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Summary

The asymptotic bias of the least squares estimator for the multi-
variate autoregressive models is derived. The formulas for the low
order univariate autoregressive models are given in terms of the sim-
ple functions of parameters. Our results are useful to the bias cor-
rection method of the least squares estimation.

1. Introduction and model

To estimate the multivariate autoregressive models, the least squares
estimation method has been commonly used. Kendall [5] obtained the
asymptotic bias of the least squares estimator to order »~! for the first-
order autoregressive model with a constant term, while White [8] to
orders higher than n~' for the model without constant term, where n
is the sample size. Sawa [6] has recently shown that these approxi-
mations are quite accurate even for small n, and thus recommended
their use for the bias correction. His study is based on the exact
moments of the least squares estimator. Shenton and Johnson [7]
reached a similar conclusion by examining the accuracy of these ap-
proximations based on the Monte Carlo experiments.

In the present note, we derive the asymptotic bias of the least
squares estimator to order »~! for the multivariate autoregressive models
with a constant term. Since the resulting bias formula is expressed
as a simple matrix function of parameters, it can be readily used for
the bias correction. It includes various simpler models as special cases,
and the bias formulas for low order univariate autoregressive models
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are turned out to be relatively simple. Incidentally, we will point out
an error in the asymptotic bias formula given by Groenwald and de
Waal [4].

Let us consider the m-variable gth order autoregressive process

( 1 ) x;=Bix,_1+-- +qut—q+b0+wt ’
where xt:(xuv Lizs* s xtm)’! wt=(wtlv Wigy®**y wtm),r b0:(b01; b02r Y bOm),s
and B, (k=1,---,q) are the mXm coefficient matrices. We make the

following assumptions:

(A1) The w,’s are independently, identically distributed with mean zero
and covariance matrix £, and that all characteristic roots of
|A2,—A"'B,—---B,|=0 are less than unity in absolute value.

(A2) For some s, E {jw,[}<+o0, i=1,.., m.

Let y,, v,, and b be pXx1 (p=mXq) vectors such that

“& l0, {-bo
yt= xt?l , vt= (:) ’ b:{? ’
x;.._q+1 6 (‘)

and B and E (v,v))=4, be the pXp matrices such that
B:[Bl Bz"'Bq} , QU:[Qw 0} ,
L,y 0 0 0

where I,,_;, is the identity matrix of order m(q—1). Following Anderson
[1], (1) can be rewritten as a first order vector autoregressive repre-
sentation :

(2) y.=By...+b+v,,

where y.=[¥u, Yo+ 5 Yiyl's O=[V1, Vizy- -+, v}, and b=(8,) are px1
vectors, and all characteristic roots of B are less than unity in absolute
value. Alternatively, the process is expressed as

(3) z=Az_+u,,

where z,=[y/, 11, u,=[v}, 0]’ with 2,=E (uwu/), and A and £, are the
(p+1)X (p+1) matrices

B b 2, 0
A—[O 1], and Q“—[O O]'

From the successive substitution, we can express z, and E(z,2)) as

z,=d+§a A'w, ., TI'=E(zz)=dd'+> A'R.A",
i= i=0
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and
I''=E(zz_)=dd'+A> A'Q2,A",
i=0

where A'=1,,,, I, is the identity matrix of order k, and d is the (p+
1)th column of A<, i.e., d=[((l,—B)™'b), 1]'.

2. Asymptotic bias of the least squares estimator

For given observations y,, yi,- - -, Y., the least squares estimator of
A is given by
(4) A=r.r-,
where
r }-i .z and T =lﬁ
n i=1 n i=1

To derive the asymptotic bias we assume that the initial observation
Y, obeys the same multivariate distribution as y, for t>1. From the
proof in Appendix it is easily seen that all the results hold, even if we
replace the assumption on y, by y,=0. The following lemma is needed
for determining the order of magnitude in the expansion of expecta-
tions, which has been given as Lemma 3.3 in Bhansali [2].

LEMMA 1. Assume (Al) and (A2) with s,=4k, where k=1 13 a pre-
fixed integer. Then, as n— + o,

(5) E{|[-T|*}=0(n"") ,
and
(6) E{|[,—I|*}=0(n"",

where ||C||=sup (8'C'CB)"* (B'8<1) for any matrixz C and vector B is the
matric norm.

We further assume:

(A3) E{||f“|[2} be bounded for some n>N;.
It may be noted that the assumptions (A2) and (A3) are satisfied,
if the distribution of w, is normal (see Fuller and Hasza [2]).

Now, we define the asymptotic bias of A, denoted by ABIAS (A),
E(A—A), ignoring the term of order O(n~**) for notational convenience.

