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Summary

The distribution-free test based on semi-aligned rankings for no
treatment effects in a two-way layout with unequal number of replica-
tions in each cell is considered. The asymptotic y-square distribution
of the test statistic under the null hypothesis is derived. The Pitman
asymptotic relative efficiency of the test (i) based on semi-aligned rank-
ings with respect to the test (ii) based on within-block rankings is
shown to be larger than one as the number of blocks tends to infinity.
Also the asymptotic properties of linear rank statistics (i) and (ii) are
investigated and the asymptotic relative efficiency of the test (i) with
respect to the test (ii) is again shown to be larger than one.

1. Introduction

Hodges and Lehmann [6] is the first who proposed the aligned rank
test for the block design with two treatment effects. Sen [10] consid-
ered the test for the design with treatment effects more than two
and equal number of observations per cell on the jth treatment effect.
He discussed the asymptotic properties as the number of blocks tends
to infinity and proved that the asymptotic power of this test is larger
than or equal to that of the F-test for all continuous distributions if
the scores function is normal. But in this paper, for the block design
with unequal number of observations allowing no observation per cell,
we propose the semi-aligned rank test and compare it with the Friedman-
type test and the Anderson test.

In Section 2, we make a test statistic of the quadratic form by a
vector of linear rank statistics (i) based on combined rankings of some
observations after alignment within each block and the generalized in-
verse of its covariance matrix. We call it semi-aligned rank test.

AMS 1980 subject classification: Primary 62G10, secondary 62E20.
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In Section 3, after we derive the asymptotic noncentral y-square
distribution of the semi-aligned rank statistic under the contiguous se-
quence of alternatives, we obtain the Pitman asymptotic relative effi-
ciency. The asymptotic power of the test (i) as the number of blocks
tends to infinity is generally more efficient than that of the test (ii)
based on within-block rankings.

In Section 4, assuming one observation per cell and a large num-
ber of blocks, we compare the proposed test with the Anderson test [1].
Although Shach [11] proved that the local approximate Bahadur rela-
tive efficiency of the Anderson test with respect to the Friedman-type
test is larger than or equal to 1, our result shows that the asymptotic
power of the Friedman-type test is almost larger than that of the
Anderson test.

In Section 5, we propose the linear rank tests (i) and (ii) for a
regression model and ordered alternatives. Then we obtain the same
asymptotic efficiency as in Section 3.

2. Test statistics

Consider the randomized block design which has » blocks, p treat-
ments and m,, observations on the jth treatment in the ith block.
Furthermore let each observation be expressed as

2.1) thk=#+ﬁt+‘l'/+3¢jk

for +=1,2,--+,n, j=1,2,--+,p, and k=1, 2,.--, m;;, where §,’s and z,’s
are respectively block effects and treatment effects satisfying ﬁ‘, B8:=0
‘and Sp‘_.r,=0, and {e;: t=1,2,---,n, 7=1,2,-..,p, k=1, 2,---,12;%,} is
assurjnzéd to be independent and identically distributed to an unknown
continuous distribution F'(x) with density f(x). Also we suppose that

m.;=0 and there exists 4+ such that m,;=1 for all j.
Then we set the number of overall observations and that of obser-

vations within the ith block by N<=z"; b3 m,,) and M, <=é m,,) re-
i=1 j=1 Ji=1
spectively. The hypothesis of interest is H: r,=0 (j=1,2,---, p).
Now, we shall define semi-aligned rank test.
— — mij
Set Kjkinjk—Xf" Where Xi.,zjé kz}Xijk/Mi’ and let Q(jk be the
=1

=1

rank of Y, among {Y,,: ¢ satisfies (myy, Myg, -« -, Myp)=(My, My, - - -,
m;,) and 1<¢<n. 1<7=<p. 1=k<m,,.} and a,-) be a real-valued func-
tion from {1,2,---,l} which is not constant. Furthermore setting

aQ,)=3) 3 a(@u) and 3(@.)= 3] 3] QM we define 4,= [a(@,)—
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31m@(Q.)] [N Setting @=(Quo: -+ Quny Qure+ Qumy) 30d @i=

