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Summary

The exact probability density function is given for linear combina-
tions of k=Fk(n) order statistics selected from whole order statistics
based on random sample of size » drawn from a uniform distribution.
Normal approximation to the linear combinations is made with the aid
of Berry-Esseen’s theorem. Necessary and sufficient conditions of the
asymptotic normality for the statistic are obtained, too. An exact
distribution and its normal approximation of linear combination of mu-
tually independent gamma variables with integer valued parameters
are also given as associated consequences.

1. Introduction

Distributions of linearly combined random variables have been often
used to carry out statistical inference in various problems. In such
distributions, those of the linear combinations of order statistics have
taken important parts and many works have appeared from the aspect
of limiting or asymptotic theory. (e.g. Chernoff, Gastwirth and Johns
[2], Eiker and Puri [5], Hecker [6], Sholack [9], Stigler [10], van Zwet
[12], etc.) On the other hand, the exact distributions of linear combi-
nations of whole order statistics have not been investigated thoroughly
without a few exceptions (e.g. Dempster and Kleyle [3]), still less those
of selected order statistics. So far as the present author knows, only
Weisberg [13] considered the exaect cumulative distribution function of
the linear combinations of selected order statistics from a uniform dis-
tribution, but his main interest was to give an algorithm for recur-
sive computation of the distribution function. Thus, to find an closed
form of the exact distribution has been unsettled even in such simple
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case of uniform distribution. Indeed, the case is not only theoretically
interesting in itself, but also significant to the effect that we can ob-
tain an exact distribution of linear combinations of jointly Dirichlet
distributed random variables whose application will be useful in various
statistical analysis. The purpose of this article is two fold. One is to
derive the exact pdf. of the linear combinations of selected order sta-
tistics from a uniform distribution. Another is to investigate normal
approximations to the exact distribution.

Let U;<U,<---<U, be order statistics based on a random sample
of size n from the uniform distribution U(0,1). Suppose that among
the above whole order statistics we select k order statistics U, <U,,<
- <U,, where k=k(n), 1<k<n and 0<n<m<-:-<m<n+1. Let
us denote the linear combination of this selected order statistics by

(1.1) Lﬂ:é}at U, ,

'3
where coefficients a,=a,(n) (I=1,---, k) are real constants with ,Z a;#0
for each k. Further, let

k
(1'2) bjzbj(n)=l=2ja'l ’ (j=1,"',k) ’
(1.3) d,=d,m)=n,—n,..—1, (§=1,-+-,k+1),
(1.4) V,=U,~U, ., (G=1---,k+1),

where in the above we have put the conventions 7,=0, n,,=n+1,

U,,=0, U,, =1. Then, U,=V;+V,oit - +V and we can rewrite
(1.1) as
(1.5) L=3b,V,,

=1

from which our problem is reduced to study the distributions of linear
combinations of the Dirichlet random variables (Vj,---, V;) with the pdf.

(1.6) ﬂww=—£@i2—ﬁw”@‘éwrﬂ’

k+1

JIRACZS A

k
at any point in the simplex {’v(k,z(vl,- s, V)| 0,20, 5=1,--, k, jE ”J§1I
=1

in the k-dimensional real space R, and zero outside.

In the next section we prepare some necessary lemmas for later anal-
ysis. The exact pdf. of the statistic L, is derived in Section 3, where
the exact pdf. of the linear combination of unordered mutually inde-
pendent gamma random variables with integer-valued parameters is
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given, too. In Section 4 normal approximations are discussed to the
above distributions. Some necessary and sufficient conditions of the
asymptotic normality for L, and related statistics are obtained in the
final part of the section.

2. Preliminary lemmas

The following lemma enables us to represent the statistic L, by a
ratio of linear combinations of mutually independent unordered gamma

variates. Let {Y,} (j=1,---,k+1) be such gamma variables whose
pdf.’s are given by
(2.1) 9,(y)=yjie|I'(d,+1) for y,>0,

zero otherwise, j=1,-.-,k+1 and put S=Y,+Y;+---+Y,;. Then, we
have

LEMMA 2.1. The random vectors (Vy, Vi, -+, Vi) and (Y3/S, Y3/S,
Y..1/S) are equidistributed. Further, S and (Y3/S, Yy/S,: -+, Y3/S)
are independently distributed according to the gamma distribution with
mean n+1 and the Dirichlet distribution with the pdf. (1.6), resectively.

