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Summary

Suppose an item is acceptable if its measurement on the variable
of interest Y is Y<u. It may be expensive (or impossible) to measure
Y, and a correlated variable X exists which is relatively inexpensive to
measure and is used to screen items, i.e., to declare them acceptable
if X<w. We examine two situations in both of which [ acceptable
items are needed. (i) Before use of the item, Y is measured directly
to ensure acceptability : Should X be used for secreening purposes before
the Y measurement or not? (ii) Y cannot be measured directly be-
fore use, but screening is possible to determine the items that are to
be used. We assume that X and Y have a bivariate normal distribu-
tion for which the parameters are known. Some comments are made
about the case when the parameters are not known.

1. Introduction

We address ourselves to the decision-theoretic treatment of screen-
ing units or items for acceptance. This problem arises in various set-
tings. An example from manufacturing is given in Owen, Li and Chou
[6], where an automobile seat is attached to the frame by welding and
it is desired that the weld hold even after a large stress is applied.
It is possible to screen items by measuring X-ray penetration of the
weld which is negatively correlated with the strength of the weld,
rather than to measure the strength of the weld directly. Another
example is the screening of applicants for employment, where ultimate
performance of an individual is thought to be related to the score on
an aptitude test.

A sampling-theoretic treatment of this problem is given, e.g., by
Owen and his co-workers (Owen and Boddie [5], Owen, Li and Chou
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[6], Owen and Su [7]), and by Madsen [4]. An item is acceptable if
the variable of interest Y has Y<wu. In some situations the variable
Y may be expensive or even impossible to measure before the item is
used, and so it is difficult to ensure acceptability of the item. How-
ever, a variable X which is correlated with Y can be measured more
easily, and this variable is to be used to screen items. Based on an
X measurement items are deemed acceptable if X<w. The variables
X and Y are taken to have a bivariate normal distribution with means
¢ and g, standard deviations ¢, and ¢,, and correlation p,

1.1) »Z| p, 0)=(27)"| 2|7V exp [—-;—(Z— )3z —/z)] ,

where Z=(X,Y), p=(¢., p,)"* and 2 is the covariance matrix. The fol-
lowing probabilities, computed from (1.1), will be used frequently:

1.2) B=Pr(X=zw), r=Pr(Y=uw) and o=Pr(Y=u|X=w).

It is typically desirable to increase the marginal probability that an
item is acceptable, 7, to a higher value, 3, after screening. In most,
applications, the value of u is predetermined whereas that of w needs
to be determined. When p=0, B increases whereas d decreases in w.
We assume throughout that p=0, if p<0 replace X by —X.

Owen and Boddie [5] and Owen and Su [7] treat the problem where
B, the probability of acceptability before screening, is to be raised to
8 after screening by choosing an appropriate value of w. They use a
sampling theory approach to give solutions for various cases depending
on which parameters are unknown. Owen, Li, and Chou [6] examine
the problem where it is necessary that at least I out of » items are
found acceptable with some specified probability. It is again necessary
to choose an appropriate value for w. They give solutions for the cases
when all parameters are known and when they are unknown. Because
of the high number of parameters, it is not possible to provide exten-
sive tables and the authors suggest that a computer algorithm be de-
veloped.

In this paper, we use a decision theoretic approach to problems
similar to the one discussed by Owen, Li, and Chou [6]. In Section 2
we treat the case with all parameters known for which results are
straightforward to obtain. In Section 3 the parameters are not known
and have to be estimated. The computational problems become con-
siderably more difficult than in Section 2. Some numerical examples
are given in Section 4.
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2. Case where all parameters are known

In this section, the problem will be stated more generally than in
the introduction. We assume that there is a vector X, of r correlated
variables to be used for screening and that the joint distribution of X,
and Y is (r+1)-variate normal with mean vector and covariance matrix

e ) VG )

where g, and 3, are (rx1) vectors, 3, is an (rXr) matrix, and g,
and o, are scalars as defined in the introduction. As before an item
is acceptable if Y<wu and, without screening, a proportion y=Pr(Y=w)
of such items is acceptable.

