Ann. Inst. Statist. Math.
36 (1984), Part A, 499-520

BETWEENNESS FOR REAL VECTORS AND LINES, Il
ALTERNATIVE CHARACTERIZATIONS OF BETWEENNESSES

EDWARD W. BARANKIN AND KOITI TAKAHASI

(Received Sept. 5, 1983; revised Jan. 23, 1984)

Summary

This paper introduces terminology enabling the discussion of center-
related betweennesses defined with respect to centers other than the
origin. Thus, it is then proved that the familiar 0\’-betweenness in
O which is origin-centered, is equivalent to a non-origin-centered 0\i-
betweenness in one lower dimension. A new betweenness in X, de-
noted by 0\, (r>0), is defined and studied, and it is shown that its
restriction to © 4 is precisely {\’-betweenness for a certain v. Finally,

by a method elaborated in the earlier papers, a new betweenness, 0y,
is induced on the upper open-hemisphere-plus-a-point in 3-space, and a
characterization of it is obtained which is expected to facilitate later
investigations of betweenness is complex spaces.

1. Introduction

This third article in our initial series of three articles on between-
ness completes for now our restricted discussion of this notion for real
vector spaces. Subsequent papers will move on to the case of complex
vector spaces. And some of the results given here below are specifi-
cally with the intention of application to the complex case. Let it be
noted that real and complex betweennesses are not walled away from
each other, treatable only separately with independent definitions. Our
previous two papers have shown how betweennesses are induced from
one space to another, in either direction, when we have a function
given. Well, there are mappings between real and complex vector
spaces, and they can be so used to induce betweennesses in one space
or the other. In particular, the betweenness relation on the subset of
the surface of the real unit hemisphere, that we obtain here in Section
5, and more generally the form of mapping that is used to induce it,
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will later be used to generate betweenness relations for 1-dimensional
linear manifolds in a complex unitary space.

We begin our present discussion with the establishment, in Sec-
tion 2, of an alternative characterization of {\i-betweenness in Oy, in
the form of Theorem 2.1. This theorem substitutes its conditions i),
ii) and iii) for the explicit condition of non-negativity of the coefficients
a and b in the Definition 1.5.2 of ¢):-betweenness. This new charac-
terization is not merely of interest for itself : we will use it in these
on-going studies (starting in Section 5 of the present paper, in fact)
to help elaborate other betweennesses. It is with this in mind that
we define, in Section 2 “other-centered” betweennesses in K, and
present Corollary 2.1.1.

Each of the ensuing two sections then presents another charac-
terization of ¢\i-betweenness in @y . The theorem in Section 3 con-

cerned with the case v<\/ 1’;“: , gives a characterization in terms

of w-centered {r!-betweennesses. And the theorem in Section 4 finds
that a certain newly-defined betweenness in X—which we designated
as 0y, ,-betweenness—when restricted to Oy, is just 0\)-betweenness
in Oy for a certain v.

In Section 5 we develop another example of the procedure of in-
ducing a betweenness in one space from a betweenness in another
space through a function between the two spaces. (We have previous-
ly seen examples of this in both the papers I and II of this series.)
Specifically, we induce from a non-0-centered ¢)\i-betweenness on a cer-

tain sphere in 3-space the betweenness we have labeled 7\, on the

set Oy which is a modified open hemisphere of the unit sphere in the
3-space K. This example has been chosen and worked out for the
reason of its usefulness in the complex case—as we have remarked
above; but it may have also the virtue of being strongly suggestive
of new techniques for obtaining interesting betweennesses.

The notation and terminology in this paper will continue to follow
the letter and spirit of those in the first two papers of the series.
When specific new elements are introduced here below, they will either
be defined or be clear in their meaning from the context.

2. On {Mi-betweenness

The principal burden of this section is to establish the following
theorem :

THEOREM 2.1. Let x, y and z be three elements of Oy, and let 2
be a linear combination of x and y. Then z is U i-between x and y if
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and only if the following three conditions are satisfied :
i) lle—zl=lly—=l,
@.1) i) Ne—yllsly—al;
i) flz—x|’+lle—yl*+lly—2l=8.
ProoF. The hypothesis gives us that
(2.2) z=ax+by

for some a and b. Thus it is to be shown that (2.1) is equivalent to
the condition that a and b are both non-negative, or can be so chosen.

Let us begin by noting certain equalities. Since z is a unit vec-
tor, along with « and y, (2.2) gives us that

(2.3) a’*+b*+2ab(x, y)=1.
We get also from (2.2)
(2, x)=a+bz, y),
(¥, )=a(@, y)+b.
Note that (2.8) can be presented in the form

(2.4)

(2.5) ala+b(z, y)]+bla(x, y)+b]=1,
and also in the form
(2.6) ala+(b—1)(z, y)]+bdl(a—1)(x, y)+bl+ (2, Y)a+b+1]=1+(x, y) .