Remark 2.1. In case of all d,=0, j=1,---, k+1, this lemma is re-
duced to the wellknown result on uniform spacings (see e.g. Section 4
in Pyke [8]).

PROOF. The pdf. of Yu.n=(Y¥, Y3+, Yis1) is expressed as
k+1 k+1
(2.2) Fr(Warn)= {;ﬂ; yjdj/F(dl'i'l)} "€xp <_j2=1 y’)

at any point in {y<k+u=(y1,---,ym)lnyO J=1,--+,k+1} in R,,, and
zero outside. Let Z,=Y,/S (j=1,--,k), ,,H-S and correspondingly
consider the transformation

zjzyj/(y1+"'+yk+1)r (J=1,--+, k),
Zep1 =Yt Y s

then, since the Jacobian of the transformation J((¥,--*, ¥s1)— (1)
Zi+1)) is equal to zf,,, the joint pdf. of Zu.,,=(Z;, Zy, -+, Zyyy) is

(2.3) fz(za+n)
t[ F(d,+1) -[’j (1—%1 z!>dj+l} <1—]Zk]=1 z,)dk“(zk'ﬂe“kﬂ)

= for 2,20, j=1,---,k+1 and i‘,zjgl
j=1

0 otherwise .
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Thus, it is easily seen that the variables Z,,, and Z,,=(Z,,---, Z;) are
independently distributed according to respective marginal pdf.’s

2.4) g(zk+1)=7,m—1+ﬁz:ﬂe-zk+x for 2,,,>0,

zero otherwise, and

(2.5) Filza)=—L®ED T 11 25 (1- 5 z,)““‘,

k+1 j=1

T[ r@,+1’
k
at any point in {z(,,)=(z1,---,zk)]z,20, j=1,---, k, Ezjgl} in R, and
j=1
zero outside, which coincides with (1.6).
k
Incidentally, since 1/'1/S—f-Y2/S+---+Y,,+1/S=1=<}\)i.‘1 V,), we have
i=1
consequently proved the lemma.
Next lemma is an exact representation of partial fraction expan-
sions in multiplicity cases, which will be very useful to many general
problems required to use the expansions. Different from usual expres-

sions (see, e.g. Doetsch [4]) coefficients of our expansion do not contain
derivatives of the underlying function.

LEMMA 2.2. Let 8 be a complex variable and G(s) be a rational
function of s:

(2.6) G(8)=[(s+2)(s+ )2+ - (s 2] 7",

where v; (j=1,---, k) denote the multiplicity of the corresponding zeros
of G7Xs), —24, (=1,---, k), which are assumed to be finite and distinct
constants if k=2. We have then the following expansion :

@) G(s)=2] 3} Cunls+2)™,

with coefficients C,, =1 and C,,=0 (1=m=y,—1) Jor k=1, and

k n-m —1y Y
(28) Clm -[:;l—————-——-()~ —-Zt)r qzo ¥ 2 qj'J‘U {;721( ) (1 —lz)-’} ’

(k22),

where 3* stands for the sum over all mon-negative integers {qu, ¢,-- -,

G.,-m} such that qu+q+- -+ +4¢,-n=q and 0¢+1¢:1+2g:+ - - - +(¥:—M)q,,-m
=y,—m, with ;=0 for yv,—m=0.

PROOF. For k=1 the result is clear. For k=2, consider
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(29) Gi(s)=(s+2)Gle)=1] -+ 2)r=exp [h(s)]
with
(2.10) hl(s)=—2:}1v,ln (4+2), (=1, k; l£7),

rxl
where In(-) denotes the principal branch of the natural logarithmic
function for complex variables. Applying limiting and differential tech-

niques repeatedly to G(s) it is easily seen that the coefficients of (2.7)
can be firstly represented as

(2.11) Con=G¢"™(—2))[(v,—m)! .

