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Summary

A generalized linear rank statistic is introduced to include, as special
cases, both signed as well as unsigned linear rank statistics. For this
statistic, the rate of convergence to asymptotic normality is investigated.
It is shown that this rate is of order O(N-"*log N) if the score gen-
erating function ¢ is twice differentiable, and it is of order O(N™*?) if
the second derivative of ¢ satisfies Lipschitz’s condition of order =1/2.
The results obtained extend as well as generalize most of the earlier
results obtained in this direction.

1. Introduction

Let Xy1, Xys - - +» Xuw, N=1 be independent r.v.’s (random variables)
and let g be a real valued measurable function such that X§,=g(Xy,),
1<j<N, has a continuous c.d.f. (cumulative distribution function) Gy;.
We introduce the generalized linear rank statistic

N
(1.1) TN=JZ=1 chaNRg”(XNJ)

where {cy,: 1<j< N} is an array of regression constants; {ax,(:): 1=
j=<N} is an array of real valued functions (called scores); and Rf;, 1=
<N, is the rank of X¢, among {X§,: 1<k<N}. We assume that the
ay;(+), 1S5=<N, are generated by a known (nonconstant) function (call-
ed a score generating function) ¢s,t), 0<8<1, —co<t< oo, in either
of following two ways:

1.2) ay;t)=¢(EUy.;, 1), 1<j<N (approximate scores)
1.3) ay,(t)=E¢(Uy.; t) , 15j=< N (exact scores)

where Uy.; denotes the jth order statistic in a random sample of size
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N from the uniform distribution on (0, 1). To exclude trivialities, we
assume that ﬁ} lexs1>0.
Jj=1

When g(z)=« and ¢(s, t)=g(s), the statistic (1.1) reduces to the
simple linear rank statistic

N
(1.4) TN:E chaNRNj

where a,,’s are usual scores of constants and Ry;, 1<j=<N, is the rank
of Xy, among {Xy.: 1<k<N}. For this statistic, the asymptotic nor-
mality was obtained by Hajek [6], [7]; the rate of convergence was
investigated by Juredkova and Puri [11], Bergstrom and Puri [1] and
Huskova [9], [10]; and Does [2] studied the rate of convergence as well
as asymptotic expansions.

On the other hand, when g(x)=|x| and ¢(s, t)=4(s)sgnt, where
sgnt=1 or —1 according as t=0 or <0, the statistic (1.1) reduces to
the signed linear rank statistic

N
(1.5) TN:E chaNR;j Sgn XN]

where Rj, is the rank of | Xy,| among {|{Xy|: 1<k<N}. For this sta-
tistic, the reader is referred to Hajek [6] and Huskova [8] (for the
asymptotic normality); Puri and Wu [16] and Puri and Seoh [13] (for
the rate of convergence); and Puri and Seoh [14], [15] (for the Edge-
worth expansions).

The aim of this paper is to investigate the problem of the rate of
convergence for the statistics (1.1) which include the signed as well as
(unsigned) simple linear rank statistics. The results obtained improve
or include as special cases some of the results of Juretkova and Puri
[11], von Bahr [18], Bergstrém and Puri [1], Huskova [9], [10] and Does
[3] among others.

2. Assumptions and main theorems

We introduce some notations. For any function f, with the domain
D(f), ||f]l denotes the supremum norm of f, i.e.,

fll= sup |f(x)] or sup |f(x, v)|
xeD(S) (x,9)eD(S)

depending on the number of variables. We also use S°, for a r.v. S,
N

centered at its expectation, i.e., S°=S—ES. Noting that R},=> uw(X¥,
k=1

—X4%.), where u(x)=(14+sgnx)/2, we define r.v.’s py; and py;;, 1S5<
N, as
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o =R /(N4 =(N+1) {1+ 3 (Xt~ X
(2.1) .
s =E (pag| X)) =(N+1 {14 3} Gl X -

AsSUMPTION (A;): The score generating function ¢(s, t) is I-times
differentiable with respect to its first argument s such that its Ith par-
tial derivatives ¢{(s, t)=0'(s, t)/(0s)' satisfy Lipschitz’s condition of
order 3, 0<3<1, with respect to s, i.e.,

(2.2) _Sup |60z, )=y, V)| di|z—yf, 2,9€(0,1),
for some absolute constant 4,, and ¢(s, t), ¢°(s, t),- - -, #{(s, t) are jointly

measurable in s and ¢.

