a quadratic mean squared consistent estimator of the o.e. ¢;. The
univariate version of the lemma is proved (under the present condition)

in Singh [29].

LEMMA 4.1. Let the prior distribution G be such that R(G)< co.
Let ¢ be an arbitrary p-vector statistic. Then

R(¢, G)—R(G)=E||g—gqll:

where the expectation is taken with respect to all the random variables
tnvolved im the expression.

ProoF. Let E, stand for the expectation operator conditional on
Y and all other random variables involved in ¢. Then

Ex[(—B)(@—B)=(¢—¢0) (@—Pe)+Ex {(Pc—B) (Pa—B)
+2(@—ps) (Pe—B)} -

Since R(G)=E (¢¢—B) (¢ps—B)< o, the second term above is E, (¢s—B)
(Po—B)+2P—pc) Ex (Pa—B)=Ey ||ps—B: since Ey (8)=¢s. Thus

Eillg—Bli=llg—sll:+Ex g —Bll: -

Now taking expectations on both sides we get the conclusion of the
lemma.

Since ¢* is known, without loss of generality we can (and do) take
o'=1. The least square estimator of B is
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(4.1) B=2X'Y  where Z=(X'X)",

The estimator (4.1) is the maximum likelihood estimator (MLE) as well
as the minimum variance unbiased estimator (MVUE) of B.

To reduce the problem further we will now show that the o.e. in the
EB context E (8|Y;,- -+, Y,, Y) is the same as the o.e. (2.4) in the com-
ponent problem. Then we will show how the o.e. (2.4) can be express-
ed as a function of the marginal p.d.f. of ﬂ and its first order partial
derivatives.

Notice that the conditional distribution of g given B8 is N8, 3).

Hence ,BA is sufficient for 8 and

(4.2) $o=E (BIY)=E (8| A)=¢c(B) -
If f(B|B) denotes the conditional p.d.f. of B given B, then
lzle/z

“3) 1B18)=-2L exp [~ L (5 pyz-(4-p))

(2m)??

where |¥|=det 2. The marginal p.d.f. of f) is given by

4.4 &)=\ 7B18)GE) .

For j=1,---,n, let §, be the MLE of 8, in the jth experiment that
we had in the past. Then

8,=2XY,, j=1,--.,m
and ,é,,- N ,én and ,é are i.i.d. according to the marginal p.d.f. given

by (4.4). Thus the optimal estimator in the EB context given by E (S|

Y., -, Y., Y)=E(B|By,---, B., B) is simply E(B|B8)=¢s. Thus the esti-
mators which are as good as the o.e. ¢, in the component problem
are also as good as the o.e. in the EB context.

It follows from Theorem 2.9 of Lehmann [12] that the mth order

partial derivative of f (,é) with respect to the ith component 5, of ,é is
rfB) _ S f(B1B)
(4.5) ~ = 22 dG(B)
0By o8
for all m=1,2,--.- and 2=1,2,---,p.

Now notice that

, of (B B2k,
?%@=[ E }:z-l(ﬁ—é)f(ﬂ*lﬂ) .
¢ af(B1)/3B,
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Therefore

(4.6) Bf(B1B)=Bf(BIB)+Z(F (BB -
Hence from (4.2), (4.5) and (4.6) it follows that ¢, can be written as

@D $=E@IH=CGB)| BFBIPICE=h+Ze)
where ¢'=(qy,- -+, q,) and

(4.8) a.=flf and  f(B)=03f(B)3h,

with j, denoting the sth component of S.

Thus the problem of approximating the minimum expected loss
estimator ¢, reduces to the problem of estimating the marginal p.d.f.
f and its first order partial derivatives fi,---,f,. The representation
(4.7) of ¢, is also noted in Martz and Krutchkoff [18] and Singh [28].

5. Proposed empirical Bayes estimators and an important result

In this section first we will exhibit estimators of the marginal
p.d.f. f and its first partial derivatives f,. We will then obtain a
bound for the mean square errors of these estimates. Finally, on the
basis of these estimates we will exhibit two classes of EB estimates
for B, one for the case when nothing is known about the support of
the prior distribution and the other for the case when the prior dis-
tribution has compact support in E?, the p-dimensional Euclidean space.

5.1. Estimation of f and f,

For an integer r>1 and for ¢=0, 1, let X be the class of all Borel-
measurable bounded functions vanishining outside (0,1) such that for

K, in K3,
1 if 7=0
Sy’Ko(y)dy={ L
0 if j=1,---,r—1
and for K, in K7,

1 if j=1
Snyl(y)dy={ L
0 if 7=0,2,3,.---,r—1.

