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Summary

This paper gives some results on calculation of probabilities and
moments of the discrete distributions of order k. Further, a new dis-
tribution of order k, which is called the logarithmic series distribution
of order k, is investigated. Finally, we discuss the meaning of the
order of the distributions.

1. Introduction

Philippou, Georghiou and Philippou [6] introduced some distributions
of order k such as the geometric, the negative binomial and the Poisson
distribution of order k. They are defined as follows:

(i) The geometric distribution of order %k

A random variable X is said to have the geometric distribution of
order k with parameter p, to be denoted by G.(»), if

Tpteetz
P(X=g)= 3 (U T8 pe( L% g,
TpeenZy \Lyy * 0y Ly D
where the summation is over all nonnegative integers z,,---, 2, such

that
x4+ 2%+ - +kx,=2—k, and q=1-—p.

(ii) The negative binomial distribution of order k

A random variable X is said to have the negative binomial distri-
bution of order k¥ with parameters p and », to be denoted by NB(r,
p), if

P(X=x): 2 <x1+ e +wk+'r—'1> p;;(l)zﬁ'""""k ’ :cgk/r ’
Ty \Lyy © 0 0y Ly r—1 D
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where the summation is over all nonnegative integers x,---, 2, such
that

X+2%,+ - - - +hx,=x—kr .

This is the distribution of sum of » i.i.d. random variables distributed
as Gy(p).

(ili) The Poisson distribution of order &

A random variable X is said to have the Poisson distribution of
order k with parameter 2, to be denoted by P,(1), if

i PRI

’ xZOr 17"' ’
m]_!' ¢ 'xk!

P(X=x)= > e

ey

where the summation is over all nonnegative integers x,,---, x, such
that

€ +20,+ - +Hkr =2 .

Philippou, Georghiou and Philippou [6] proposed that the number
of trials until the occurrence of the kth consecutive success in inde-
pendent trials with success probability p is distributed as G.(p). They
also derived its mean and variance and the probability generating func-
tion from the definition of G.(p). Of course, they coincide with those
of the number of trials until the occurrence of the kth consecutive
success in independent trials (see Feller [2]). Further, Philippou and
Muwafi [7] discussed the relationship between the geometric distribu-
tion of order k and the Fibonacci sequence of order k.

It is sometimes convenient to consider the shifted G.(p) and the shift-
ed NB,(r, p) distributions so that the support of each distribution should
become the set {0,1,2,---}. We shall denote by G,(») and NB,(r, p),
respectively, the shifted distributions defined above.

In Section 2, we shall give some useful formulas for calculating
their probabilities and moments. In Section 3, we consider a new type
of distribution of order k, which is called the logarithmic series distri-
bution of order k. In the last section, we shall discuss what the mean-
ing of the order of each distribution of order k is. It is explained to
be the degree of the polynomial which is the probability generating
function of the generalizer in the ‘ea-generalization’, which determines
each distribution of order k.

2. Calculation of probabilities and moments

It is not easy to calculate the probabilities of the distributions of
order k from the definitions. For the geometric distribution of order
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k, however, the following proposition is useful.

PROPOSITION 2.1. Let X be a random variable distributed as G.(p).
Then we have

0 for <k,

(2.1) P(X=2)= p* for =k,

qp* <1 —x__ﬁ‘,—l P(X= i)> otherwise .

ProoF. Let E, be the event that the first run of successes of
length k occurs at the xzth trial in independent trials with success prob-
ability p. And let F, be the event that a run of successes of length
k occurs at the xth trial and (x—k)th outcome is failure when x—k>
0. It is easily seen that

p*q for x=zk+1,
P(F,)=4 p* for x=k,
0 for z<k.
Then, (2.1) follows by considering that

P(E)=P(F)— 3 P(ENF) for szk+1.

The formula (2.1) can be available for calculating the probability
of the negative binomial distribution of order k, since it is the distri-
bution of sum of » independent identically distributed random variables
from the geometric distribution of order k.