Either directly or by substituting from (2.4) into (2.5) we obtain another
useful form:

2.7 a(z, x)+b(y, 2)=1.

Finally, we observe that
llz—z|’=2[1—(z, )],

(2.8) le—ylF=2[1—(2, ¥)],
ly—zl'=2[1—(y, 2)],

and consequently

(2.9) le—z|+llz—ylI+lly —2l*=6—2[(, x)+(x, y)+ (¥, 2)] .

Let us now proceed to prove the necessity assertion of the theorem.
Suppose a and b are non-negative. We assert that it then follows that
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(z,2)2(,y),
¥, 2)=(x, ) .

If a=0, the unit lengths of ¥ and z imply that b=1 and so z=y. In
this case (2.10) is immediately established. Similarly in the case b=0.
Let us suppose, then, that a>0 and 5>0. Consider the first relation
in (2.10), and suppose it does not hold; that is, suppose that (z, )<
(%, y). Since also (y,2)<1=(y, y), we have, by (2.7), using the posi-
tivity of @ and b,

(2.11) 1=a(z, x)+b(y, ?)
<a(z, y)+b(y, v)
=(ax+by, y)
=(z,9) .

(2.10)

This result is an obvious contradiction to (y, 2)<1. Therefore the first
inequality in (2.10) does indeed hold. In a similar way the second in-
equality is proved.

From (2.10), via (2.8), we derive the fact that i) and ii) of (2.1)
hold.

To prove that also (2.1), iii) holds, consider the equation, obtained
from (2.4),

(2.12) (2, 2)+ (@, )+, 2)=(@+b)(1+ (2, )+ (=, y) .

The non-negativity of a and b means that the right-hand side expres-
sion is =—1. Therefore, the right-hand side of (2.9) is <8. And this
is precisely the assertion iii) of (2.1). This completes the proof of
necessity.

To establish the sufficiency assertion, suppose that (2.1) holds.
Then i) and ii) of (2.1) imply, through (2.4), the inequalities

a+(b—1)=, )20,
(@—1)(x, ¥)+b=20.

(2.13)

And iii) of (2.1) implies, through (2.9), that the right-hand side of
(2.1-) is =—1; that is, that

(2.14) (@+b+1)1+(x, )20

If (z, y)=-—1, thatis, if y=—=, then z=(a—b)x=(b—a)y; and so either
2=(@a—b)x+0-y or 2z=0-x+(b—a)y exhibits z as a non-negative linear
combination of # and y, and the desired result is at hand in this case.
In the complementary case, namely, (x,y)# —1, the inequality (2.14)
yields
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(2.15) a+b+120,

and we are to show that in this case (2.13) and (2.15) imply that a=0
and 5=0.

We assert first that not both a and b are negative. Suppose they
were. Then we should have the right-hand side of (2.6) greater than
0 while the first two terms on the left-hand side are not greater than
0. It would follow that the third term is necessarily positive, and
therefore, by (2.15), that (x, ¥)>0. On the other hand, either one of
(2.13) implies that if a and b are negative then (x, ¥)<0. Thus, a con-
tradiction. And so, as asserted, ¢ and b are not both negative.

We now go on to show that a is not negative. Suppose, to the
contrary, that a<0. Then we must have b=0. By (2.5) and (2.13)
we get, since a<0,

(2.16) 1=ala+b(z, y)]+bla(x, y)+b]
<a(x, y)+b*+ab(zx, y)
=b+(b+1)a(z, y) .

This gives

(2.17) (b+1)a(w, y)+b—1]=0.
Since b=0, and therefore b+1>0, we get from this that
(2.18) a(x, y)+b=1.

Since the left-hand side here is precisely (y, z), we have the implica-
tion that (y, z)=1, that is z=y. But this asserts that a=0, thus con-
tradicting our assumption that a<0. Hence, indeed, we must have a
=0.

Similarly it is proved that b=0. Therewith the sufficiency is de-
monstrated and the proof of the theorem is complete.

In Definition 1.6.2 we defined the notion of B-betweenness in C
when C is a subset of the space X in which the given B-betweenness
is defined. According to that definition, if @' and ©@" are two spheres
in our real unitary space X, with equal radii but different centers,
then {)3-betweenness in @' and 7 i-betweenness in @ may fail to be
congruent (—that is, may not admit an isometry of one sphere into
the other that carries ordered between-triplets into ordered between-
triplets—) even though the two spheres are themselves congruent.
This terminological circumstance necessitates our making another de-
finition for convenience, since significant occasions arise in which we
want to discuss, for a given sphere, the betweenness relation on that
sphere that is intrinsically identical with 7\i-betweenness on an origin-
centered sphere of the same radius. It will suffice for now to make
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a definition that is suited to just this case:

DEFINITION 2.1. Let w be any particular point of the real unitary
space K. If z, y and z are three points in X, we say that z is w-
centered-¢)>-between « and y if z-w is O\i-between z-w and y-w.