Let 0<h=nh(n) be a function of n such that h—0 as n—oo. For j=

1,---,m, let B, -, B;, denote the components of the MLE B, of B,.
At x'=(,,---,x,), we estimate f by
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(5.1) Fx)=(mh?)! ,21 L’:ﬂ K°<Bj—;xi“>}

and £,(x)=2f(x)/ox, by

(5.2) Fo=mhoy 53 {Klw—;x‘) g; <K°<ﬁﬁ_ﬂ>> } '

Estimates (5.1) and (5.2) are special cases of those given in Singh
([26], p. 37 and [30]) where the author has given nonparametric method
of estimation of a mixed partial derivatives of a multivariate density.
For 0<y<2, the following theorem proves the yth mean consistency

of estimators f and f_, of f and f, respectively for each s=1,---,p.
The numbers ¢, ¢;,--- below are absolute constants.

THEOREM 5.1. For every 0<y=2,
(5.3) E|f(x)— f()I S euf(x) (R Br(x)+ (nh?)"C"(x)}
and
(5.4) E | £,(x) —£.x)} Scof () {h "V Br(x) + (nh7*) 7 C7(x)}

where, with

(5.5) Ay=max. root F!.

(5.6) (B, B)=exp (12|14~ 3} (18— Bli+hv)
and

6.7 t(B, B)=exp (hi|| B—BIN(F(B)

B and C are given by

B(x)=E[t(8, B)| B=x]
and

C(x)=E[t(8, B)| f=x] .

Remark 5.1. Notice that fi(x)B*(x) and f*x)C(x) are bounded in
x by a constant independent of #» and G. Hence if & is taken propor-

tional to m~Y®*", then Theorem 5.1 proves that sup E (f(x)—f(x))<
X
.const. 7~/ and sup E (f,(x)— f.(x))!< const. n~%r-2/@+ yniformly for
X

all n=1 and for all prior distributions.

ProOF oF THE THEOREM. We will prove (5.3). Proof of (5.4) fol-
lows analogously. Liapunov’s inequality followed by c,-inequality (Loéve
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[15], p. 155) gives
(5.8) E|f(x)— f()I < {(B £(x)— F(x))+var (%)}
<|E f(x)— f(x)f+(var (f(x)))" .
We now obtain bounds for each term on the right hand side of
(5.8). Since ,él,- ., ‘é,, are i.i.d. with marginal p.d.f. f, it follows that

E fx)= S : S <>"< Ko(zi)> Fx+h2)dz- - -dz, .

Substituting f(x+hz) by its rth order Taylor expansion about x with
Lagrange-form of the remainder at the rth term and then making use
of the orthogonality properties of K, and the fact that K, vanishes out-
side (0, 1), we get

(5.9) |E f(x)—f(x)|<const.h” sup

llzlli=p

{é S AU N P

=0 ip=0 Otj1-.- 8t;p
+

1Heeetip=r

(x+hz)} \ .

Let C, be the ith column of 3-!. Using Schwarz-inequality at the
second step below we get for some constants a,, a;,---

3+ (B18) _
0pix

ik N

> o/(B—BY(CYFBIB)|

< (V1) max [a,)( 3 16—-BIK) 7 A1)

where 2, is given by (5.5). This inequality and (4.5) applied to (5.9)
give

(6.10) |E f(x)—f(x)|<ch” S (Z_}, “zsl}lgp le+hz—ﬂ|1{f(x+h21ﬂ))dG(ﬂ) .

Also, since sup |22 '(x—p)|=Allx—pB|:;, we have

llzlli=p

(5.11) sup |lx+hz—Bllif(x+hz|B)

llzlli=p

<2/7(|lx—BIl{+hp))f(x] B) exp (hAl|x—BIl,) -
This last inequality applied to (5.10) gives
(.12) E|f(%)— f(x)|< const. f(x)B(x)

where B(x) is as given in the theorem. Now consider var ( f(x)). Since

,§1,---,f9,, are i.i.d. with marginal p.d.f. f; and for a r.v. T, var ()=
E(T?),
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63 var(Fansew) || (X Ke)fee+hada: e,
<const. (nh?)™! S | S:l‘lup f(x+hz|B)AG(B)
z|l1=p
<const. (nh?)~' f(x)C(x)

where C(x) is as given in the theorem, and the last inequality follows
by arguments used for (5.11). Proof of (5.3) is now complete from
(5.8), (5.12) and (5.13).

5.2. Proposed EB estimators for B

Lemma 4.1, followed by Equation (4.7), shows that the problem of
obtaining an a.o. estimator of B is essentially the problem of obtain-
ing a quadratic-mean consistent estimator of q(,é) where g=(q,***, q,)

and q,=f,/f. Having noted that f and f,, given by (5.1) and (5.2) are
mean square consistent estimators of f and f, respectively, we are
now able to propose our EB estimators of B for the two cases indi-
cated below.