When using the correlated vector X, for screening purposes, we
need to choose an r-dimensional set A such that an item is deemed ac-
ceptable based on the correlated vector X,, if X,cA. If we let =
Pr(X,€ A) and 3=Pr(Y<u|X, € A), then it is desirable to choose A
such that the conditional proportion of items actually acceptable, 3, be
maximized for a given proportion of items deemed acceptable, 8. It can
be shown that under this condition the set A should be chosen such
that

A={X,| X=23,, 3, X,sw} ,

where w is a constant to be chosen, i.e., the problem reduces to the
bivariate one given in the introduction, where the correlated variable
X is a linear combination of the correlated variables in X,.

We then have that the parameters g,, o, and p, introduced in the
previous section, relate to the parameters in (2.1) as follows,

Le=2%02 500ty »
(2.2) 02=230303,, and
0=(25 25 2 p) "o, =0,]0,20 .

In the remainder of this section, we assume the parameters in (2.1)
and thus g, p,, 0., g,, and p to be known. This assumption may be
appropriate if considerable information exists about the process gener-
ating X,, and therefore X, and Y. Thus, the predictive distribution
for a future observation Z=(X, Y)' is a bivariate normal distribution
as in (1.1). The predictive probabilities 8, r, and 8 computed from this
distribution will form the basis for an evaluation of different screening
procedures.
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2.1. Direct measurement of the performance variable is possible

In this section we examine some models for which it is assumed
that the performance variable Y can be measured directly before the
item is to be used to ensure that the item is acceptable. It is to be
determined if X should be measured first to screen for items which
have a high probability of being acceptable on the performance variable.
Let

¢;=cost of an X-measurement per unit, and
c;=cost of a Y-measurement per unit .

We assume that [ acceptable units are needed and that we sample
until ! such units are found (without loss of generality, we could take
l=1). If Y is measured directly, action a,, then the cost of measure-
ment will be

el +}f R

where f,, the number of unacceptable items for which Y-measurements
have been taken, has a negative binomial distribution with parameters
l and y. The expected cost of measuring Y directly is denoted by

(2.3) EC(a)=E, {c(l+f)}=cllr .

If we screen items first by determining whether X<w or not be-
fore making the Y-measurement, action a, the cost of measurement
until ! acceptable items are found is

afet(ete)l+1) ,

where, for a given f,, f,, the number of items which fail the screen-
ing test, has a negative binomial distribution with parameters (I+f£,)
and 8, and, under the screening alternative, f, has a negative binomial
distribution with parameters [ and 8. The expected cost of this screen-
ing alternative is

(@4 BO@)=E, B lafe+Cra)lHi=a] 5] vo L]
Note that EC(a,) depends on w, the cutoff value for the screening
variable, and that an optimal value for w has to be found. The first
term in brackets on the right-hand side of (2.4) represents the expected
number of items checked on the screening variable X. This term is a
monotonically decreasing function in w since 38=Pr(Xsw, Y<u) in-
creases in w. The second term in brackets represents the expected
number of items which are also checked on the performance variable
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Y. Since 3 is a decreasing function in w this term is increasing in w.

It is easy to see that E(C(a;)— o as w— —oco, and that EC(a;))—
l(¢,+¢))/r as w—oo. Detailed numerical investigations suggest that
E C(a;) has a unique minimum for some value of w.

The higher ¢, is relative to ¢, i.e., the more costly it is to meas-
ure Y, the lower will be the optimal value of w. This optimal value
for w can be used in (2.4) to compare the expected cost of the two
alternatives. Screening is preferable if E C(a,)<E C(a,) or if ¢,/c,<0B/r
—B or if

(2.5) %éPr (X<w|Y<Su)—Pr(Xsw),
2

where w is taken to be the optimal value of w obtained by minimizing
EC(a;). Note that (2.5) does not depend on [, the number of accept-
able units needed. If X and Y are independent, i.e., if p=0, the right-
hand side of (2.5) equals 0 and screening cannot be superior to meas-
uring Y directly. The conditional probability Pr(X<w|Y=<w) will be
larger than Pr(X<w) if p is positive, the difference increasing as p
increases. Screening is then preferable if p is sufficiently high.