It follows, then, for example, that—with O, , denoting the sphere
in K with center w and radius r—points z, y and 2z are such that 2
is w-centered-o\3-between x and ¥ in O, , if and only if z-w is 0\j-be-
tween z-w and y-w in O,,.

We may now adapt Theorem 2.1 to the case of w-centered-o\j-be-
tweenness. Noting that z-w is a linear combination of z-w and y-w if
and only if the end points of the four vectors, z, ¥, z and w, are

coplanar, and that z€(Q,,, if and only if % € O %, we have the follow-
ing corollary :

COROLLARY 2.1.1. Let x, y and z be three elements of O,,. Then
z 18 w-centered-{\s-between x and y if and only if the following four
conditions are fulfilled :

) llz—zl=sly—=l,

i) |lz—ylslly—=l,

iii) |lz—z|’+llz—yl+lly—2]<8r,

iv) the endpoints of the four vectors, x, y, z and w, are coplanar.

3. O -betweenness in terms of U\-betweenness

In the pondering on the geometry of ¢\®-betweenness, it suggests
itself readily that if a point z is ¢\’-between # and y in Oy, then
there is a lower-dimensional sphere on which z, ¥ and 2z all lie and in
which, relative to its center, z is {\j-between x and y. This turns out
to be exactly true, the precise statement being that of the following
theorem. In this statement the notation O, (L) designates the sphere
with center w and radius 7 in the linear variety w+_.L, where [ is
a sub-manifold of K.

THEOREM 3.1. Let x and y be vectors in Oy. Let v>0 and let &
denote the imner product (x,y). Let the condition

3.1) vy 1“;&
hold

Then, a mecessary and sufficient condiltion that z be U\-belween x

2
and y in Oy 1s that, for some a € [0, 12”& ], there is an element v
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x, Y, with

(32) o=y 2= 14 2)
such that, on defining

_ [ xty
(3.3) w—a(—é—> +v,

we have that the element z is w-centered-{)J-between the elements x and y
m Oy, viziwm ([{w}1H).

ProOF. Notice that, by virtue of (3.1), the stated a-interval is
a proper sub-interval of [0,1]. Notice also that from (3.2) and (3.3)
we have

(3.4) (=, w)=(y, w>=§(1+ L)=lwl?,

and that from this it follows that z-w and y-w are both orthogonal to
w, and both of length ¥ I—|w|?® ; thus, that  and y are elements of
O v ({0} V).

We shall first prove necessity. Suppose z is {)’-between z and y
in ©%. According to Theorem 1.6.2, we then have that z is of the
form

(3.5) z=ax+by+uw, wlwy,
with
(3.6) ellull=v(a+b-1),
where

2v?
3.7 =4/ 1— .
@.7) = 1+e&

Furthermore, if y+x, the coefficients a and b are non-negative; and if
y=2, then a+b=1 and u=0.

Consider first the case of #=0. In this circumstance z is a non-
negative linear combination of x and y, and so is {\i-between x and y
in O 4=0,.(X). This is exactly the condition asserted by the theorem
with ¢=0.

Suppose now that u#0. Then we take

T
1+t el
2/l

(3.8)
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where for brevity we have set

(3.9) k=a+b—1.

It follows from (3.6) and (3.7) that this a is < 1_2:; , and consequent-

ly from (3.1) that a<1. Hence, we may next define

3.10 =2

(3.10) "= ei—a)

and then

(3.11) v=——1 .
k+2y

With these definitions we find, on defining w as in (3.3), that our z of
(3.5) may be put in the following form:

3.12) z=w+(@+r)(@—w)+0b+7r)(y—w).

The coefficients a4y and b4y are non-negative, since ¢ and b are,
and therefore (3.12) asserts that z is w-centered-0\i-between x and y.
But it must be shown additionally that x, ¥ and z are elements of
Ow,viciar ([{w}1"). This has already been done for x and y, assuming
that (3.2) holds. That (3.2) does indeed hold under (3.8)-(3.11), inclu-
sive, we may see by first using (3.10) and (3.11) to obtain

PRV
(3.13) o= g,

and then applying to this the expression for |u|? that is given by
solving (3.8), namely,

(3.13) fup=GEL) €

To show next that z also belongs to O, vigwiE([{w}]'), we note first
that z—w belongs to [{w}]* since x—w and y—w do, and z—w is, by
(3.12), a linear combination of x—w and y—w. Secondly, we establish
the fact that ||z—w|*=1—||w|* by the following sequence of calculations:

3.15)  [lz—w|*=|l(z—u)+u—wl|?
=lle—ull+llul*+ | wl|*—2(z—u, w)—2(u, w)
=1—|lulP+lulf+|lwl|*—alez+by, 2+y)—2(x, v)

=1+ wl —a(a-+b)1+ &) +—2—ulp
k+2y

=1+ [wlf—a(s+ DL+ &)+ 20 [ FAEE) ]
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=1+|wlf—a(l1+ &)
=1—|lwl|?.