In respect to derivatives appeared in (2.11), making use of the Bell
polynomials (see, e.g. Andrews [1]) we have

e ay=S] [k ]

2.12)  Gfv™(-2) Z[ dhf Inenc-a
3 (l’l_m)! _l_dhl(_'zl)]ql...
X qll...q"_,,g[l! ds

[ 1 d"l_mhl(—ll)]qvl—m
Gi—m)!  dsr™ ’

where the second summation is extended over all non-negative integers
(@ @15+ * 5 @,,-m) such that ¢ +g¢,+---+q,_n=q and 0g+1q;+2¢+---+
(vi—m)q,,-n=v,—m. Incidentally, from (2.9) we get for all ¢

(2.13) I: dh? :|nl=hl(“ll)

and from (2.10)

=Gl(—ll)':]j; (A, —2)™r, (l=1,---,k)

a'h(s) _ 3 (1), (=D ST
(2.14) T EL( 1)y, 1)y’ G=1-,v—m).

Therefore, combining (2.11)-(2.14) with (2.10), we get the expression (2.8).

The following two complex integral formulas are wellknown and

they will be respectively used in caleculating a characteristic function
and its inversion.

LEMMA 2.3. (i) For a,c>0 and i=+/—1,

W S & (1) —_
(2.15) So cervmgdp= O, c0<b< oo,

(i) For a,c>0 and i=+-1,
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2r  b!
0 x — b>0 ’
(2.16) § _ € =] T() ¢
-» (a+1x)°
0, b<0.

3. The exact distribution of the statistic L,

In this section the exact pdf. of L, will be derived by a charac-
teristic function technique. In view of Lemma 2.1 the statistic L, is
equidistributed to

3.1) T,= jﬁ b,Y,/jZ‘: Y,=W/S,

where Y,’s (j=1,--:, k+1) are mutually independent gamma random
variables with the pdf. given by (2.1). So, instead of L, depending on
“order ”, it is easy for us to consider the statistic 7, being free of the
dependency.

The characteristic function of the joint random variable (W, S) is

.y - © " k b ” k+1 k+1 yfr
ow. s(ts, 2)_50 .. 'So exp (’b 1% Y+ 27=21 ?/r) ,'D; _—_]"(d,-{-l)

k+1

X exp <—§1 Z/r>d’!/1’ dYrs1

CE(T L o
T So 7@ 1) ¥ P = {0 —ih) —biti}yldy,

o 1 d )
X —_—  Y%+1e —(1—1it d ’
SO r(dk+1+1) ylc+]_:l Xp[ ( (1 2)yk+l] yk+1
(P=—1).

Making use of the formula (2.15)
(3.2) ow, sty )= ﬁ {L—a(bty 1)} ~ 4P (1 —ity)~“Crrt?
r=1

Now, from the indices 7’s (1=<r=<k) pick up such ones that b0, and
combine the terms among {1—i(bt,+1,)} ~“+° (1<y<k) if the corre-
sponding b,’s take the same value. Denote by 7, b} and dF (1<r<k¥)
the resultant quantities corresponding to 7, b, and d,, respectively, re-
arranged as the above. Then, the RHS. of (3.2) can be rewritten as

(3.3) (@ t):ﬁ' b*-<a;+1><_1___ it >_(d:+1)-(1—it)“"+“
. Pw, s\l Lp RN r b;k 1—1:t2 2 ,

which can be expanded into partial fractions by using Lemma 2.2.
Replacing k, 4,, v, and s, in the lemma, by k*, 1/b¥, d*+1 and —it,/
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(1—1t,;), respectively, with additional changes, we have the following
expansion

k* di+1

(3.4) ow,s(ty t)= TT b¥-b 2 Z Cnbf™{(1—1ty) — bt}
X (L—ity)~m+-m> |

where C¥,, is the constant coefficients corresponding to (2.8).
Let us now invert the characteristic function with the aid of for-
mula (2.16). We have the joint pdf. of (W, S) as