(qﬁly tt %y (Iumuv Qioty** qumw)! define Q=(Q11 QZ; Tty Qn)v q':(qlr [/ TR qn)s
2,={Q: Q. takes M,! permutations of elements of g; for i=1,2,--.,n}

and ”JJ":té [mtj(Mtan'—mu) él ;nE: {a(Quk)_E(Qi..)}z/{NM(Mt—1)}] . Then,

under H, the conditional distribution of @ given £, is
P (@=q|0.} =]T 1/

and the conditional expectation and the conditional covariance of Ay=
(A, Ay, - -+, A,) given 2, under H are zero and 3(Ay)=((s,,)) respectively.
Since the space spanned by the column vectors of the matrix X(Ax)
having rank p—1 equals the space spanned by those of the matrix
[2(Ax), Ay], there exists a vector X such that Ay=2(Ay)X. There-
fore defining the generalized inverse of 3(Ay) by (2(Ay))”, since we
show that

S(Q)=AMZ(Ay)) Av=X"3(Ax)(3(Ay) 2(AN) X=X"2(AN)X ,

the value of S(Q) does not depend on the choice of the generalized in-
verse of J(Ay). Hence we may use

(Eu(An)™ 0)

e

where 3(Ay) is the left upper (p—1) X (p—1) submatrix of J(Ay). We
can propose to reject H if S(Q) is too large and the smallest s, such
that P {S(Q)=s.|2,} <a is an upper 100z percentage point. Since we
don’t use the rankings among all the observations {Y;: ¢=1,2,-.,n,
j=1,2,---,p, k=1,2,...,m;} after alignment within each block but
the rankings among the partial observations, we refer to this test as
semi-aligned rank test.

In order to introduce the Friedman-type rank test, we define the
followings. Let R;;, be the rank of X, among observations of the ith
block {Xi;: j=1,2,---,p, k=1,2,---,m;;} and b(-) be a scores func-
tion from {1, 2,---,1} to real values, which is not constant. If we set

=33 bR Me B(R.,)=31 31 bRl B,=INR. )~ Ealb(®. VN

n My -
and «,,=3] [m (M, —my) 3 (b))~} {NMM~1)} |, where 2,

is the Kronecker delta and E, is the expectation under the hypothesis
H, the vector By=(B,, B;,---, B,)’ has expectation zero and covariance
matrix 3(By)=((r,;)). By the same reason as we prove in the semi-
aligned rank statistic, it follows that the value of T'(R)=B\(2(Bx)) B~
is invariant with respect to the choice of the generalized inverse (2(By))~
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and we may use

Zu(Bx)™" 0
=" )

0 0

where 3,(By) is the left upper (p—1)X(p—1) submatrix of 3(By).

Hence we can reject H when T(R) is too large and refer to the
test as Friedman-type rank test. If b,(k)=Fk/(+1), this test is defined
by Mack and Skillings [7] and moreover if m,,=1, it is the Friedman
test [4]. Since

Pr {lek=rt'jk: 1=1, 2,4, m, j=‘1, 2:"'»1’, IG=1, 2., mij}
SR

under H, this test is distribution-free.

3. Asymptotic property

In order to calculate the asymptotic relative efficiencies, we restrict
the contiguous sequence of alternatives

Ky: X-ijk=F+ﬁi+Aj/m+eijk

where ﬁ‘, 4,=0. As we consider the similar tests with respect to p
i=1

and B; (1=1,2,..-,n), we may assume that x=8,=0 (¢=1,2,-..,n).
Then the distribution function of {X;,: ¢=1,2,---,m, =1,2,---,p, k

. n p Mij

=1,2,-+-,m;} under Ky is QN‘,(t):;[;[1 ;11 ;[;[1 F(t;;u—4,/YN).