Remark 2.1. Assumption (4,) is satisfied with Lipschitz’s condition
of order 3=1/2 if there exist (l+1)th partial derivatives which are
square integrable uniformly in ¢, i.e.,

sup r |§8+(s, t)fds< oo .
t<

—wl{<o J—

Assuming the first partial derivatives, we shall approximate T by
N
(2.3) Sy=2E(Sy| X)—(N-1 ES,

where S is the first two terms of Taylor’s expansion (with respect to
its first argument) of T, with approximate scores, i.e.,

N
(2.4) SN=§1 xi{onssr Xus)+(ons—oni )b (ons5 Xnj)} -
Let @(x) denote the standard normal c.d.f. and put
@5) th=VarTy, oy=VarSy, oy=VarSy, w=65" jﬁ‘, lew -

Then our main theorems are as follows:

THEOREM 2.1. If Assumption (A,) is satisfied, then
(2.6) ||P(T3<6y")—9(:)||=CLy+2eMy max {N-'*, N~/*}log N
where C, is an absolute constant; Ly and My are defined by

Ly=4@2|8|’+ 6| es »
@.7)

N 1/2A
M, =6demax {4, Il 141} (2 ) 65"
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and 3 and 4, are given by (2.2). Moreover,
(2.8) ]TN—&Nléa'NMN max {N—l/z, N_,y/z} .

THEOREM 2.2. If the first partial derivative ¢ of the score gen-
erating function ¢ exists and is bounded on (0, 1)X(—o0, ), then

(2.9) IP(Sysdn)—2(-)||=0(ws) ,
(2.10) lox—on|=0(0yws) -
THEOREM 2.3. If Assumption (A;) 18 satisfied, then
(2.11) IP(Tyson)—2(-)|=0(max {ws, w7'}) ,
(2.12) |rw—&y]|=0(Gxws) .
Remark 2.2. Theorem 2.1 is the improvement, as well as the gen-
eralization, of Theorem 1.2 of Bergstrém and Puri [1]. The latter,

dealing with only approximate scores, gives the bound of order O(IN-*/
log N) under stronger condition that m/a}ISIcNJI=O(N -1%) and requires
1sjs

bounded second derivatives, whereas we, dealing with both exact scores
and approximate scores, derive the bound under much weaker assump-

N
tion, namely >)|cy,!=O(N-'"), and require only the first derivatives
i=1

satisfying Lipschitz’s condition of order d=1.

Remark 2.3. Theorem 2.3 is the generalization of Huskova [9], [10]
and also the improvement of Huskova [10]. But, in Huskova [10], Theo-
rem B and proofs of Lemma 2, Lemma 4 and Lemma 6 are incorrect.

From now on, for the ease of convenience, we shall suppress the
subscript N in ¢y;, ay;, R%;, ete., whenever it causes no confusion. For
notational convenience we also use ¢,(x, ¥), instead of ¢{’(x, y), for the
first partial derivatives.

3. Preliminaries

In this section we prove several lemmas which are needed in the

proofs of main theorems.
In view of (2.1) and (2.4) we can write

(3.1 ps—ps=(N+1)" ,§, H. ,
N N
(3.2 Sw=3 ¢, 8o X)+(N+D 3 Huloss X

where r.v.’s H,, 1<j, k=N, are defined by
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(3.3) Hy=u(X{—X¢)—G(X]) .

For each j, conditionally given X7, p,—p,, is the sum of independ-
ent r.v.’s with zero means. Thus we may apply Lemma A.1 (in the
appendix) to obtain for any integer r=1 and 1<j=<N, that

(3.4) E (o;—ps)" S (4ey'r"N-" .

We now estimate E(S,‘;—gfv)" where r is an integer =1. It fol-
lows by elementary computations that for 1<I<N,

(3.5) E (Sy| X)) =c9(ous X)+ESy—c. E¢(py, X3)
+(N+1)™ é}l ¢; E {(Hugu(os) X)) | X3} -

From (8.5), (2.3) and (3.2), we obtain

(8.6) S5—85=(N+1) é éj ¢V
where
3.7 ij'—‘ sz¢1(Pu’ Xj) -E {ij¢1(Pus X/) I Xk} .