In many situations measuring Y will be considerably more expen-
sive than measuring X, thus ¢,/e, will be close to 0, and p need not be
very high for screening to be superior to not screening. It can be seen
from (2.4) and the discussion following it that, as ¢,/c,—0, the optimal
value of w— —oo and only extremely few items pass the screening
stage. .

In some situation, e.g., when lifetime is the performance variable
of interest, measurement of Y before use is clearly impossible and the
model discussed in this section does not apply.

2.2. Direct measurement of the performance variable is not possible
We shall now investigate the situation where it is not possible to

measure the variable Y before using a unit. We assume that ! units
acceptable on the Y variable (i.e., having Y<u) are needed and any
screening has to be carried out before any of the items are used. The
model consists of choosing n items of which at least [ have to be ac-
ceptable. If less than ! are acceptable, a penalty will be incurred,
which we assume not to depend on how many units short we are.
Any unacceptable item among the # units leads to an additional cost.
Let

c,=cost of an X-measurement per unit,

¢;=cost of not having at least ! acceptable units, and

c,=cost of using an unacceptable item (per unit).
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We will consider two alternatives. (i) a,: Pick », units and use them,
and (ii) a,: Screen units first until », are available for use. It is then
easy to show that the expected costs for the two alternatives are

(2.6) ECa)=¢, g [’f] A=)t em(l—7)
and
@2.7) E Cla)) = clnzlﬁ-i—ca [”ﬂ]ai(l dy ot om(1—3) .

The decision variable for the first alternative is n,. If we let g(n,)
=E C(a,), then

(2.8) g(n,+1)—g(n)=c,(1— r)-}—c{ [nl"'l] =)t

=5 [ ]ra—rred
i=0 1
Hald ([3], p. 191) shows that the expression in braces is: (i) decreas-
ing, (ii) concave if n,<(—1)/y, and (iii) convex if n,=(l—1)/y. Thus,
the form of (2.8) implies that E C(a,) has at most two local minima. If
there are two such minima, one of them is at n,=I. Note that as
¢iJe;—0, the optimal value of 7,— oo.

In the second alternative there are two decision variables, n, and
w. As a function of n, both the first and third terms in (2.7) increase
in m, whereas the second term decreases. As a function of w, the first
term in (2.7) decreases in w since B increases in w and the remaining
two terms increase in w since 3 decreases in w. Given that there is
a positive relationship between X and Y, ¢,—0 implies that screening
is free and that w— — oo, i.e., exceptionally few items pass the screen-
ing test all of which having conditional probability of being acceptable
d—1 so that n,—! and no bad items are used.

Screening is desirable if E C(a,)=E C(a,) or if

(2.9) ﬁ?+ﬁmaa)M1ﬂ]
g [[’nz:lai(l dyr—i— [il}ri(l_r)nl-t] )

The second term on the left-hand side of (2.9) will typically be
negative, since 3=y and n,=n,. The left-hand side represents the ex-
pected cost change due to using the screening alternative and to using
less unacceptable when using the screening alternative as a fraction of
the cost of not having enough acceptable units, and the right-hand side
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represents the reduction due to screening in the probability of not hav-
ing enough acceptable units.

It does not appear possible to carry out the minimization of E C(a,)
and EC(a;) in closed form. Some simplification is possible if I, the
number of acceptable units needed, equals 1. In this case, EC(a,)=
cs(1—7)+emy(1—7) and minimization with respect to =, leads to choos-
ing one of the two integer values of =, closest to

n,=In [ca——l(:((ll—T?)—]/ln 1-y.

In a similar way, minimization over m, can be carried out for E C(a,)
given a value of w, but minimization over w has to be done numeri-
cally.

3. Case where all parameters are unknown

We will now examine the more realistic situation where the param-
eters of the bivariate distribution in (1.1) are unknown. The discussion,
however, will not be as complete as that in Section 2 because there
are severe computational problems in this case, and some approximations
are needed.