Here we set the following Assumption (I) to get the asymptotic
theory for large n.

AssuMpTION (I). Let M;=M for 1=1,2,.--,n. We set u=(u,, us,
ceey Up)y My=(My,- -, my) and U= {u: tﬁ u;=M, uy, Uy, -+, U, are non-

=1

negative integers}. Let # be the number of elements, then $U < +oo.
Now we assume that, for w e U, the vectors m,’s satisfy lim [1/n#{7:
m,=u}]=a, where 0<ay=<1 and there exists u ¢ U such that u;=1 for
7=1,2,---,p and lim [§{¢: m,=u}/n]>0.

At first we get the following lemma for the semi-aligned rank test.

LEMMA 3.1. If we set J,(t)=a,(—[—1t]) with [—It] being the largest
integer not exceeding —It and J(t)=lim J,(t) for 0<t<1 and if Assump-

l—o0

tion (I) and the condition [c, 1]—[¢, 5] of Sen [9] are satisfied, the semi-
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aligned rank test statistic S(Q) has asymptotically a noncentral y-square
distribution with p—1 degrees of freedom and the moncentrality param-
eter

o={" L i@ENEE]
([ wena—{"_|" sa@wE@HEE )]

under {Qys} probability as n— oo, where H(x) is the distribution func-
tion of the ramdom wvariable em—él..=em-—j‘j:1;§em/M and H*(x,y) s
the distribution fumction of the ramdom vector (e —é.., 2—é:..), du=
> wdM, = 3 alw(d— 1), Us(ds— T}, -+, U dy— D)) amd 7=’

[uez“U auz‘u] #
ProoF. From Theorem 3.1 of Sen [10],
@3.1) z(AN)=(1/[u€qu#{i: m¢=u}M]>
(m 8 33 (@) -aQuI S

ueU ie{i: mi=u) j=1 k=

(M—1)})
+[Lweya-{" " sae@Eeiev)
) ueZCU auzu/Mz ’

where —~ denotes convergence in probability and

ul(M‘_’ ul) U W ) ulup
(3.2) S| W wM—u) e U,
ulup uzup .« o o up(M_ up)

If we set V,,,(u)z(l/«/N) o P } {a(Qi;x) —a(Q:..)} and V(u)=(Vy

1€ {i: mi=u
@), V@), + +, Vio, (W), Vas(u), - -+, Vi (W)’ for u € U satisfying u,21 (5=
1,2,--+,p), from Theorem 4.1 of Sen [10], under {Qy,} probability, V(u)

— N(p, 3,) with p1={r E@—J(H(x))dH(m)}au(Al-—Zu, di—Tuye ey dy—
—w di

Gy and 3= Weydu—{_ |7 IEEIEEOWE@ )| B0 1,
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- 1, 1,-- 1)/M )/M where I,, is the unit matrix of order M. Hence
setting W(u)= < > Vi Z‘. Vier®++s E Vpk> ,

3.3) W@w)— N(gt, 2)
where pr,=ay S‘j —‘%;J(H(x))dH(x)(ul(Al—Zu),---,u,,(Ap—Z..))’/M and 3,

=au[S:{J(u)}2du—r S" J(H (@) (H(y))dH*, y)JEu/Mz. Also the ex-
pression (3.3) holds even if u satisfies u;=0 for some j. Since {W(u):

u € U} are independent random variables, Theorem 3.2 of Billingsley
[3] implies that

(3.4) Ay— N(ps, 3)

where ”3“5 —J(H(w))dH(x)p and X is the expression (3.1). Note

that S(Q)=A,3" AN —AL{(Z(Ay))"—3"}Ay. The first term of the right

hand converges to a noncentral y-square distribution in law and the

second term converges to zero in probability. Thus the result follows.
On the other hand, we have for the within-block rankings

@5)  ¥By= 3 #li:m=u) 3 (bul)—bu} S/ (nM (M- 1)
— 2 )bl ) auSu/IMM-1)

as n—oo where X, is defined by (3.2). Hence if we set b,=(by(1),

bu(2),- -+, bu(M)Y,  du(k)=E{—f(XP)F(XP), du=(du(1), du(2),---,

du(M)), and »,=[blydy/{M(M—1)}] 2 aut,(4,—44) where X is the
uc

kth order statistic among M observations from F, we get the following
result.