Notation. For b>0 and for a number a, [a], will stand for —b,
a or b according as a<—b, |a|<b or a>b. For any vector #=({,---,
tp)’ [t,]c means ([tI]u R [tP]c)'

Case 1. If nothing is known about the support of the prior dis-
tribution G, then our proposed EB estimator for 8 is

(5.14) $(B)=p+Zap)
where Q’:(@“..., qp), and for S:]_,...,p’
(5.15) aB)=LLBIf (B -

Case 2. If it is known that the support of G is in a compact sub-
set [—A, A)” of E* and A is known, then our proposed EB estimator
for B is

(5.16) PP =18+Za(Pp).
where ¢'=(qy,- -+, d,) and for s=1,.--,p
(5.17) a(B)=FBIf B .

6. Asymptotic optimality of the EB estimators gf’ and ¢ and speed
of convergence

In this section we will show that the EB estimators ¢ and ¢ of
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B are asymptotically as good as the unavailable optimal estimator ¢
whatever be the G as long as it satisfies a certain moment condition.
Theorems in this section demonstrate that EB estimators a.o. with rates
arbitrarily close to O(n™') can be constructed. Using a variation of
(2.3), we will denote the risks of ¢; and ¢; by Rn(g{;, G) and R,.(¢7, G)
respectively.

THEOREM 6.1. Let h be proportional to n=Y***", If for some 0<
r<2, the prior distribution G satisfies

©.0) {18l e-raG(g) <o
then
(6.1) R,,(;i, G)—R(G) e~ rrv/er+m for every n=1

where ¢, 18 independent of n and 7.

ProOF. Fix a y in (0,2). Let 2¥ denote the max. root of . Then
Lemma 4.1 followed by (4.7) and (5.14) gives

(6.2) R,($, G)~R(G)=E|$—galt
=E 2{(B)~a(B)I:
=i S EBH BT

Temporarily, let t#0 and t' be numbers and T and 7" be random
variables. Then we prove that for every a>0,

(6.3) E ‘.tt_— [TT] ‘2§8[t’/t|21(|t’/tl>a,)+16a2‘f|t[‘f

X {E|T'—t'[+2¢ E|T—t}} .

(The inequality is true for y=2 too). To prove (6.3), notice that for
numbers b, and b,

by —[Bo)a|= (10— be| A 20)I([b | < @)+ (2 +[b, )I{b:| > @) ,
and by a use of c,-inequality (Loéve [15], p. 155) we get
|b;— [B:).f=2(2a)'77(|by—by| A 2a) I(|by| < @) + 8|, I(1b| > @)

This inequality followed by the lemma in the Appendix of Singh [28]
gives (6.3).

Thus (6.3) in conjunction with the definitions ¢,=f,/f from (4.8)
and ¢,=[ ﬁ/f]h—l from (5.14) and Theorem 5.1 gives
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(6.4) E [4.(8)— a.(A)P < cyD;+ Dyt Dy)

where, with B and C as given in Theorem 5.1,
D,=E {|¢.(8)F1(a.(8)|>h )}
D,=l"""*E {B(8)}

and Dy=n"""h~+=»» E {C(B)} .

First consider D,. Hoélder-inequality followed by Markov-inequality
gives for a 4>1,

(6.5) D,<(E|q.(8)Py (B I(a.(B)|>h ™))"
éhrr—Z(E lqs(,é) [“)‘_I(E lqs(.é) I(rr—z)/(x—rl))l—a—l .
Notice that if C, is the sth column of X!, then

oS (BIA) gf;'ﬁ) |=18-BYCIFBIBISICILIE—BILIBIB) -

Thus by (4.5), [¢.(8)|=1£(B)f(BI=IC.ll E(|8—Bl|f). Thus by Holder-
inequality for every =1

Ele.(DI<ICIE|S-BlI <oo .

Similarly it can be shown that for every 0<5<1, Elq,(,é)l”<00. Hence
from (6.5) we have

(6.6) h~PD, < oo for all = .

Now to see that h~“7"?D, is finite, notice that for an integer 5=0
and any =1, Holder inequality yields

(6.7) E {E (| — Bl exp (cs| B— Bl BY
<E[|f— B exp (cenl B—Bll)1< o .

Similarly, it can be shown that the left hand side of (6.7) for 0<9<1

too is finite. Thus from the definition of B(,é) given in Theorem 5.1,
we conclude that

(6.8) h™ 2D, < 00 whatever be n .
Finally consider D,. Notice that from (5.7)
E (C"™(8)=E [(F(B))"(E {exp (hk|A— Bl 1 8D -
Take an 5 such that y/2<y<1. Then by Hdélder inequality
(6.9) E (C"(B)<clE (f(B) "1™ .
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Since E(f(ﬁ))‘”=g (BB ; ENFB)I(|Al:<p)] is finite. According

to our hypothesis on G, there exists an >0 such that Ellﬁllf'""’_“"
<oo. Take é=p—1+e(l—7)p~'. Then by Hélder inequality

E(fA)I(IBlzp)<L-L,
where
1={{ 18110 81.> )8}
and
L= {E | B|j¢-ome-r}i.