We assume that a training set of k bivariate observations zi=(x,,
¥:), i=1,--., k, is available. The sample observations can be summa-
rized by the mean vector Z and the matrix v, where

_ T k 5 5\t
3.1) z=[g] and  v=3@—DE—2)
Letting
3.2) ,1=[F‘r] and z:[ & ”"J;”V} ,
Ky po0y Oy

we can combine a prior distribution for 4 and 27!, here taken to be
diffuse and proportional to |3~'|"*%, with the likelihood arising from the
training set to get the posterior distribution for x and X,

(33) Ples 3eel 37 exp [ — & (u—2 5 (u—D)|
—-1|(k—1-3)/2 1 -1
X | Z-1[E1-97 exp [—_2_tr(2 v)].

Using this posterior distribution we now examine the two cases
already discussed in Section 2.
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3.1. Direct measurement of the performance variable is possible

Equations (2.3) and (2.4) give the expected costs of measuring Y
directly and of using the screening variable before measuring Y,

(3.4) ECa|p, 2 =cillr ,
and
(8.5) E Cla,| gy 2 =cid/3+¢l/(3B) »

where our notation explicitly shows the dependence of the conditional
expected cost figures on the unknown parameters px and 3. To ob-
tain (unconditional) expected cost figures, p and X' need to be inte-
grated out of (8.4) and (3.5) leading to

(3.6) EC@)=clE[r],
and
(3.7 EC(a)=ciE[07']4+cl E[(38)7'],

where the expectations on the right-hand sides are with respect to g
and X! whose density is given in (8.3). I am not aware of closed-
form expressions for E[y™!], E[37!], and E[(38)'] so that these expec-
tations have to be found using numerical integration techniques. The
integration is fairly straightforward for E[y™'] since only two param-
eters, ¢, and o,, are involved, but when finding E[s7'] and E[(38)7']
all five parameters are involved leading to considerable computational
difficulties in the evaluation of EC(a;) in (3.7). An additional numeri-
cal difficulty arises with respect to E C(a;) in that it depends on w, the
cutoff value for the screening variable for which an optimal value has
to be found.

8.2. Direct measurement of the performance variable is mot possible

In this case further numerical difficulties arise. Given p and X,
future observations Z,=(X,, Y;)' are independent and the conditional
predictive distribution for Z,,---, Z, is the product of » bivariate nor-
mal distributions

(38)  p(Zlp I)=]] @) 2" exp [~ (L= 2= )]

where Z=(Z,,---, Z,)!, and the symbol “~” is used under a quantity
representing » future observables.

To obtain the (unconditional) predictive distribution p(Z) for Z, p
and 3! need to be integrated out of (3.8) using (3.3),
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(3.9) 22)=\ | 521 1, 3l T )dpds .

This last step introduces dependence among the n future observations
Zy,+++, Z,. After some manipulations, (3.9) reduces to

(3.10) P(Z)oc|L+v"(Z—21,) AT (Z—71,) [+,

where v=k—2, I, is the the (2x2) identity matrix, Z is of order (nx2),
z is given in (3.1), 1, is an (nX1) vector of ones, and A is an (nXn)
matrix,

k41 1 .- 1
3.11) A=% 1 k4+l--- 1
11 .. k41

The distribution in (3.10) is a matric-variate ¢ distribution with » de-
grees of freedom which is discussed, e.g., by Dickey [2], and Box and
Tiao ([1], §8.4). Using results given in Box and Tiao, the marginal
predictive distribution for » future values of the performance variable,
Y=y, Y,), is a multivariate ¢ distribution,

(3.12) p(Y)oc[1+2; (Y — gLy A (Y —FL,)] 7",

k
where 7 is given in (38.1), »;'=> (y.—%)’, and Y is an (nXx1) vector.
i=1

A similar result holds for the correlated variable, X.

In order to derive results similar to the ones in Section 2.2, prob-
abilities need to be computed from (3.10) and (3.12). To illustrate the
kind of probability calculations needed, consider the model leading to
equation (2.6). One of the probabilities needed there is the probability
that 4 units out of », have Y<w, in particular that the first ¢ units
have Y<u and the remaining (n,—%) units have Y=u,

(313 p=pr[[ 0 ¥,z 0 @zw)]].