This completes the proof of necessity.

We now prove the sufficiency assertion. Suppose the conditions of
the theorem are fulfilled. Then we have, for some non-negative num-
bers a, and b,

(3.16) z—w=a,(x—w)+b(y—w),
and also
(3.17) lz—wl|*=1—]lwl|?*.

The evaluations (3.4) hold, and from them and (3.16) we obtain that
(z, w)=||w|*; and therefore (3.17) yields ||z||=1. Thus, z€ O 4.

We now want to show that (3.5) and (3.6) hold for some a, b and
%. Substituting from (3.3) into (3.16) gives us the (3.5)-form:

(3.18) z=<a,—— "éa >x+<bl—'°2i>y—:clv ,

wherein we have set

(3.19) K1=a1+b1—'1 .
It remains, then, only to be shown that
(3.20) ol —roll o] (a— B2 )+ (-5 ) —1].

On applying (3.2) and (3.7), and making certain rearrangements, we
express this inequality in the form

(3.21) mJ( 1;:} —1>a(1—a) <n(l—a).

From (3.16) and (3.17)—using the fact that ||z —w| =|y—w|=+ 1—|w|?,
as already seen from (3.4)—we find

3.22)  VI-JwlF =lla(z—w)+by—w)l=(a+b)V1I-]w]* ,
from which it follows that

(3.23) k=0 .

In light of this result, (3.21) becomes

(3.24) i ( 1;:} —1>a(1——a) <w(l—a).
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We now see that in the cases k;=0, a=0, a=1, this inequality, and
hence the inequality (3.20), holds. In all other cases (3.24), and there-
fore (3.21), is equivalent to

2p?

3.95 < ,
(3:25) =1re

which is seen to hold by virtue of the theorem’s assertion that ee€

[O’ 15);]'

This completes the proof of sufficiency and of the theorem.

4. Induction of M-betweenness in O by a non-0M-betweenness

in X

We are here going to define a type of betweenness relation in X
that we have not discussed before; and we will show that its restrie-
tion to Oy is precisely 7\’-betweenness for a certain v. We shall give
the definition of this new betweenness in terms of a Theorem I.5.1
representation for it, in which, moreover, the relation is of member-
ship form (see Definition 1.5.1). Thus, if 2 is the pertinent class of
subsets of X, the spread of the pair of points, «, ¥, in K will be the
intersection of all w € 2 each of which contains both x and y. Having
recalled these facts, and noting that £, in the present, typical case, is
the collection of all closed balls in KX of a given, fixed radius, » (>0),
we can proceed to give our definition :

DEFINITION 4.1. Let r be a fixed positive number. Then, for a
point # and a point y, in K, we define ze X to be 13 ,-between z
and y if z lies in every closed ball of radius r that contains x and y.

We see immediately that if ||x—y||>2r, then every ze X is 0\y,,-
between x and y. If ||x—y|=2r, the ball having the segment 7, y as
one of its diameters is the set of all 2’s each of which is 0\y,-between
z and y. The case of ||x—y||<2r is the one of principal interest, and
we now go on to obtain a characterization in this case. The subcase
of y== is, of course, trivial; it is in the situation of y+#x that ex-
tended argumentation will be needed to obtain the desired characteri-
zation, namely, of the set

@) el a={ee || TN | le—ulisr].

This set is the 0.3 ,-spread of the set {z,y}. Our approach to the
characterization of this spread is going to be as follows: we shall first
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obtain a characterization of the alternative set

4.2) “({x, y))= {z ¢ JC‘ [ llx—ull=r ] — nz—ullér} ,

ly—ul|=7r

and then we will prove that these two sets are identical.
Relating to (4.2), then, let us set

def.

(4.3) wW=Yy—x
and write
4.4) u=x+pw+¢, Elw.
The conditions
lz—ull=7,
(4.5)
ly—ull=r

may then be put in the respective forms
{ BllwlP+l&lP=*,
A=BrllwlP+lI|F="*.

These two equations clearly imply that B=% and

(4.6)

.7) lepp=re— 1201

4
More completely, we see that (4.5) is satisfied if and only if
(4.8) u=w+—§-w+$, Elw,

with ¢ satisfying (4.7).
For such a © we now want to examine the inequality

(4.9) lz—ull=r.
We put
(4.10) z=r+aw+v, vlw,

and evaluate (using (4.7)):

2

(4.11) le—ult=

a——l— w+v—§
(G

=7r'+|v[*—2(v, §)—a(l—a)|w|* .
Thus, the inequality (4.9) takes the form
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(4.12) 91 —2(v, §)—a(1—a)||w|*<0.