Since E {V,;| X;} =E {V,| Xi} =0 for j+k, an application ofjLemma A.2
(in the appendix) yields that for any positive integer »

(3.8) B (S3— 85 (@ellail)( 3 ) @rN "

Remark 3.1. It may be noted that the results (3.4) and (3.8) are
generalizations, as well as improvements, of Lemma 2.1 and Lemma
2.2 of Bergstrém and Puri [1].

We now define r.v.’s I, for 0<k=l as

N — k
(3.9) L=3} 0, 4, X))

so that Sy=IL+1I. Also by Taylor’s expansion for any «, y and ¢,
o, =33 Y gy, )+ B2 g0+ (1w, 0
k= ! ¢
where 0<21<1 depends on z, y and t. Thus, under Assumption (4,

‘ _ 1 (x_y)k . _4— _ s
(3.10) oz, t) x%_—k! Py, )| = l!l fe—yl*.

LEMMA 3.1. Let Ty denote the statistic (1.1) with exact scores (given
by (1.3)) to distinguish it from the statistic Ty with approximate scores
and let r>0 be an integer. Then under Assumption (A;)



56 MADAN L. PURI AND MUNSUP SEOH
~ N r
(3.11) E(fo— T < (24,)2'( by c;) N
=1
and under Assumption (4,), 1=2,
(8.12) E(F5— T3 slePl (2 ) N

PrOOF. Put d,(t)=E¢(Uy.;»t), 1SS N. Then
(8.13) E(Te—Tor<2" E(Ty— Ty
N r
<2(361) B [ 3 [amx)—o( 22
j=1

N+1 >H :

Under Assumption (4,), (8.10) ensures that for 1<j<N and any ¢

143
< AIN—(1+J)/2 .

)‘SAIE|UN, J

@19 |a0-¢(5k

(8.11) follows from (3.13) and (3.14).
On the other hand, under Assumption (A4;), [=2, there are second
partial derivatives, bounded, such that

|10 e (0, L)< 1801

'a’(t) ¢< N+1’

This inequality and (3.13) ensure (3.12) and the proof is complete.
LEMMA 3.2. Let Ty be the statistic (1.1) with approximate scores

(given by (1.2)) and suppose that Assumption (A,), =1, is satisfied.
Then for any integer r>0,

E (Tﬁ——’g Ik> é( 2;") < ) (4e)"H+O(p(1 4 1))ra+ N -ra+i-»

where I, 1=k, are defined by (3.9).

Proor. It follows from (8.10) and Hélder’s inequality that
1 2r N 4 — k 2r
B(T3-3 I) <27 B (5 /o0, X)—33 Lol g0, X))
N
§221<12=1 cg) ( l' > Nr—lz E[pr“p l!r(lH)

which, together with (3.4), completes the proof.

Define for any positive integer »

(3.15) 0, = j}’ﬁ lexr
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where ¢¥=é3'c;,, 1<j<N. Also consider the r.v.’s 8§, 1=<j<N, de-
fined as

A

(3.16) SF¥P=c¥{#(pss» X;)—E #(0;;, X))}
+(N+1)™ é ¢ B {[u(X¢ — X1)— G X)p(orer Xi) | X} -

Then, in view of (2.3) and (3.5), we have
3.17) s =31 8¢ .
It is easy to check that for 1<j<N
ESP=0, EEVr=1,
Jj=1
(3.18) E (SPy=2{(cH |+ N-"w,ll % »
E|SPP<4{2(ckPllgl + N'ws]li]l'} -
As 65'82 is the sum of independent r.v.’s with zero means and satis-

fying jﬁ‘,EIS&DPgLN, (Ly defined by (2.7)), Lemma V.2.1 and Theorem
=]
V.2.3 of Petrov [12] ensure

LEMMA 3.3. For [t|S(4Ly)™

(3.19) |E exp (it67'S3)—exp (—t4/2)|<16Ly|tP exp (—t¥/3) .
Moreover, there is an absolute constant C, such that
(3.20) IP@5S5=-)—0(-)|SCLy .