Now by a use of the multivariate polar coordinate transformation (see
Kendall and Stuart [11], pp. 246-247) and the inequalities || ﬁ|]§§|[ ,§||§§
pllAI2 it can be shown that ;<co since £+1>p. Further

L/9-» < const. (14 (|| B[[+9747) < 0o

by our hypothesis, since (1+&)y/(1—»)=pn(1—n)"'+e. Hence we con-
clude that

(6.10) NPV, < 0o for all n=1.

Now the proof of the theorem is complete from (6.2), (6.4), (6.6),
(6.8) and (6.10).

Remark 6.1. Notice that the moment assumption (6.0) on the prior
distribution G is used in the proof of the theorem only to prove

(6.11) E(f(B))’<c  for an 5 in (0,1).

Professor Dennis Gilliland has provided the following counter-example
showing that (6.11) is not true for all G whatever be 5 in (1/2, 1).
Consider only the univariate case. It suffices to show that with e=
1—7, in (0, 1/2] there exists a G for which the integral,

I=S [S exp <—%(x—p)2dc(ﬂ)>]'dx

is not finite. Consider a prior G which puts mass ¢/k* on k=1,2,..-
oo -1

where c=<2 1/k2> . Then
1

[=¢ S [g exp ((9302— k)'[2) ]‘dw .

But [i: (exp(—-(w—k)"’/2)/k2}}‘gexp(—e(x—k)2/2)/k2‘ for all ¢ and k.
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Hence applying this inequality to the interval k—1/2=Z2x<k-+1/2, we
see that

K k+1/2
I=clim 3, {Sk_w exp (——e(x—-k)2/2)dx/k2'} :

K- k=1

But since SHi:: exp (—e(x—k)*2)dx=exp (—¢/8) for all F,

Iz exp (—¢/8) lim S 1fk=oc0  for e<1/2.
—o0 k=1

Now we will prove the asymptotic optimality of our second EB
estimator ¢ of 8.

THEOREM 6.2. Let h be proportional to n~V**?, If the support of
the prior distribution G is in some kmown compact subset [—A, A]? of

E? and ng 1s given by (5.16), then for every 0<y<2
(6.12) R, G)—R(G)Scgn~vr-vr/tr+p
where ¢, 18 independent of n and 7.

PrOOF. From (4.7) and (5.16), the ith components of ¢.(5) and

gZ'(B) can be expressed as ratios tf(,é)/ f(ﬁ) and [T,(‘é)/ f‘(ﬁ)] 4 for ¢=1,
-+, p. Since the support of G is in [—A, A, t/f is in [—A, A] for
each ¢1=1,-.-, p. Therefore, by Lemma 4.1,

(6.13) R.$, ) —R(G)=E||$(B) — ¢

<38 (|40 IO ra)
=1 fB)  fB)
Notice that ¢, is a linear combination of f,fi,---,f, and that T, of
F fue-,7,; the coefficient of f(8) in t(8) and that of f(B) in TyB)
being the ith component of ,é Therefore, (6.13) followed by the lem-

ma in the Appendix of Singh [28] and Theorem 5.1 here gives for 0<
y<2 ‘

(6.14) R,,(;iv, G)—R(G) < eyn= V@ io(E Br(/é) +E Cr/z(lg)) .

The proof of the theorem is complete since in the proof of Theorem
6.1 it is shown that E B’(B) and E C”z(,é) are finite constants for 0<y<2.

Remark 6.2. It may be recalled that the constants C, in (6.1) and
C, in (6.12) are independent of » and r. Further, the rate result in
(6.1) in uniform over the class of all priors G satisfying (6.0), and that
in (6.12) is uniform over the class of all priors whose supports are a
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subset of [—A, A]*.

For each integer r>1 we have exhibited two sets of EB estima-

tors ¢ and ¢ for the general multiple linear regression model Y=X8
+e. Theorem 6.1 gives sufficient condition on the distribution G of B

under which gfv is a.0. with rates O(n-r-2/%+P) for every choice of r
in (0,2). Theorem 6.2 shows that if G has a compact support then

estimators Jv a.0. with improved rates O(n~-Y/+?) for any y in (0, 2)
can be constructed. This paper, thus, suggests how to construct EB
estimators a.o. with rates arbitrarily close to O(n™!) in the regression
model Y=XB+e.
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