As for the Poisson distribution of order k, we shall treat it as a
special case of the following gemeralized Poisson distribution.

Adelson [1] investigated the stuttering Poisson distribution. We in-
troduce it in a slightly extended form.

Let {X;} be a sequence of independent random variables each one
of which has the distribution determined by

P(X,=ik)=exp(—2)2i,  (k=0,1,2,---).

2k
k!

Assuming that 2=§} A, <oo, we shall call the distribution of X=§ X,
i=1 i=1

the generalized Poisson distribution with parameter 2=(2,, 4;,---). The
probability of X is represented as

PLW I IR

FX=0= 2, o e
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where the summation is over all nonnegative integers k,, k,,- - -, k; such
that

k1+2k2+ e +1:kz:i .

If we put A4,=2,=---=1, and 0=4,,,=2;,,=---, then we get the
Poisson distribution of order k. The stuttering Poisson distribution is
also a special case of the generalized Poisson distribution.

We note that the generalized Poisson distribution can be reduced
to a distribution which is obtained by the usual generalization of the
Poisson distribution by a transform of the parameter.

Before showing that, we shall remark on the wusual generalization
of distributions, especially on that of the Poisson distribution.

Let ¢,(f) and ¢4(t) be the probability generating functions of two
distributions F; and F), respectively. Then the distribution whose prob-
ability generating function is ¢,(¢,(t)) is called a generalized F) distri-
bution (generalized) by the generalizer F;. When F| is the Poisson
distribution, the generalized F) distribution has remarkable properties
about its cumulants and the value of probability at %, which is denoted
by P(k). Since the probability generating function is ¢(t)=exp (A(¢4(t)
—1)), the cumulant generating function is 2¢,(¢’)—2. By differentiat-
ing it k& times, we have

(2.2) ke =Ap(F)

where k; is the kth cumulant and p/(F}) is the kth moment of the dis-
tribution F;. Moreover, ¢(t) satisfies the recurrence relation

1 k+1 - Z % ’
Ty Y IO= Gy )
_ A & PE=D(E) \ [ G§HO(E)
B )

From this, the values of P (k) are calculated by the following formula
k
(2.3) PU+D=2o G+ P (- PG+,
+1 j=o

where P,(j) is the probability function of F..
Suppose we are given a generalized Poisson distribution whose prob-
ability generating function is written as

¢(t)=exp <—% 2i+gl M‘) .

Since 1=§ 2;<oco, we put pg,=2,/2. Then we have
i=1
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o(t)=exp (2(; ,u,-t‘—l)) .

This means that the distribution with probability generating function
¢(t) is the generalization of the Poisson distribution with parameter 2
and the probability generating function of the generalizer is given by

¢z(t)=§‘, pit'. Therefore, we can calculate the probability and the cumu-
i=1

lants of the gemeralized Poisson distribution by using (2.2) and (2.3),
respectively. When the generalizer has the jth moment, the kth cumu-
lant of the generalized Poisson distribution is

k=312, k=1,2,---,7.
i=1

Recently, Philippou [5] discussed another distribution of order Fk,
which he called “the compound distribution of order k”.

3. Logarithmic series distribution of order k&

The next proposition was obtained by Philippou, Georghiou and
Philippou [6].

PROPOSITION 3.1. Let Y be a random variable distributed as NB,(r,
p) and assume that p—1 and r(1—p)—2 (>0) as r—oo. Then

oot
P(Y—kr=y)— 5 exp(—ki)- ",
YooV yll .. -y,,!
where the summation is over all nonnegative integers %,---, ¥, such
that

Yi+2y:+ - +ky=y .

This means that the Poisson distribution of order k is a limiting
form of the negative binomial distribution of order k. When k=1, the
relation between the two distributions is well known.

Now we shall show that a distribution exists which is also a limit-
ing form of the negative binomial distribution of order k.