In the rest of this section, we assume that
N
(3.21) wa=§lcflsél »  max{llgll, llgll, NI} =1/6 .

Thus we have

(3.22) E@Pr=(+N"w)18, E|SPI<(2lesP+N"w;)/54.
Since 1=% E(S‘gﬁ)’gg-‘mz, Hoélder’s inequality yields

(3.23) N-2<27 1w, .

The inequality (8.23) plays an important role in the following proofs.
Let yu,(t) denote the characteristic function of S, ie.,

(3.24) p,(t)=E exp (itS¢) .
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Then it follows from Petrov ([12], p. 110) that
2 A A
|n)Isexp {— S E@py+21tr E1SPH
which implies that for |t|< ;!

328) T lm@lsexp{-L+5 5 B@Pr+ 21 3 BISPH

<exp (—4—t+ #J max |c} |>
9 1SfSN
where J is a subset of {1,2,..-, N} and #J is its cardinality.
Now we shall estimate E exp (it65'Sy) and E exp (it65(Sg+I°)). To
this end we need the following two lemmas:
Recalling that the r.v.’s H,, 1<j, k<N are given by (3.3), we
define

Li=(2(N+1))™ %}k)g ¢;H} (0,5, X))
Ly=(2(N+1))™ Z(lj EXE); ¢;HH (044, X))

where (4, k)# and (J, k,l)# mean that summations are taken for dis-
tinct indices j, £ and ! over the set {1,2,---, N}. Then it follows
from (3.1), (3.9) and (3.26) that

(3.27) F=L+I;

(3.26)

LEMMA 3.4. Suppose the condition (3.21) is satisfied and let I, and
I, be defined by (3.26). Then for all N=38 we have

(3.28) E (673} =380},
(3.29) EGiI)r < (% m3>2’ :

where w; 18 given by (3.15) and r=0 is an integer.

PROOF. Set ﬁjszfk¢E2)(ijr X,)—E {H}i¢™(p;5, X))}, 1=7, k=N, and
then direct expansion yields that

(8.30) 4(N+1)‘E (517'53)’=§3k§ E {(¢})H}+crcrH, H, )}
+3 3 S E{(CH Hpl ittt Bl

+c¥ef ﬁjkf{u‘i‘cj (1 ﬁjkfItk}
+3 E 2 E E {c.;kczkijH-lm}

[€A N

Since (E H%)2<||¢||<1/6, 1<j, k<N, and expectations in the last
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sum of (3.30) vanish, we have

E (67 L)' < (144N*) " {Nw,+ i+ Nw,+3Nowi} <3 ¥w}
where the second inequality follows by (3.23) and facts
(3.31) 0 SN"2w®, 0, NV}

To prove (3.29), we set a5’ ,°,=(2(N+1))"‘j§‘,_lc;"ﬁ,, where

I;Ifz(N +1)7 gj % H; H;$>(p;; X;) .
Py BTyt

Then, for any fixed j, 1=j< N, conditionally given X,, summands of
I?, satisfy the assumptions of Lemma A.2. Thus an application of this

lemma yields that for 1<j5<N,
E B <E[E (H}| X,)1< (de|| 2|l (2r)>

which, together with (3.23), (3.31) and Holder’s inequality, ensures

(3.29) to complete the proof.
Finally we need the following lemma, the proof of which is given

in the appendix.

LEMMA 3.5. Suppose the condition (3.21) is satisfied and let Sy, Sy
and I, be defined by (2.3), (2.4) and (3.26) respectively. Then there is
an absolute constant K such that for |{|<w;!, any N=3 and a positive
integer r where r< NJ3,

(3.82)  |E exp (its5'S9) {65 (Ss—S9)}"|
2 2
<Ko L+t +) exp (25 +E8 max [ef])

1SjsSN
(3.33)  |Eexp(its5'S9) (65 (Ss—Ss+ I}

SKr'roy(1+|t|+t%)" exp (—-E—i-tz—r max lc*l) .
- ’ 9 6 1558 °

Furthermore, if o;<e¢™* and 2r=<log w;', then

(3.34) |E exp (it65S%) {6:1(Sy— S9)} 7|
S K'r¥wy(1+|t|+1)" exp (—t}/3) ,
(3.35) |E exp (ito5'S5) {6:(Sy— S5+ 1)}

SKr oy(14|t|+ )" exp (—t/4) .
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4. Proofs of main theorems
We now prove the main theorems stated in the Section 2.