k* di+1 1

(3.5) Jw,s(w, 8)= Z} = Ct T[lb* @i+ T n—m+D)
X xu(w/b¥) - 18— w/bjf Jw™e~¥(s —w/[b})y™,

where y, stands for the unit impulse function defined by
1, if 2>0,
(3.6) xl(z)={ )
0, if 20,

for 1=1, 2,..-, k*.
Thus, the pdf. of T=W/S can be calculated as

Fty=\"_lslf.sts, sds
ke di+1 1

m b* (d'-H)
=5 S o1l T m—m+1)
X So 1:(E8/bF )y (s —st[bi)s"e~*ds - t™~}(1 —t[bF)* ™ .

Namely, we have

ks di+

BN =% E Clmxu(t/6F) (1 —[0F)E™ (1 —¢[bf )"~/ B(m, n—m+1) ,

with the coefficients C!4,,=1 and Ct,.=0 1=m=d}) for k*=1, and

at+1-m at+1-m
(3:8) Cla=br* [[Gr-by @™ 5 3 5 L
v = gjlg
bxbF \N Y
— 1Y (d* y i)
x{z( ()1 Gz,

where 2* stands for the sum over all non-negative integers {q,, ¢, -,
Quy1-n} Such that g+¢+-- - +qui-n=gq and Og+1gq,+2g;+ - +(dF+1
—M)ap1-n=0F+1—m, and where

3.9) Tr= 5} @+)-(@+1).

r=1,r¥%
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Consequently, we have proved the following

THEOREM 3.1. The linear combination of k selected order statistics
L, defined in (1.1), or the linear combination of k jointly Dirichlet dis-
tributed random variables defined in (1.5), is equidistributed to the dis-
tribution of T, defined in (3.1). The exact pdf. of those statistics is a
mixture of scaled beta distributions given by (3.7) with (3.8) and (3.9),
where k* denotes the mumber of mon-zero and distinct b,’s in (1.5) or
3.1).

In case of k*=mn and therefore d¥=0 (I=1,---, k*), we have the
following

COROLLARY 3.1. The linear combination of whole order statistics
based on random sample of size n from the uniform distribution U(0, 1)
has the pdf.

@10)  fO=3b T =) 1(e/bn(L—t/byn(l—tfb ) .
Tl
Remark. A special case of (3.10) just coincides with the pdf. ob-
tained by differentiating the cdf. given by Dempster and Kleyle [3].

In the remaining part of this section we shall give an exact dis-
tribution of linear combination of independent gamma variables with
integer parameters. That is to say, let us consider the exact pdf. of
the statistic

k‘
iz
where, as before, Y,’s (j=1,---, k) are mutually independent gamma

variables with pdf. (2.1). The desired result is immediately obtained
by integrating out fw s(w, s) in (3.5) with respect to s:

k* d{+1
(3.12) fww)=2 3 Clnyu(w/bFyw™" exp (—w/b})/I'(m) ,
where k*, Ct, and y,(-) are the same ones as that of those in the pre-
ceding theorem.

THEOREM 3.2. The exact pdf. of the linear combination W of mu-
tually independent gamma variables with integer parameters is a mix-
ture of scaled gamma distributions given by (3.12).

Remark. If k*=mn and hence d}=0 (I=1,-.-, k*¥), the random vari-
able W is distributed according to the generalized Erlang distribution,
whose exact pdf. follows immediately from (3.12).
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4. Asymptotic normality of L,

From the definition of L, its mean and variance are easily calcu-
lated as

_ 1 X 1
4.1) t=E (Ln)_n——}—l E aml_’n——l—l E by(d;+1)

and

4.2) ai—Var(Ln)__i__ > Gty {mm( n Ny >_ N, }

n+2 n+1' n+1/ (n+1)
-1 df+1><a —_dLj__!'_>
n+21‘?’1 < +1/\"" Tpg1

(3,,,: Kronecker’s delta, ¢,>0).