When all parameters are known, there is predictive independence among
the n, future observations, and p=r(1—7y)"%, where y=Pr(Y,=<u), say.
When the parameters are unknown, the m, future observations are
predictively dependent and computation of p from (3.12) is considerably
more difficult than in the case when all parameters are known. At
this point, it seems that the computations needed for an expected cost
figure comparable to that in (2.6) are prohibitive, and an approximate
solution has to be used.

When dealing with the case where all parameters are known, the
predictive distribution is (i) based on the normal distribution and (ii)
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characterized by independence of future observations. When all param-
eters are unknown, the predictive distribution is (i) based on the t-
distribution, and (ii) characterized by dependence of future observations.
The computational difficulties mentioned in the last paragraph are due
to the dependence among future observations. As an approximation
we propose to ignore this dependence and take probabilities for future
observations to be independent and based on a bivariate t-distribution
that would result if there were to be only one future observation Z,,

(3.14) P(Z)oc [1 +(Z—3) ["_;;1 v] _1(Z,—2)] e

When this approximation is used, the probabilities 8, 7, and 3 given in
(1.2) are computed from (3.14) and, with this change, the results in
both Sections 2.1 and 2.2 can be used as an approximation.

This approximation may not be adequate if the size of the train-
ing set, k, is small. In this case the correlations between X, and X,
and Y; and Y,, i+#j, which equal (k+1)~!, are appreciable.

4. Numerical illustrations

4.1. Direct measurement of the performance variable is possible

In this section I will first present some numerical results for the
case where all parameters are known. Without loss of generality, I
take the means and variances of the bivariate distribution in (1.1) to
be 0 and 1, respectively. In Table 1 are given some results for the
cases where an item is acceptable if Y<u,=—1 and Y<wu,=1, and l=
1, i.e., one acceptable item is needed. Table 1 associates with selected
values of the correlation p between X and Y values of ¢/c, such that
there is indifference between the screening and no-screening alterna-
tives. In addition, the optimal value of w is given which is needed
for the screening alternative, and so are f=Pr(X<w) and s=Pr(¥Y<

Table 1. Indifference values of c¢i/c: corresponding to
selected values of p (=1 or —1)

u=-—1 uz=1
o cifcs w B 4 ci/cs w B 0
6 .38 —-.33 .37 .32 .072 .33 .63 .94
7 .45 —.41 34 .33 .086 .41 .66 .95
8 .54 —.50 .31 .44 .10 .51 .69 97
9 .66 —.62 .27 .54 .12 .63 .73 .98
95 71 —.72 24 .63 .13 .73 77 .99

.99 .78 -.87 .19 .81 .15 .87 .81 .995
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u|X=<w). For example, when u=—1 and p=.9 the indifference cost
ratio ¢,/c, is .66. Furthermore, the optimal value of w=—.62 at this
indifference point so that a proportion g=.27 of items is deemed ac-
ceptable on the basis of the screening variable X and the probability
of an item being acceptable is increased from y=Pr(Y=u=-1)=.16
to d=.54. If at p=.9 the actual cost ratio ¢/c;<.66, the screening
alternative is optimal. The optimal value of w, of course, depends on
the value of ¢ /c,.

Let us next examine an example where the parameters have to be
estimated. Suppose the training set consists of k=15 observations, that
the sample mean vector Z=0 and that the sample covariance matrix
v/k has variances 1 and correlation r=.8. An item is acceptable if
Y<u=-1, and l=1. If furthermore, the cost values are ¢,=5.7 and
¢,=100, then the expected cost under the no-screening alternative a, is
669 and that under the screening alternative a, is 257 with optimal
value w=—1.10. Thus, the screening alternative is preferred in this
case. If k— oo, i.e., all parameters are known, and all other values
are unchanged, then the expected cost under a, is 630 and that under
a, is 217 with optimal value w=—1.17 so that again the screening al-
ternative is preferred.

4.2. Direct measurement of the performamnce variable is not possible

In this section we illustrate the results of Section 2.2. Let us re-
consider a problem given in Owen, Li, and Chou [6]. The performance
variable Y represents temperature inside an oven that is used to bake
corn chips. The correlated variable X is temperature of the outside
metal, and it is much easier to measure than Y. It is known that
(X,Y) has a normal distribution with parameters p,=80°, ¢,=2°, p,=
204°, ¢,=5°, and p=.9. An oven run is acceptable if ¥ >200°. Since
direct measurement of Y is difficult, it may be advisable to deem oven
runs to be acceptable if the correlated variable X exceeds a quantity
2,. It is necessary that at least =9 oven runs are acceptable on the
basis of Y.