The task now is to distinguish those pairs <(a, v) which satisfy
(4.12) for all ¢ orthogonal to w and with norm given by (4.7). To this
end, observe first that if {a, v) is such a pair with v+0 then it fulfills
(4.12) in particular for £ chosen as

(4.13) v S lwl®

BT 4

This § makes the first two signed terms in (4.12) both positive. We
see then that a cannot be either <0 or >1; for, if it were, the last
signed term also would be positive and we should have a contradiction
to the inequality sign in (4.12). We get this contradiction immediate-
ly if v=0. Thus, we have the first portion of result: for any solution
pair {a, v) we have 0<a<l1.

In we take a=0 or 1 in (4.12), and note that the resulting in-
equality must hold with & replaced by (4.13), then we see that there
is no solution of (4.12) in these cases with ||v||>0. Thus, a=0 or 1
implies v=0.

If 0<a<1, then the quantity a(l1—e)||w|? is positive. If % is any
unit vector orthogonal to w, and v is a multiple of %, the maximum
value—for variations in £&—of the sum of the first two terms of (4.12)
is taken on for £ equal to the quantity (4.13), and is

@19 fole-+2oly/ -~ 121

We see that for ||v| sufficiently small this quantity does not exceed

e(l—a)||lw|?, and so (4.12) is satisfied. Thus, for every a€(0,1) there

18 a pair {a, v) with v#0 which satisfies (4.12) for all pertinent &.
Let <a,v), with v+#0, satisfy (4.12) for all pertinent &. If k¢

[0, 1], note that

(4.15) |evl*—2(kv, )=k{[l|lv|*—2(v, ] -A—FK)[|v|} ,

and that therefore also {a, kv) satisfies (4.12) for all pertinent ¢&. In
other words, for each a€[0, 1], the following holds: for each umit vector
¥ orthogonal to w, there is a real mumber, say 7;, such that (a,7;>
Sulfills (4.12) for all pertinent & if and only if r€[0,7;]. It is clear
Sfrom (4.12) that 715 s finite.

The characterization we are looking for now requires only that we
find the number 7; for each a and each %». We have already deter-
mined that 7;=0 for a=0 and 1. We will find that also for « ¢ (0, 1),
7; depends only on @, and not on %.

Let us rewrite (4.12) as follows:
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(4.16) lo—elPsri—3 ]+ ol —a)wlf

For given o and v, the left-hand side is maximized in ¢ by (4.13);
substituting that value for & into (4.16) and rearranging terms after
square-rooting, we get

@1 oSy (r—lwl) +at—awl -y 7= 2wl

The right-hand side here is thus an upper bound of ||v| for all v such
that (a, v) is admissible (i.e., satisfies (4.12) for all pertinent £&). It
follows that this right-hand quantity is =7;. On the other hand, (4.17)
implies (4.16) for every & orthogonal to w and of the square norm of
(4.7), and this means that the right-hand side quantity in (4.17) is <7;.
Hence the quantity in question is =7;. With this we have completed
our desired characterization, which is, namely, the following: with w=
y—x and m,, denoting the quantity on the right-hand side of (4.17),
we have

(4.18) '({x, ¥})= {x+aw+v e X 0<esl; vJ_w;} )

Ivll=me,,.

An indicated above, we now want to prove that the set (4.1) is
identical to the set (4.2), that is, to the set (4.18). Clearly, from (4.1)
and (4.2) we have that 3 .({xz, ¥})=7'({x, ¥}). It remains then only to
show the converse of this.

Let z=x+aw+v be an element of /({x, y})—expressed in the
characteristic form of (4.18)—and let

(4.19) u=x+pw+¢, Elw,
be an element of K such that
le—ull<r,

(4.20) {

ly—ull=r.
Notice that (4.19) and (4.20) give

Blwl+1¢P=r*,

(4.21)

A=Byllwl*+l¢llP<.

Summing these two inequalities and dividing by 2, we get

(4.22) S8+ =gyl + €<
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The quadratic function %[ﬁz—i—(l—ﬂ)z] evidently takes its minimum
value at ,9=%. That minimum value is —i-, and so the left-hand side

of (4.22) is 2%]|w|[2+ll&‘|[2, and we therefore obtain

(4.23) ueuzgw—ﬂ%ﬁ .

If we set, for brevity,

A=ri— llw]? ,
(4.24) 4
B=A+ao(l—a)|lw|?,

then (4.17) can be written
(4.25) lv|=vVB —V4 ,

and we have also
(4.26) I, &)= I6IIS(VB —vA)VA .