LEMMA 3.2. If Assumption (I) is satisfied and the Fisher infor-
mation number is finite, the Friedman-type rank test statistic T(R) has
asymptotically a moncentral y-square distribution with p—1 degrees of
Sfreedom and the moncentrality parameter (vy, vy, --+, v,)I (vy, vo,+ -+, v,)
as n tends to infinity under {Qy,} probability, where 3 is the matrix
given by (3.5).

Proor. From Corollary 3.4 of Shach [11] and the similar argu-
ment in proving Lemma 3.1, it follows that the mean of the asymptotic
distribution of A4, is v,, and the remainder of the proof is similar to
that of Lemma 3.1.
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Hence combining Lemma 3.1 with Lemma 3.2, we get the follow-
ing theorem.

THEOREM 3.3. If the assumptions of Lemma 3.1 and Lemma 3.2
are satisfied, the asymptotic relative efficiency of the test based om S(Q)
with respect to the test based on T(R) as the mumber of blocks m tends to
infinity is ARE (S(Q), T(R)):(M—1)< { S“’ diJ(H(x))dH(x)} z/ [S‘ (Jo))dt

- X 0
-7 17 s @EE) @, 9)]) (2 ) — 5[ S btk E{ - £
(X)W (X)L D).

Proor. That the asymptotic relative efficiency is the ratio of those
two noncentrality parameters in Lemmas 3.1 and 3.2 implies the result.

Sen [10] showed that the values of the above integrals are num-
erated only for the special scores and the normal distribution. There-
fore ARE is stated in Table 1 for their scores and the distribution.
Table 1 shows that the semi-aligned rank test has higher asymptotic
efficiency than the Friedman-type test.

Table 1. Asymptotic Relative Efficiency of S(Q) with respect to 7T'(R) as
the number of blocks tends to infinity when F is normal

M (block size)

2 3 4 5 10 20 50 +oo
a. aWk)=bi(k)=E, Z{*
1.571  1.3%6  1.307  1.252  1.137  1.075  1.033 1
b, auk)=bu(k)=Fk/(I+1)
1.500 1.349  1.263  1.210  1.105  1.052  1.001 1

E, Z{®: The expected value of the kth order statistic among a sample
of size / from the standard normal population.

When F is normal with variance ¢%, the likelihood ratio test sta-
tistic (F-test) is U(X)=?ﬁ m.,()?.,.--)_(...)Z/a2 where m.,=£‘, my, X,.=
=1 i=1

n_ Mij - n ™if
N Et Xiifm., and X..=3) ,ﬁ Zi‘. X.;i/N, and we reject H if U(X) is too
i=1k=1 i=1 =1 k=1
large. Here if m;;=m, for i=1,2,---,n and j=1,2,.-, p, the semi-

aligned rank test is the aligned rank test introduced by Sen [10] and
he showed the following. If Wilcoxon scores a,k)=Fk/(l+1) and F is
normal, J(t)=t and ARE (S(Q), U(X))=3M/({4n(M—1)}[1—(3/r) Arctan
{(2M-3)/(2M—1)}'*]). Therefore this ARE takes 3/r for M=2, attains
a maximum 0.966 at M=3 and then decreases strictly to 3/r as M— co.
Also if normal scores a,(k)=E Z® and F is normal, this asymptotic
relative efficiency is 1.
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4. Comparison with Anderson’s test

In this section, we restrict the model (2.1) to the randomized block
design with one observation per cell. Then Shach [11] showed that
the Anderson test is better than the Friedman-type test if we compare
these two tests by the local approximate Bahadur relative efficiency for
shift alternatives. But we shall find that the Friedman-type test is
better than the Anderson test in the sense of the asymptotic power
in this section.