However, as was seen in the preceding section, the exact pdf. of L,
is fairly complicated. Especially, in case of large k*, it seems that
calculation of exact numbers of the partitions appeared in 3* of (3.7)
will become very laborious. So, let us consider to approximate the dis-
tribution of L, by a normal distribution when k& may increase as n— oo.

To this end we utilize again the property that L, is equidistributed
to the statistic:

=jﬁb,Y,/s with S=317,
=1 j=1

where Y,’s (=1, -, k+1) are mutually independent gamma distributed
random variables with mean d;+1, respectively. Since, E(S)=Var(S)
=n+1 and S can be decomposed into n+1 independent negative ex-
ponential random variables, then by the strong law of large numbers
it is seen that

S

(4.3) T

—1 w.p.l. (n—>o0).

So, let us express T, as

rers)()
where
(4.5) Tr= p + Z

From (4.3) and (4.4) it is expected that T, and T} are asymptotically
equivalent as n—oo. To prove this we shall consider first the normal
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approximation to T¥. Let

— _ 1 < —
(4.6) pt=E(T)=—11 3 b+ D=,
4.7 g;{‘Z=Var(T,i“)—( +1)2 g bi(d,+1), (c¥>0),
and
(4.8) Z¥=(Tx—pdlox .

In the present case we can state the following

THEOREM 4.1. (Berry-Esseen).
(4.9) sup |P(Z}<2)—0(2)|<C(Bw/d}),
—02<0

where 0(z) denotes the cdf. of the standard mormal distribution,
k
(4.10) Bh=(n+1)* 3} b, B[Y,~(d,+ P

and C is an absolute constant satisfying (3++10)/(6+/2x)<C<0.7975 (cf.
van Beek [11]).

The following is an immediate consequence of the theorem.

COROLLARY 4.1.

(411) _sup_[P(T#<t) =0, (DISC(Bufa)'

where @ys ,5(-) denotes the cdf. of the mormal distribution N(p, o).
For the variable S, we have the following

COROLLARY 4.2.
(4.12) _Sup P (S—(n+1)<vn+12)—0(2)| < C(As/¥yn+1)*

where
(4.13) §n=:5‘: E|Y,—(d,+Df .

Now, we show a uniform asymptotic equivalence between T, and
T*. TFor any given real ¢ and for any given sequence of positive num-
bers {e,} such that ¢,—0 and nel—oco, as n— oo, it holds that

(4.14) |P(T.<t)—P(T}<t)|< sup P@=TF<a))
|x—2'|<2|t|en
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S
+P<|n+1 llge">
= sup P(=Z}<2)+P(S—(n+1)|=(n+1)e,) .

|2—2'|<2en|t—p3l/o%

In view of Theorem 4.1, there exists a sequence of positive numbers
{K.} such that K,— oo as m— oo, and such that

(4.15) P (IT — px |2 Kuod) 2 2[1 - O(K.,) + C(By/o7)'] -

Further, for the above ¢, and K, there exists a sequence of positive
numbers {38,} such that 8,=2¢,K,—0 as n—oo, which will be seen
in (4.19) later. Then,

(4.16) " sup P(z<sZF<?)
l2—2'|<2e|t— p¥|/a}

_S.l Sulp ] |0(z) — P(2")|+-2C(By,/a¥)*+P (| T¥ — p¥ |2 Ko0¥)
z2—2'|<dn

Moreover, by Bernstein’s inequality

(4.17) P(S—(n+1)|>(n+1)e,)SP(S—(n+1)]|
=2(¥n+1e,/2)¥Var (S))<2exp {—(n+1)e2/4} .

It is easily seen from (4.14)-(4.17) that

(4.18) sup |P(T.<t)—P (Tk<1)|
—ooLt<o
2 1 _ & 1
S4C(By[oXP+ | L ——e Ea/? -y
“ 3/0)-}-\/7: K,.e +V2n'e ¢

+2exp{—(n+1)ei/d}  (=n. say).