With these preliminaries we can now proceed to show what is to
be shown, namely, that ||z—u|<r. Indeed,

4.27)  |lz—ulf=|(a—Bw+(v—&)|
=(a—plllwl’+llv—¢|
=[a(l—B)'+ (1 —a)f —a(l—a)ll|w|*+||v|*+]I§ [P —2(v, &)
=r'—|¢lP—el—a)|wl*+|lvI*+IIEIP—2(v, §)  (by (4.21))
=r'—a(l—a)||w|*+(v[’—2(v, §)
sr'—a(l—a)||w|*+A+B—2VAB —2(v, &)  (by (4.25))
=r+24A—2/AB —2(»,¢)  (by (4.24))
<r*—2/AWB —v/A)+2|(v, &)|
=rt (by (4.26)).

Thus it is proved that '({x, y})=7y,.({x, ¥}), and hence that these two
sets are identical.

We have covered all cases, and a full characterization theorem can
now be stated:

THEOREM 4.1. Let r be a fixed positive number, and let x and y
be points of K (possibly the same point). In the case y=x, a point z is
08, ~between x and y if and only if z=x=y.
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If ||e—y||>2r, every z€ K is 0y,-between x and y. If |lz—y|=
2r, z 18 0V, ,~between x and y if and only if “z—x;—yugr.

If |lx—y||=2r, then z is O\, ,-between x and y if and only if it is
of the form

(4.28) z=x+aw+v
where
W=yY—2
and
0<exl,
(4.29) { ?Li%

oS me, =+ (=T lwlf) +a(—a)wlf — 7wl -

We now go on to study the restriction of 0\ ,-betweenness to O .
Thus, for given x and y, with ||z|=||y||=1, we want to describe the
elements z that are 00y ,-between x and y, and for which also ||z||=1.

From the first statements in Theorem 4.1 we immediately have:
for x, y and z€ Oy, if y=x, then z is 0y ,-between = and y in Oy
if and only if z2=x=y; and if ||x—y|>2r, then every ze Oy is 0g,,-
between x and ¥y in O 4. The remaining case to be considered, name-
ly, y#2 and ||x—y|<2r, is characterized by (4.28) and (4.29) along
with the conditions

lell=llyll=1,

(4.30)
llzll=1.

Let us now proceed to render this set of conditions more explicit.

We express the second of (4.30) using the form (4.28) and apply-
ing the first of (4.30); we get, on writing v=||v||-?—where ¥ thus is
a unit vector orthogonal to w—

(4.31) vl +2(3, @) ||[v]| — a1 —e) | w|'=0 .

If «a=0 or 1, we know immediately from (4.29) that ||v||=0. If 0<e
<1, the graph of the quadratic function on the left of (4.31) opens
upward and is negative at the 0-value of the variable. Therefore, the
equation (4.31) has one and only one positive root, which is thus the
unique solution for the non-negative quantity |v||; this solution is:

(4.32) Ivll=— (@, 2)+ ¥ (@, 2)'+a(l—a)|lw|" .
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Now we must describe, in the case of 0<a<1, the collection of
those ¥’s for which the solution (4.32) satisfies the last inequality in
(4.29). If we define a function f of a real variable ¢ by

(4.33) fA)=—t+vt+x ,

where k=a(l1—a)||w|?, then we see that the question at hand is: for
a given a, for which vectors ¥ do we have

(439 F(@ NSV r=lwl)?

With 0<a<1, we have «>0, and the function f just defined is seen
to be positive for all £ and to have a negative derivative everywhere
in t. Thus, f is a positive function, everywhere strictly decreasing.
It follows that (4.84) holds if and only if the inequality

(4.35) (@, x);«/ rz—%llwllZ

holds.

There is more to be said. Since ¥ is orthogonal to w there is an
upper bound to the quantity (9, ) which is <1. We shall find this
upper bound now. Let x be written in the form

(4.36) r=hw+(, (lw,
so that
(4.37) Rllw|P+IC|P=1.

Inner producting (4.36) with w, we get

(4.38) (x, wy=h|jw|?.
Also:
(4.39) (@, w)=(x, y—a)=(z, y)—1

=— 2 llal—2(, »)+1lvl]
Ly
=—Zlwl?.

Thus, we get h=——;— and (4.37) becomes

(4.40) Lwl-+cp=1.