PRrROOF OF THEOREM 2.1. By standard arguments, we have for any
e>0

w P(T;g;mw)gp(u?;_s_ay(w+e))+P(| Tzs—s:;slzaue) ,
P(T3<6y%)ZP (Sy=éy(x—e))—P (T5—S3lZaxe) -
Recalling the well known inequalities
P(x+e)=0()+e, OPz—e)20(v)—¢,

we obtain, using (3.20), (4.1) and Chebychev’s inequality, that for any
e>0 and positive integer r,

(4.2) P (TS<6y-)—O()|SCLy+e+(6ye) ™ E(T5—S3)¥

both for the approximate as well as exact scores.

To complete the proof it remains to estimate the last quantity in
(4.2). For the statistic Ty with approximate scores, Lemma 3.2 en-
sures that for any positive integer r,

(4.3) E (Tﬁ—SE)“g(MQ”(é c;)'(@)zr(zr)sz-" :

For exact scores, it follows from (3.11), (4.3) and Minkowski’s inequality
that for any positive integer 7,

(4.4) E (Tg—So) __s_(lGAle)”(j‘ﬁ cﬁ)’(Zr)ﬁfN-"
=1
and this inequality holds for approximate scores as well. Now set
Bp=|3%(4,+ Ii)( ¢3) 7 max (N N
=1

It then follows from (3.8) and (4.4) that for any positive integer r,

(4.5) E(T5—S3)"<B§.
Substitution of (4.5) into (4.2) yields
(4.6) IP(T5<6n)—0(-)|SCiLliy+e+(ore) "B .

Next we choose & such that e=(aye) B, i.e.,

2r/Qr+1)

N 12
4.7 e= [326(41-}— ||¢1“)(2 c?} 5='r max (N2, N—I/Z}]
j=1
<[Myr max { N2, N2} Jpr/er+b
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where M, is given by (2.7). In view of (3.18) we have
A N
(4.8) 1=Var (65'Sy) =2(||¢|[*+ Il ¢:[1*) pY (c})=My

and hence for any positive integer r,

(4.9) 1S MR+ <My .

Taking r=[log N], where [-] denotes the integer part, we have
(4.10) (max {N~'2, N-¥2} )i/t <e max {N~'2, N~} .

Finally (2.6) follows by combining (4.6) through (4.10), and (2.8)
follows by (4.5). The proof of Theorem 2.1 is complete.

To prove Theorems 2.2 and 2.3, we shall invoke Esseen’s smooth-
ing lemma (see e.g. Feller [5], p. 538), which implies that for all >0

@1)  PEs)-0C)sI | jtrne—e a0

where S is a r.v. such that ES=0 and »(t)=E exp (itS).
Note that both Theorems 2.2 and 2.8 are trivial if w;=e™®. Thus
we consider the case when

(4.12) w;<e
Furthermore, we may, without loss of generality, assume that

(4.13) max {||gll, lléll, llg11} <1/6 .
PrROOF OF THEOREM 2.2. It follows by (3.19) and (4.11) that, in
order to prove (2.9), it suffices to show that for some ¢, 0<¢,<1,

(4.14) S _ItI|E exp (ita5S5) —E exp (ito555)|dt =0(w) -

[t]Seqog

We now estimate the integral (4.14). For any positive integer £,
Taylor’s expansion yields

(4.15) |t|!|E exp (it57'S3)—E exp (it67'S3)|
2k-1 r—1 A A
=5 W B 6585 — 891 exp itos' 3
1t & 6a1(se— Son
+o( T B GRS —89) ) .

By taking k=1 and using (3.8), (3.31) and (3.34), we have for any ¢,>0

(4.16) |t|*|E exp (it67'S3)—E exp (it67'53)|=0(w;) .