Thus, if we take 2 {(In vn+1)/(n+1)}'” as e, in (4.14) and choosing the
sequences {K,} and {8,} properly such that K,—oo and 38,=2¢,K,—0,
as n— oo, for instance, such as

(419) K,=(n+1)%(Inyn+1)” and 0,=4(n+1)"*Iln Vn+1

with some positive constant & in (0, 1], then from (4.18) we get the
following result:

THEOREM 4.2. If the condition
(4.20) (Bw/a¥)*—0,  (m—o0)

1s satisfied, then T, and T} are uniformly asymptotically equivalent in
the sense of

(4.21) sup |P(T,<t)—P(T*<t)|—>0, (n—oo).

—oo<t <o
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Next, we shall prove

COROLLARY 4.3. Under the condition (4.20) it holds that

(4.22) < % )2—»1 . (o).

On

PrOOF. For any constant >0

w» |(g])<d

a¥

2 Slt—pi|<m~; (t— | d{P (T <t)—P (Tx<t)}|

% Slt—y’:lzm: (E— | {P (T <t)—P (TF <)}

s7* sup |P(T.<t)—P(T}<¢)|
—o00<t <00

1

e Sl:—mgmz (E—pX)Yd P(T¥<t)

1
2
= m-i-ﬁx

n

k bj _ 2
X;2=18|b,|/(n+1>-1u,~(d,+1>xgw>x a1 W@t} AP (Y;<)

= Tz7]n + (BSn/a;k)a/T ’

where 7, is the same quantity defined in (4.18). Hence, the condition
(4.20) assures us the validity of (4.22).

Furthermore, we have the following

COROLLARY 4.4. Under the condition (4.20)
(4.24) SUp [0y, 5 ()~ Dy, x>0,  (n—>c0).

—o<t<o

PROOF. Since g,=p¥* the Kullback-Leibler mean information be-

tween the two distributions is calculated as
I(@,u,,,an : @,u’,‘:, a’,':)=I(¢0, o ¢0, a’,',‘)
=In(a,/o2)+(VErat) | exp (/201

X (1/o2—1/ax?)t/2dt
=In (0,/0%) +(o¥*/a7r—1)[2= (02— o)/ (20%0}) .

Then, using the inequality given in Matsunawa [7], it follows that
(4.25) SUD By, 0,0)— 0, 2(0)
={I(@,,,q,: Dux,o)[2}
=lor—0¥*/(20,0%)=0.5|(a,/0)*—1|(a}]a,) .
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Hence, by Corollary 4.3, we get the desired result (4.24).

Now, we are in a position to state the following

THEOREM 4.3. Under the conditions (4.20)
(4.26) sup |P(T,<t)—9,, .,(t)|—0, (n— ).
—oo< <o

PrROOF. By the inequalities (4.18), (4.11) and (4.25), we get the
following estimation:

(4.27) _sup |P(T.<t)—9p,, ., @)
<_sup_{|P(T,<t)—=P (TI<)+[P (T <t)~Ops, 1)

HPpx, 2 () =Dy, 4. ()]}
=9.+C(Bs/0¥)’+0.5((0,/0%)*—1|- (a¥/ay)

from which (4.26) immediately follows.

In the above theorem we have seen that the condition (4.20) is
sufficient for T, to be asymptotically normally distributed to N(g,, o7)
in the sense of (4.26). The sufficient condition is nothing but a special
case of Lyapunov’s condition in the central limiting theorem. In prac-
tical point of view, however, the condition is not so manageable, be-
cause the third absolute moments appeared in Bj, are fairly difficult
in calculation. So, it is interesting to provide other sufficient condi-
tions for T, and T3, if exist.

Indeed, it is possible to give such conditions. In addition, we can
prove those conditions are necessary for T, and T* to be asymptotic-
ally normally distributed according to N(u¥, 0}*) in the same sense as
(4.26), if we put certain restrictions on d,’s later.