We have, since %1 w,



BETWEENNESS FOR REAL VECTORS AND LINES, III 515

(4.41) @, 2)=%,0).
It is clear now that this quantity is maximized for =¢/||{||. Thus,
(4.42) @, 8 (=, ¢) =l -

(e <) =t

Evaluating ||{|| from (4.40), we finally have:
(4.43) @ &)sv - ol -

Comparing (4.35) and (4.43) we obtain a result that is, in fact,
geometrically clear. Notice that for »>1 there is no 7 that satisfies
both (4.35) and (4.43), and hence there is no z € Oy, of the form (4.28)
with 0<e<1, which is 0,3 ,-between x and y. That is, in the case r
>1, z and y are the only points each of which is 03 ,-between z and
y. In the case r=1 it is clear from the above discussion that the

only possibility for % is {/||¢|l. From (4.36)—with hz—é——c is found

to be (x—;—_y), and consequently v becomes % If this is used,

together with (4.32), to find v, and then the right-hand side of (4.28)
is evaluated, it is found that for every a in (0, 1)z is a positive linear
combination of x and y.

We are now able to state:

THEOREM 4.2. Let r be a fized positive number, and let © and y
be points of Oy (possibly the same point). In the case y=x, a point 2
€Oy 18 Oy, ~between x and y in Oy if and only 1f z=x=Yy.

If |lx—y||>2r, every z€ Oy is 0y, -between x and y in Oy.

If |le—y||S2r, then z€ Oy is VY, ,-between x and y in Oy if and
only if it is of the form

(4.44) 2=x+aw+v.
where

W=Y—2
and

0<e<l1,
(4.45)

vlw,

with v=0 ¢f a=0 or 1, and with, in the case of 0<a<l, v#0 and
specifically
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(4.46) (L x) =2, rz—%llwll2

[lv]l
and

(4.47) ||'v|[=—< + , @) +a(l—a)|w] .
TRRARSTe] el

By virtue of the orthogonality of v and w, v also satisfies the inequality

(4.48) (” ol ) «/ 1——|Iwn2

Consequently, if r>1 there are no points other than x and y that are
Vo, ~between x© and y in Ox. If r=1 the points that are 13 ,-between
z and y in Oy are simply the points of Oy that are {i-between x and
Y, that s, the mon-negative linear combinations of = and y in Oy.

We shall now prove the result that was announced in the Intro-
duction; namely, that, for r<1, 0y ,-betweenness in Oy is identical
with {\l-betweenness in @4 for a certain v. This result may be estab-
lished using the theorem we have just proved in conjunction with the
characterization of {\’-betweenness given by Theorem 1.6.2. However,
we shall give another proof here, relying on one of the original defini-
tional characterizations of ?)’-betweenness.

From Definition 4.1 it follows that z is 0.3 ,-between x and y in
Oy if and only if

le—ul|l=r,
(4.49) ly—ull=r, = llz—ul=r.

lzll=llyll=llzll=1
Expanding the norms of the differences here gives us the following
implication form equivalent to the form (4.49):

@ Wz lul+1-r1,

(4.50) — u)_Z_%[llul[2+1—rz] :

W, Wzl +1-71,

lell=lyll=llzll=1 ,

The premise here is self-denying if w=0, and so (4.50) is equivalent
to the implication form which includes the condition |u|#0 on the
left-hand side. If we insert this condition, then set ||u||=8 and wu/||u||
=1, the implication (4.50) can be equivalently presented as
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1
, B)=——[a*+1—7Y,
(wu)_za[ +1—7Y

- 1 2
@s) @ Dzo[+1-r], L:(z,ﬁ)g%[a%l—r’].

lzll=llyll=llzll=ll%l=1,
>0

Now, the quantity 'Ela—[az+1—rz], as a function of 3>0, takes on

all values <oco and greater than or equal to its minimum value of
¥/1=7r*. It follows that (4.51) can be replaced by the equivalent
statement

(=, @)=k,
(y! a)gx ’
(4.52) = (2, W)=k .
lzll=llyll=lzll=ll#l=1,
VI—rtgzk=1

According to Section 6 of [1], this translates directly into the state-
ment

(4.58) z is O\-between x and y in Oy for every kel[v 1—r",1].

But we have the fact that if »;<v, and 2z is 0\)-between z and y in
O then z is 0\ -between « and y in Ox. (This may be proved using
Theorem 1.6.2, for example.) Because of this, the statement (4.53) is
equivalent to the simpler statement

(4.54) 2 18 O\yioa-between x and y in Oy .

We have thus derived the equivalence of the statements (4.49)
and (4.54). That is, we have shown that z is 0\ ,-between z and y
in Ox if and only if (4.54) holds. This is the result we sought to
establish; we state it as

THEOREM 4.3. Let r€(0,1]. Then 0y, -betweenness in Oy is iden-
tical with {\"/==-betweenness im O x.