Smsa‘-;‘/’
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We next take 2k=[log w;']. Then (3.34) insures that for any &, 0<e,
=1,

(4.17) S = ‘t" |E (654(S5—S9))" exp (it67'55)|d¢

oozt 251t Seg05t r—1
k—l Kr
< exp( e“"a )(215)"‘
T

S I e ey dt
= ! s

<o, exp( °*“" )(Zkrk 45 =0(ay) .

It follows from (3.8), (3.23) and (3.31) that
S Itl?.k-l
Itlsegwz?  2h!

< (8e "¢l“)2k(2k)2kw3 (e w—l)2k
(2k)!
= (2ee, )™ (2R (201 = (26%,)™

(4.18) E (65(S5— 83))*dt

where the last inequality follows by Stirling’s formula (see, e.g. Feller
[4]). By taking e,=1/(2¢") and combining (4.15), (4.17) and (4.18), we
obtain that

(4.19) S It]"!|E exp (it63:S3) — E exp (it67'52)|dt=0(w;)

603135 |t 5005
which, together with (4.16), ensures (4.14). Clearly (2.10) follows from
(3.8), (3.23) and (3.31). The proof follows.

PrOOF OF THEOREM 2.3. By standard arguments, to prove (2.11),
it suffices to show that

(4.20) P(T3—85— I+ L3| 2 0xws) =0(max {w,, 03’})
and that
(4.21) IP (S¥+I3<ay-)—9(-)||=0(max {w;, i'}) .

Applying Lemma 3.2 with =1 and [=2 and then using (3.23) and
(3.31), we obtain that

E (Uz_vl( TN Izo))z O(w2+26)

which, together with (8.28) and Chebychev’s inequality, ensures (4.20).
Similarly, like the proof of Theorem 2.2, (4.21) follows from (3.8), (3.29)
and (8.35). Since Assumption (4,) is satisfied with 8=1 under Assump-
tion (4,), (2.8), (3.23) and (3.31) ensure (2.12). The proof is complete.
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5. Appendix

ProOF OF LEMMA 3.5. Since log w;'s2(max |cf|) when =1,
1545N

(8.34) and (8.35) are immediate consequences of (3.32) and (3.33) re-
spectively. Also the proof of (8.32) is very similar to that of (3.33).
Thus we omit it and prove only (3.33).

Recalling that H,, and V,,, 1<j, k<N, are given by (3.3) and (3.7)
respectively, we define r.v.’s for 1=, %,ISN

(A1) Vim=et ([ NEL Y, U HH, 201 X} -
Then it follows from (3.6) and (3.26) that

(A.2) 678585+ I) =(N+1)* 3 5 1 Vi -
Note that for any distinet indices 7, k and 1

(A.3) E(V,ul| X))=E (V;u| X)=E (V,u| X,)=0.

In view of (3.16) and (3.17), &;‘S‘; is a sum of independent r.v.’s.
This fact and (A.2) ensure that

(A.4) E {exp (its5'S9)o7'(Ss— S5+ I3)}
=N+ SIS ST m() E (Vi 0xp GUSP+SP+50))

where p,(t) is the characteristic function of the r.v. S, defined by
(8.24). It follows by Lemma XV.4.1 of Feller [5] and (A.3) that

(A.5) E {V,.; exp (it(SP+S®+S59))})
=O(|c¥{(c})*+(c¥) +(cX)*+ N'wy)) .

Hence for r=1 (3.33) follows from (3.25), (A.4) and (A.5).

We next consider the expansion of {&;‘(S;—ﬁ,%—i—[,‘;)}'. Expanding
it directly, by the method leading to (3.30), we find that

(A-6) (6585~ S+ B =(N+1)™(S 53 53 V)"
3r
=N+ 3 S
where ¢§7 is of the form

(A.7) I REDIDIEEDY f}'aaalvaaa,' : 'er

Updgreensdpd*
and each “9” is one of indices j,, 72+ +-,J,. Thus we have

(A.8) |E exp(its5'85) (674(Se—Ss+ IV
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=|@wv+y 5 (I, s®)SE fat 1T exp ity |

2 2
o 4+ )

X 3} 51 N-¥
b=3 v

E {ai0 I exp (itS¢2)} |
k=1

in view of (3.25).
Let @, 3<b<8r, be the cardinality of the collection of all dif-

ferent terms ¢§> and put .Q,:azr @5, which is the total number of
b=3

terms ¢f” in the expansion (A.6). Then clearly 2,=1. To estimate
2., we first note the recursive relation

2,22, {(@—a+ 1)+t +a+1}£24°2,

where a=3(r—1). Thus there is a constant K, (independent of N and
r) such that for any positive integer 7,

(A.9) 2, =64 ((r—D)' s Kir"

where the second inequality follows by Stirling’s formula (see e.g.
Feller [4]).