Let us take the cost of an X-measurement to be ¢;=1 without loss
of generality. The cost of having less than | acceptable bake runs is
¢;=10, and each item erroneously deemed acceptable leads to a cost
of ¢,=1.2. Other cost relations are possible, and each new situation
will require a careful analysis of these cost relations. We have to de-
termine now if it is advisable to screen oven runs or not. We will
first examine the screening alternative for which expected cost are
given in (2.7). It is necessary to find the optimal cutoff point for the
correlated variable X and the optimal number of oven runs to be deem-
ed acceptable to minimize expected cost E C(a).
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The problem as set out in the first paragraph of this section is not
yet in the form required for the results in Section 2.2, where we can
assume without loss of generality that the two variables X and Y are
standardized. Denote these standardized variables by X, and Y,. Then,
in the notation of Section 2.2, we have that y=Pr(Y,<u=.8)=.788.
Given y, the cost values, and p=.9, a simple computer program will
find the values of %, and w, the cutoff point for the correlated vari-
able, minimizing the expected cost of (2.7). The optimal values are
n,=10 and w=.71 so that items are deemed acceptable if X,<.71.

In terms of the oven run example, oven runs will be deemed ac-
ceptable if the temperature of outside metal X>p,—(.71)0,=78.6°.
This means the long run probability that Y >=200° is increased from
y=.788 before screening to 3=.946 after screening. Given the cost
values ¢,;=1, ¢;=10, and ¢,=1.2, it is optimal to accept or reject as
many oven runs as are necessary until 10 runs are deemed acceptable
on the basis of X>78.6°. The probability that at least 9 out of these
10 oven runs are acceptable on the basis of Y is .901 after screening,
and .341 before screening. These results are comparable to the ones
given in Owen et al. [6] where a non-decision theoretic approach is
taken in which the cutoff point for the correlated variable X is to be
found, and “we wish the probability to be .90 that at least 9 of the
next 10 accepted bake runs equal or exceed the required 200°, and we
would like to achieve this probability by accepting or rejecting as many
oven runs as needed based on X”.

The expected cost for this optimal screening procedure is E C(a,)=
(1)(10)/(.761)+(10)(1—.901)+(1.2) (10) (L — .946) =14.8. Without screening,
the expected cost of the corresponding procedure, i.e., to accept the
first 10 oven runs, is E C(a,)=(10)(1—.341)4(1.2)(10)(1—.788)=9.1 so
that no-screening would be preferable to screening. If the no-screening
alternative is selected, expected cost can be reduced further by minimiz-
ing (2.4) over m,;, the optimal result being that the first n,=15 oven
runs should be accepted without screening so that E C(a,)=(10)(1—.975)
+(1.2)(15)(1—.788)=4.1.

UNIVERSITY OF TORONTO

REFERENCES

[1] Box, G.E.P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis, Read-
ing, Mass., Addison-Wesley.

[2] Dickey, J. M. (1967). Matric-variate generalization of the multivariate #-distribution
and the inverted multivariate ¢-distribution, Ann. Math. Statist., 38, 511-518.

[3] Hald, A. (1981). Statistical Theory of Sampling Inspection by Attributes, Academic Press,
London.

[4] Madsen, R. W. (1982). A selection procedure using a screening variate, Technometrics,



A DECISION-THEORETIC APPROACH TO SOME SCREENING PROBLEMS 497

20, 301-306.

(5] Owen, D. B. and Boddie, J. W. (1976). A screening method for increasing acceptable
product with some parameters unknown, Technometrics, 18, 195-199.

[6] Owen, D. B., Li, L. and Chou, Y-M. (1981). Prediction intervals for screening using
a measured correlated variable, Technometrics, 23, 165-170.

[7] Owen, D. B. and Su, Y-L.H. (1977). Screening based on normal variables, Techno-
melrics, 19, 65-68.