It is naturally seen that the negative binomial distribution of order
k is defined for any positive real number r by

P(X=a)= 3 (UF  HoArDpruan( L% oo,
ZpeenaZy \Lyy * 0 0y Lpy r—1 D

where the summation is over all nonnegative integers z,,---, x, such
that

T+ 28,4+ - - +hkx,=x—[kr] .
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ProOPOSITION 3.2. Let X be a random variable distributed as NB,(r,
p) and assume that r—0. Then

PX=z2|XzZ[kr]+1)—» X (@ + - - -+, —1)! 1 pz<i>”1+'“+’«'k,
zy, ey LARERY A —klogp P

where the summation is over all nonnegative integers z,---, x, such
that

2, +22y4 - - - +hr =2 .
Proor. Noting that
P(X=[kr])=p"",
we have

P(X=x|Xz[kr]+1)
_PX=2, X=[kr]+1)
T 1-P(X=[kr])

Tyt +xk+’r—1>pz+kr—[kr]<%>-’tl+----Tk/(l_pkr)

@y 42y b oy =2 (k7] <fv1, c e, Xy r—1

_ 5 @+ F T+ r—1) - - (r+2)(r+1)
T\ +2g+ s o +kT=2—[k7] x1! . .xk!
L AT, < q )’1+"‘+’”k
X 1 k(L .
1—p " P

R . kr _1
Notice that lim 72— .
otice a rl_II}l l—p’" % logp

X =[kr]+1) converges to

Then, it can be seen that P(X=x|

, rx=1,2,3,---.

(x1+ et e +xk_1)! < q >31+...+.zk

sty b=z (—k log p)a,)- @)~ \p

It is clear that the limit form of Proposition 3.2 is a probability
distribution on the set {1,2,---}. Hence, we shall call it the logarith-
mic series distribution of order k. And we denote it by LS,(p). When
k=1, the corresponding relation between the negative binomial distri-
bution and the logarithmic series distribution is obtained by Fisher,
Corbet and Williams [3].

The probability generating function and the ¢th moments about
zero (¢=1, 2) are respectively given by

_ 1—7pt
¢rs(t)=a(p) log (TW> ’

pi=a(p)(1—p*—kqp*)/(gp")
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and
pi=a(p)(1—p*+' —(2k+1)gp")/(¢"P™) ,
where a(p)=—1/(k log ).

The next proposition is useful for calculation of the logarithmic
series distribution of order k.

PropoSITION 3.3. The values of probabilities of the logarithmic
series distribution of order k at » (n=1,2,.-.), which are denoted by
P.s (n), satisfy the following recursion formula

3.1) Pus(n)=a(p)[Ps(n)/Pg (0)]—% :);: i[Pz (n—3)/Pz (0)] P.s (9) »

where P; (i) is the value of probability of G.(p) at s.

PROOF. The probability generating function of G.(p) is given as
$5(t)=p"(1—pt)/(1—t+qp*t**) .
Then, it is easily seen that
¢rs(t)=a(p)[log ¢a(t)—klog p] .
By differentiating both sides, we have
(3.2) ¢a(t)¢Lx(t)=a(p)¢3(t) .
Putting t=0, we get
P.s 1)=a(p)[Pz (1)/Pz (0)] .

Hence, (3.1) holds for n=1. For n>1, we differentiate both sides of
(3.2) (n—1) times, we obtain

n—1

(3.4) 5 (";1)¢$—;*-’-‘>(t)¢afgl>(t>=a(p>¢$;—")(t) :

If we set ¢=0 in (3.4), it holds that

n—2

% jZ;}) (+1)Pg(n—3—1) P15 (7+1)+P5 (0) PLs (n)=a(p) P5 (n) .

This implies (3.1).

4. Meaning of the “order”

In this section, we intend to give a systematic treatment of the
order of the distributions by which we can explain the order of the
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distributions.