5. Definition and characterization of (}\6’,<3)—betweenness

In this section we are going to induce a betweenness relation on
the set in K4 (=38-dimensional real unitary space) which is an open
hemisphere of the unit sphere plus a point of the boundary. The cor-
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responding procedure could be carried out also in higher dimensions,
but the calculations are already involved enough in 3-dimesional space
and we rest content with the discussion of this case. The between-
ness we are going to define may seem quite arbitrarily chosen. But
that is most decidedly not the case. The fact is—as will be shown in
a subsequent publication—that this apparently overly complicated ex-
ample of an “off-the-beaten-path” betweenness relation actually very
simply induces our familiar ¢h,-betweenness in the set of 1-dimensional
linear manifolds of a complex 2-space. The demonstration of this fact
will be facilitated by the characterization we develop here below.

Let ¢, ¢, and ¢; be three mutually orthogonal unit vectors in K.
We define a one-to-one function ¢t on O,p.,1. (Which, in the notation

introduced in Section 2, is the sphere (surface) of center %es and

radius %) to the set Ouw={x € Ow|(x, &)>0} U {e;}, where O is the

unit sphere (surface) in 3-space. This function ¢ is as follows:

L , x#0 ,
(5.1) t(x)=1 1=l 2 € Oypeey i -

0.

e, x
The inverse of this function is

(5.2) W)=, &)y » AS é(a) .

We may now state our definition (availing ourselves of Definition 2.1
above) :

DEFINITION 5.1. Let #, ¥ and z be three points in the set O,

Then z is said to be {h)uy-between z and y t7'(2) is %es-centered-()\’g-
between t~'(x) and t~!(y).

Concerning this new betweenness, we shall establish the following
theorem :

THEOREM 5.1. Let x, y and 2 be three points in the set Oy. Then
z 18 Mo sy-between x and y if and only if the following four comditions
are fulfilled :

i) 2(z, &)z, &), 2)—(2, &) Z2(x, &)y, &)(®, ¥)— (¥, &)’ ,
11) 2('.‘/» 63)(2, 63)(!/, z)_(z’ 63)2=>—_2(x’ es)(y! 63)(%, ’y)_(x’ 68)2 ’
111) (x’ es)(yr 63)(&7, y)+(y? 63)(2, e;,)(y, Z)+(Z, es)(w: 63)(2, (D)
— (@ &)'—(¥, &)’ —(z, &)’ +120,
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iv) (2, e)(x, €;)[2(y, €)' —1]-[(x, €)(2, &) — (2, €,)(, €3)]
+(x, :)(¥, €)[2(2, €)' —1]-[(y, e)(x, &) — (2, e) (¥, €)]
+(¥, &)(2, &)[2(x, €)' —1]-[(2, e)(¥, &) — (¥, €)(2, €)]=0 .

PROOF. According to Corollary 2.1.1, z is {M @ -between x and y
if and only if these following four conditions are satisfied :

(6.3) It~ @) -t @)=l W) -t @),
(5-4) It @) -t W=l @) —t'@Il
(5.9) [t @) =t @) P+ It @) -t @) I+t @) -t @)I1'=2,

(5.6) the endpoints of the four vectors, t~'(x), t™'(¥), t™'(2)

1
and Ees, are coplanar.

We are now going to show that these conditions, in the order written,
are equivalent statements of the four conditions listed in Theorem 5.1.
Consider (5.3). We have:

6.7 It @)=t (@)=t (@) —t (=)
=¥, e)y—(x, ex)x|’—||(2, &)z — (2, es)z|*
=[2(x, €)(2, e5)(®, 2)— (2, €)' ]1—[2(w, es)(¥, ex)(®, ¥)— (¥, &)’] ,

and we see immediately that i) of the theorem and (5.3) are equivalent.
The equivalence of ii) and (5.4) is similarly shown. And the same pro-
cedure of developing the terms in the left-hand side of (5.5) shows
that this inequality is an equivalent statement to iii).

To demonstrate the last equivalence let us note that (5.6) is equiva-
lent to the statement

(5.8) the three vectors t™'(z)—t™'(x), t7'(z)—t'(¥)

and t“(z)——;—eg are coplanar .

This, in turn, we know to be equivalent to the vanishing of a deter-
minant, namely, the determinant of the components of these three
vectors with respect to the three vectors in an orthonormal basis. In
the case of our present basis {e, e, ¢;}, the determinantal condition is

(z’ 63)(2, 61)—-(117, 33)(‘”1 61) (Z, 63)(2’ 32)_(x’ 63)(‘”7 62) (z’ 63)2—(37, 63)2
(5.9) (Z, 63)(2, 81)—-(’!/, esxyr el) (zv es)(z’ 62)_(?/: 63)(2/, ez) (z’ 38)2_(1/: 33)2

(zr ea)(z» el) (Z, 63)(2, €) (z, ea)z-—-_;_
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And now if the determinant is expanded, cancellations made and terms
gathered, we find that (5.9) is identical with iv) of the theorem. This
completes the proof of the theorem.
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