To complete the proof, it remains to show that for any positive
integer r and b, 3<b<3r,

(A.10) N¥|E ¢ 1] exp (it89%)| < K7 woy(1+[t|+8)
k=1

where K, is an absolute constant. We shall prove this by induction
on r. Note that (A.10) holds for =1 in view of (A.5). We now sup-
pose that (A.10) holds for r<m—1 and let r=m=2.
If b<2m=2r, then (A.10) is trivial. Thus we consider only terms
(m_ b=2m+1. Pick any s, 1<s<m, and let b=2m+s. Let y denote
the number of indices j’s (in (A.7)) which appear at least twice as a
subscript of one of V-terms and then we have that 3m>2y+2m+s—r,
i.e.

(A.11) 0<y<m—s.

Hence at least m+2s indices among 7, 7s, - -+, Jamss aPpear exactly once.

If one of V-terms has three subscripts appeared only once, then the
expectation in (A.10) is split into expectations of two groups to ensure
(A.10) immediately by the induction hypothesis. This is the case when
s>mf2 or r<s.

Next we consider the remaining case when
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(A.12) 1<s=m/2, sSr=m-—s

and none of V-terms in (A.7) satisfy that every one of its subscripts
appears only once. Since at least m+2s indices among 7;, Je -« *s Jom+s
appear exactly once, we must have at least 23 V-terms, of which ex-
actly two subscripts appear only once. Thus, by rearranging the order

b A
of summations, we can write the typical form of ¢{ T[ exp (itS§¥») as
k=1

follows :
X Vo, Varg,Vey ity Vietoo (A)
(A.14) X Viom,* * * Vion Vim0 * * Vingaa (B)
X Vg, Viaa, (C)

x T exp (it(S¢+$5)) 1T exp (it85~) TT exp (it54)

where summations are taken over distinct indices; indices k’s, I’s and
m’s appear only once; j’s appear at least twice among places marked
by “0”; a, B, v, 8, ¢ and 7 are nonnegative integers such that

1<s=e/25m/2 s<r=m-—s,
(A.15) 0=d<a=m, 0=ezp=m,
2a+B+7r=2m+s, atpB+r=m.

We next consider the conditional expectation of (A.14) given r.v.’s
X, X0 Xy To this end, applying Lemma XV.4.1 of Feller [5]
and then taking conditional expectations, we obtain that for distinct
indices 7, k and [

PIP2 E (VméulX,)é(Ek]l)g [t]{lci¥|+]ct |+ N o} <3[¢ N0y,
(A.16) 3 3B (V| X)S 3 S tllek {lof |+lek 14+ N1} S3JeIN*ai"

pY )Z:x E (Vkljékl | Xj)égltl N4/3w-§/a

&, D

where ¢, =exp (it(SS&“’—i— .§§v‘))).

We finally split the proof into two cases when a=m or a<m. We
first prove (A.10) when a=m and then when a<m.

When a=m, we have only group (A) in (A.14). If s=2, then the
expectation of (A.14) is split into two groups and the induction hypoth-
esis ensures (A.10) immediately. If s=1 and =0, then it follows by
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substitution of (A.16) into (A.14) that the expectation of (A.14) is bound-
ed by

N-"3|t| NV 0¥ )" N (8]t w; .
If s=1 and >0 then the expectation is bounded by
N 3|t| N wi?)mw, < (8|t ws .

This completes the proof for the case when a=m.