So let us introduce the following test proposed by Anderson [1].
We let R;; be the within-block rank of X, introduced in Section 2

and define D,,=#{i: R,,=k} and Vn=(p—1)k‘2 é(pk,—n/p)z/n, and

when V, is too large, we reject H. Then this test is called Anderson
test.

From Corollary 3.3 of Shach [11], under {Qy,} probability, the sta-
tistic V, has asymptotically a noncentral y-square distribution with (p—

1)2 degrees of freedom and the noncentrality parameter 6,_2 (4,— 4y
2 [E{—F(X?)f( X))} including 4y=:--=4,=0 as n—oo. On the

other hand, from Lemma 3.2, under {Qy,} probability, the statistic T'(R)
has asymptotically a noncentral y-square distribution with p—1 degrees

of freedom and the noncentrality parameter 3,=[1/{(p—1)p}] Z(Ai 4)-
(316,00 B (= XONFXNE/5 0,09-5)* as moo. Hence if we

take b (k)=E{—f'(XP)/f(X)} for k=1,---,p, we get 3,=08,=4.
Furthermore from the table of a noncentral y-square of Yamauti (1972),
Pr{yt,-(8) = Fp_1(@)} <Pr{y;-.(3)= F,_i(e)} where xi(d) is a noncentral y-
square random valiable with k degrees of freedom and the noncentrali-
ty parameter 4 and Fi(a) is the upper 100a percentage point of the
central y-square with k& degrees of freedom. Also in some cases, we
give the numerical comparison of these two tests in Table 2. We can
see from Table 2 that the asymptotic power of the Friedman-type test is
considerably larger than that of the Anderson test. So as Theorem 3.3
shows that the asymptotic power of the semi-aligned rank test is larger
than that of the Friedman-type test, it follows that the semi-aligned
rank test is the best of these three tests in the sense of the asymptotic
power.

The way of making Table 2 is as follows. We decide 3, such that
Pr{y:_(3;)=F, (a)} =B for fixed @« and B. Then we compute 9,=29,

|2 00 EA— o0 &N (£ 10,00 =51 £ B {— XN PN
and give Pr {y{,-28;)=F,_(a)}.
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Table 2. Asymptotic power of the Anderson test

p (block size)
3 4 5 10

a. bk)=k/(l+1) and F is normal, or
b(k)=E, Z{® and F is logistic

.05 .50 .39 .33 .28 .17
.80 .70 .61 .54 .33
.01 .50 .38 .29 .23 11
.80 .69 .59 .50 .24
b. buk)=E {—f(X{®)/f(X{P)}
.05 .50 .39 .32 .28 17
.80 .70 .61 .54 .32
.01 .50 .38 .28 .23 .10
.80 .69 .59 .49 .23

a: Level of significance

B: Asymptotic power of the Friedman-type test

E, Z{®: The expected value of the kth order statistic among a
sample of size / from the standard normal population.

5. Applications of a regression model and ordered alternatives

Here we restrict the model (2.1) to the regression model; X;;,=
p+Bit+de;+ey 1=1,2,--+,n, j=1,2,---,p, k=1,2,- ., m;;) where e,
has a distribution function F(x) with density f(x) and ¢, is known.
Then we consider the null hypothesis H': 4=0 versus the alternative
K': 4>0. Since we consider only similar tests for the nuisance param-
eters 4 and B;, we may assume that the distribution function of {X,:
1=1,--+,m, j=1,--+, p, k=1,--+, m;} under H' and under K’ are re-

n p Mij n p Mij
spectively P (.1&:):1]:[1 10 J’_Il F(x,;,) and (9,54(.1\c)=i]:[1 ;”-1 J_Tl F(z,—c,4).