In the previous sections we introduced four distributions of order
k, that is, the geometric, the negative binomial, the Poisson and the
logarithmic series distribution of order k. The order of G.(p) is indeed
explained as the length of the run of successes in independent trials
with success probability p in the sense of Section 1. For the order of
NB,(r, p), we can explain it in the same way. But we can hardly ex-
tend the explanation to the order of Py (1), because it is only a limiting
form of NB,(r, p) and we think it is not natural that P,(1) is based on
independent trials. We can not explain also the order of the logarith-
mic series distribution of order k& based on independent trials because
of the same reason.

Now, we explain what the meaning of the order of each distribu-
tion is, in other words, how we can get the distribution of order %k
from each distribution (of order 1) and whether the method is the
same one for each distribution.

DEFINITION 4.1. Let ¢,(t) and ¢,(t) be the probability generating
functions of two distributions F; and F;, respectively. Let a be a posi-
tive real number which satisfies ¢,(e¢)<co. Then the distribution F
whose probability generating function is equal to ¢(t)= ¢ (agy(t))/di(e)
is called the a-generalized F; distribution by the generalizer F;.

When a=1, the a-generalization is the same as the usual general-
ization which was stated in Section 2. When F) is the Poisson distri-
bution, the a-generalization is reduced to the usual generalization for
any positive number .

From the definition we can derive the moments of the a-generalized
F, distribution by F,.

PropoSITION 4.1. If F, has its nth moment and ¢{*(a) (=(d/dt)’
()=o) (2=0,1,..-, n) exist, then the nth moment of F is given as

1 & a" () [Z}( i >(_1),_s D _L“ e #5.]’

¢i(a) =0 r! 5=0 iptesrig=n gyle e oq,]

where g} is the ith moment of F, about zero.

PrROOF. The moment generating function of F is written as

#(t)=i(agy(e’))/Pi(e) .

By differentiating both sides n times, we have

@ity gt)=—1— 33 SN [ (7)) (@fdty(apde)y]
& £=0 \ 8

(a) r=0 r!
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Thus,

oL S @ L TV 1ty (o)
@ity plo=— o 33 SO 5 () 1yt (e e -

Note that (¢y(e*))* is the moment generating function of the sum of s
i.i.d. random variables distributed as F,. Then it can be seen that

!
@AY (@) ko= | B oyt

e Fig=n e
Then, the result is obvious.

Now, we propose a method for getting the distribution of order k
from each distr@tion (of order 1). The probability generating func-
tions of Gi(p), NB(r, p), P«(2) and LS,(p) are written respectively as

41— P(1—pt)
(4.1) palts =72

e [ PFA=Dt) \"
(42) gb”(t'k)__<1—t+qp"t"“> '
(4.3) oot k)=exp <—k2+1 i t">
and

oy —1 1—pt

(4.4) duslt; =i g (1 +qpktk+l>.

Putting a,=(1—2")/(1—p), we define

_ k
‘/’Z(t; p)_—_l(t-{-pt’-}- e +p"‘1t")=i._1_(pt)_ .
7 a 1—pt
It is clear that ¢y(t; p) is a probability generating function. Hence, we
denote by Fiy(p) the distribution determined by the probability generat-
ing function ¢,(t; p). Then, the next proposition will be easily checked.

PROPOSITION 4.2. The next two statements hold concerning the
construction of the distributions of order k.
(i) Gu(p), NB(r,p) and LS,(p) are obtained by the a,-generalization of
Gy(p), of NBy(r, p) and of LS\(p), respectively, by the common general-
izer Fy(p).
(il) Py(A) is obtained by the a,-generalization of P;(1) by the general-
izer Fy(1).

From Proposition 4.2 we can explain that the order of each distri-
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bution is the degree of the polynomial which is the probability gener-
ating function of the generalizer in the sense of the proposition. And
we shall note that the second statement of Proposition 4.2 is consistent
with Proposition 3.1, since P(2) is a limiting form of NB(r, p) as p goes
to one.

Finally, we call attention to the shapes of the distributions of or-
der k. They are very interesting and notable. Various graphs of dis-
crete distributions including the distributions of order k are given by
Hirano, Kuboki, Aki and Kuribayashi [4].
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