Let us consider the condition

(4.28) max [b;|vd;+1/{(n+1)o}—0, (n— o),

under which the condition (4.20) automatically holds, because

E|Y,—(@,+ )< {E[Y,—(d;+1)]*}**= {3(d,;+1)*+6(d,+1)}**
<38+ 3 (d;+1)**

for each 7, and hence
(4.29) 0<< B3"> <3v3 z 16,(d, + 1)/ {(n+1)oX}*

<3v3 max |b,|Vd,+1/{(n+1)a}} .
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Thus, by Theorem 4.3 the condition (4.28) is sufficient for the asymp-
totic normality of T.,. ‘

Conversely, suppose that T, is asymptotically normally distributed
according to N(u¥, ¢}*) in the same sense as (4.26). Then, by (4.3) and
(4.4) T is also asymptotically distributed to the same distribution, and
we have

(4.30) Ingt)— -2, (n—oo),

where ¢,(t) denotes the characteristic function of Z}=(TF—u¥)/o¥ and
is given by

30 = oo [ (-]

We have from (4.30) with (4.31)
é [itby(d;+ 1)/ {(n+1)ox} +(d;+1) In 1 —1ith,/ {(n+1)ox})] - ¢2 ,
(n—o00).

Taking the real part of the above
% ﬁ_‘, (d,4+1) In [1 4% {(n+1)a}}*]-tY2, (n— o0),

and applying Taylor’s expansion we have

b,(d,+1) __bit/{(n+1Dat}*-(d;+1) } L
2

(1o 2[1+6,58 {(n Dod) T (r—c0),

73l

where 6, is some constant in (0,1). Thus, for sufficiently small ¢ there
exists a positive constant M such that

: s#4(d,+1) BWaFT ) e
Zmrnorrrope 2 E nr1yer } 0, (r—co)

for any combinations of k=k(n) and d,=d,(n) (cf. Chernoff, Gastwirth
and Johns [2], Eicker and Puri [5]). This implies that

(4.33) max b va,+1/(n+1)a} -0, (n—oo),
1sjsk

which is weaker than (4.28). But, if d, (1=<j<Fk) are bounded from
above, (4.28) is a necessary condition for the asymptotic normality of
T* and thus T.,.

Moreover, it should be noted that because of (4.29), the Lyapunov
condition (4.20) is also a necessary condition for T, and T} to be asymp-
totically normally distributed to N(g¥, o¥?) in the same sense as before.
From this fact and the Corollaries 4.3 and 4.4 the condition (4.22) be-
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comes the necessary condition, too. Further, owing to the general
theory of central limiting theorems, the Lindeberg condition becomes
other necessary and sufficient condition for our problem, although it is

not so manageable, too.
Consequently, we can summarize above discussion as follows:

THEOREM 4.4. If d,’s are bounded, the following are equivalent :
(i) max b,/ {(n-+1)o}—0, (n—co).

(ii) (Bs/o¥)*—0, (n— o0).
(iii) For any >0

5 2{y1—(d1+1)}”
= SIbJI/(nH)-Iy,—(d,+1)lzwﬁb’ (n+1)or dP (¥, <y)—0,

(n—o0).

(iv) sup |P(TF<t)—Ou o) —0, (n— o).

~o00<t<oo

(v) _gggwlP(Tn<t)—¢,‘:,az(t)l—+0, (n— o0).

Remarks. The implication relation (i)=>(4.22) can be also derived
directly as

(oot —11=|(n-+2)" = {31 bd,+ Ditn+ D] [ ((n+2)ek)
<(n-+2)+max (Bd,+ D} A(n+ Do =0 ,

(n—o0).

In view of the above condition we are permitted to replace ¢} with o,
and vice versa in the all statements of the Theorem 4.4. In case of
k=mn and hence d,=0 for all j, namely the case of using whole order
statistics, (i) coincides with the condition by Hecker [6] where the limit-
ing normality of Z,=(T,— p.)/s, is treated. A more accurate approxi-
mation by the Edgeworth expansion for Z, is possible according to van
Zwet [12]. Some extended results to the linear combinations of selected
order statistics from certain general continuous distributions are obtain-
able based on our theorems and the probability integral transformations,
which are designed for discussing elsewhere.
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