j=1k=

Let R;;; be the rank as defined by Section 2 and by (-) be the scores
function and when T’(R)=i jfp‘_, fi_‘fb,,i(Ri,k) is too large, we reject H'.
i=1 j=1 k=1

If d(x, 6)=f(x—0) satisfies condition A; of II. 4.8 of Hajek and Sidak
[6] and we also regard @Q/,{-} as the probability measure of {X,,;: i=
1, c*y Dy j:]-y""p; k=1,-.-, mtj}

W‘Q&{Rinzru,‘! t=1,.--,m, j=1,--+, p, k=1""’mi1}ll=o
_ d n p ™y Y
a4 S“'SR=r-l;‘;;D;k__,lf(xilk_cj )AxX|4=0

(T A TE S in—os) ol
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=S"'SR=,75 > 5 T[ S@ped)(=e)

mij

Thus it follows that the test with eritical region T/(R)=3: jﬁ g
hin

E {f'(X§fu®) f( X)) 2k is the locally most powerful Wlt -block
rank test for H'’ versus K’ at the respective level.

Next let Q;;; be the semi-aligned rank and a(-) be scores function
as is introduced in Section 2 and we decide to reject H’ when S'(Q)=

E 2 Z c,a(Q;;.) is too large. The upper tail probability of this test is

i=1 j=1k=

numerated by the conditional probability P{:|2,}. Then we get the
following theorem for the asymptotic relative efficiency corresponding
to Theorem 3.3.

THEOREM 5.1. Suppose that the assumptions of Lemma 3.1 and
Lemma 3.2 are satisfied. Then the asymptotic relative efficiency of the
test based on S'(Q) with respect to the test based on T'(R) as n— oo 18
given by the formula of ARE (S(Q), T(R)) in Theorem 38.3.

Proor. The conditional mean and variance of T'(Q) given £, un-
der H' are respectively E, {T(Q)|2,}= c, 2 m,8(Q;..) and Varg {T'(Q)

12 =5 [3 3 (0@ - 3@ 3 mi,(c, -3 m,,c,/M) JJor-. Here
from (3.1) and (3.4),
[S'(Q@—Ex {S'(@)|2.}]vVary {S'(Q)[ 2.}
—N(0, 1) under H’
— N(ps, 1) under {Qy,} probability,

where {Qy,} is defined in Section 3 and

m=[|" LiEE@WHE/

V(| vera-{" 7 sewer, N

[ué?q/' Qu ;S‘_, c,u,<4, 21 uM;,/M)/

«/uglfu ay IE; u,(c,—é u,,c,,/M)z] .

On the other hand,
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[T'(R)—Eg {T'(R)}]v Vary {T'(R)}
—N(0,1) under H’
— N(pz, 1) under {Qy,} probability ,

where = 31 bu(k) B {— S (XESXEN [V HAL-1) 5 (bull)—Bi}* |

) auéc,u, A,—é wed /M «/ > a.,iu, c,—-Ez:‘, wCr/ M 2 . The
k=1 k=1

ueU j=1 uevU j=1
result follows by noting that ARE (S'(Q), T"(R))=(g/ps)*

Hence it follows from the result in Section 3 that the asymptotic
power of the test based on S'(Q) as n— oo is higher than that based
on T'(R). If we set ¢;=j and b(k)=Fk/(l+1) and let m,=1, the test
based on T'(R) is the Page [8] for ordered alternatives K": r,<7,<---
<rt, (with at least one strict inequality). Also Araki and Shirahata [2]
showed that the test based on T'(R) has highest asymptotic power
among some distribution-free tests. But Theorem 5.1 shows that the
test based on S'(Q) given by setting ¢,=j is better than T'(R) if the
assumptions of Theorem 5.1 are satified.
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