We now suppose that a<m. If some of indices j’s appear only in
group (A) of (A.14), then we can again split the expectation into two
groups. Thus it remains to show (A.10) when all indices j’s in group
(A) appear again in group (B) or (C). Note that g+7 is the total num-
ber of indices m’s and j’s which appear in group (B) or (C) and that
the number of indices m’s and j’s, which appear as one of the second

or the third subscripts of V-terms in group (B) or (C), is at most
2(n+pB). Moreover,
B+r—2(n+p=r—2(m—a—p)—pB=s

in view of (A.15). Thus at least s indices among my, my,- -+, My, Jy, Jor

.-+, 7, must appear as the first subscript of one of V-terms in group
(B) or (C). Utilizing this fact and substituting (A.16) into (A.14), we
find that the expectation of (A.14) is bounded by

N—2m(3 I tl N5/3w§/3)6(3 ] t | N4/3w§/3)a—dwiN2m+s—(2a+8)
é (3 I t I)aN—2a+d/3+4a/3+2s/3w§a/3—6/3+3/3

é (3(1 + I tl))mN-(a-Zs)/(iwgrxH)/s é (3(1 _H t D)'mw3

because 2s<a and 3<a. This completes the proof of the case when
a<m. The proof follows.

Let {Y,}7-; be a sequence of independent r.v.’s and {d,};-, a sequence
of real numbers. Then we have the following lemmas.

LEMMA A.l. Let Z;, j=1, be r.v.’s of the form Z,=g,Y,, Y, ---,
Y,) such that for j=2

(A.17) E(Zjly'lr 1’21 Tty Yj—l)=0 .

If the sequence {d;} is non-increasing in absolute values, then for any
positive integers r and 1

(A.18) E(31d,2,) sty (3 d) rm

where m{”=max E Z}".
1sjst
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LEMMA A.2. Let 17',k be r.v.’s of the form 17',,,=g,k(Y,, YD), 1=7,
k<oo, such that for any j and k, j#k,

(A.19) E(V,|Y,)=E(V,|Y:)=0.
Then for any positive integers I and r
(A.20) E Vf’§(4e)2'< jﬁ_l d;)'(zr)”l—'mgﬂ
where
V. % j:l kij d;V, and m%”:lrsr}i}scl EVY .

Proor oF LEMMA A.l. It follows by Hélder’s inequality that
l 2r l r l
(o) (o) (g ) s(ga o
j=1 j=1 j=1

which insures (A.18) when r=l.
For r<l, we prove (A.18) by induction on ! with » fixed. Define
V,:Sl_‘. d,Z, and suppose that (A.18) is true for l=n=r. Then it fol-
j=1

lows by (A.17) and Holder’s inequality that

(A.21) E V:.LSE VZr_l_ 2 < )(E V2r)(27—v)/2r E (d;glzzrl)n/zr

= (46)'<j§_‘,=1 d?) r [1 + 4:: ;:4;, <1 + (4@1‘%;1;;) - >2M] me, .

Since r<n and |d;|'s are decreasing, we have
n -1/2
1+|d'n+1l<4e7' ) d;) ! §1+(27‘)_1§el/(2’)
j=1

which, together with (A.21), ensures (A.18) for [=n+1 to complete the
proof.

ProOOF OF LEMMA A.2. Since the assumption and the conclusion of
this lemma are invariant under simultaneous permutation of d,’s and
Y,’s, we may, without loss of generality, assume that |d,|=|d,|=---=
|y

Define Z,=2Z,=0 and

j-1 ~ Jj-1
ijkg; ij ’ Zj=162=1 dew ’ 2§.7§l

so that V,= %<Z‘, d,Z,+2 Z,) It follows by (A.19) that collections
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{Z},-, and {Z,}\_, satisfy the assumptions of Lemma A.l and hence
A 1d ~ \ 27
(A.22) EVfrgl-zfzzr-l{E <§3 d,z,)2 +E (é z,) }
j=1 Jj=1

él—zrzzr-l(‘ie)r,rr {(é d§>' max E ijr +l"max E Z}’} .
j=1

1s7st 1sjst

Because of (A.19) and the definition of V,,’s, it follows that for each

4, conditionally given Y;, Z, and Z, are sums of independent r.v.’s
with zero means. Thus we may again apply Lemma A.l1 to obtain
that for 1<j5<1

EZ;<(4e)(s—1)r" max EV}Y
1sks
kxj
(A.23) L
E Z}rg(@)r(z d;)  max E V7 .
k=1 1%’;?1

The proof follows by combining (A.22) and (A.23).
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