THEOREM. Assume (Al), (A2), and (A3) for s,=16. Then, as n—
+ o0, the asymptotic bias of the least squares estimator (4) for the multi-
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variate first-order autoregressive model with a constant term (3) is
(7) ABIAS (A)=—n"'Q, i} {A’ tr (A*H)+ Ay,

k=0

PrOOF. See Appendix.

It is sometimes convenient to express the above result in terms of
the original notations B, b and £, associated with the model repre-
sentation (2). By (A.12) and (A.14) in Appendix, it is easy to show
that

‘Qu i Blmk

k=0

‘Qu i AImkI"—l_:
k=0 0,

D_I(Ip, _dl) ’ m=1, 2 ’

where D=3 B2,B" and d,=(I,—B)~'b. Then, combining (A.15), (A.16),
i=0
(A.17) and (A.18) in Appendix, we get

(8) ABIAS (B, b)=—n"'8, 3\ {B"+ B" tr (B*")+ B"+1)
x DI, —d,) .

It is interesting to note that, while B and b are biased of order
7!, the unconditional mean of the process calculated by them is not
biased in the following sense:

{I,—AE(B)}"AE (b)=[I,— {B+ABIAS (B)}]"'[b+ABIAS (b)]
=(I,—B)™'b .
In the above, the use was made of the fact that ABIAS ($)=— {ABIAS

(B)}d1 and d,=(I,—B)™'b. For the univariate pth order autoregressive
model with a constant term, we may just pick the first row of (7) or
(8). However, the formula (8) can be simplified as follows:

(9) ABIAS (B’, .éo)= —n"le! é {B’*+ B’ tr (B**)+ B'**1}
X F(I,, —cl)
where
B ]
B= ,
':Ip—l 0

oo

B=I[8, B+, 8], F=X BP'MB"", M=ee', e=[1,0,---,0], 1=[1,1,--,

=0

1Y, ¢=5 / <1—é‘i ,B,,). The above expression (9) depends solely upon the
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coefficient parameters, but not the variance parameter. Thus, it is
more convenient to use in the bias correction scheme. When p is not
quite large, the formula (9) can be further simplified.

COROLLARY 1. For the pth order umivariate autoregressive model
with a constant term (p=1, 2, 3), the asymptotic bias of the least squares
estimator is given by

(10)  ABIAS (4, éo)=—n-*(1+3ﬂl)[1, “13_,9] for p=1,
- P1

(11)  ABIAS (4, 4, ,éo)z_,,,—l[2+4,gz, 1B+ foy — ﬁo(3+ﬁi+5ﬂz):|

1—f—B,
fo'r p=2 ’
(12)  ABIAS (B hu B ) =—n"1 |55, 2480 B+ 261
BB 4Bty s
AT S

PrOOF. See Appendix.

The result of ABIAS(3) for p=1 is consistent with Kendall [5],
while, as far as we know, other formulas have not been previously
obtained. The completely parallel result to (7) is also derived for the
case of no constant term.

COROLLARY 2. Let B be the least squares estimator for the multi-
variate first order autoregressive model in (2) with a priori knowledge

of by=0. Then the asymptotic bias of B is
(13) ABIAS (B)=—n"'9, é‘a {B'* tr (B**)+ B"**} D™,
where

ProoF. Since d=0 or d,=0 in this case, the first two terms of
(A.1) in Appendix are dropped. Correspondingly, the first term of (8)
is dropped. Then, it becomes equivalent to (13). Q.E.D.

We note that, while the first term of (13) is the same as the
second term of equation (3.13) in Groenwald and de Waal [4], the
second term in (13) corrects an error in their first term. For the uni-
variate pth order autoregressive model without constant term, the re-
sult in (13) is reduced to
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(14) ABIAS (§)= —n"'¢’ 3} {B" tr (B*"')+ B™+} F,
k=0

Further, for the univariate low order autoregressive models without
constant term, the above formula can be further simplified.

COROLLARY 3. For the pth order univariate autoregressive model
without constant term (p=1, 2, 3), the asymptotic bias of the least squares
estimator is given by

(15)  ABIAS (3)=—n""[28] for p=1,

(16)  ABIAS (4, B)=—n""[1+8B,, 8] for p=2,

(17)  ABIAS (B, By, B)=—n""48;, 1+ By, Bi+B;]  for p=3.
PROOF. See Appendix.

The result of ABIAS (3, for p=1 is consistent with White [8] to
order n~! while other formulas have not been previously obtained. For
the higher order univariate autoregressive models with p>8, the bias
formula of the least squares estimator becomes more complicated.

Finally, although the bias formulas in (7)-(9) and (13) are expressed
as the infinite sums of matrix arguments, we can truncate them by
taking the summation from 0 to n in practice. This truncation is
mathematically valid since the remaining terms are in the order o(n™).
Therefore, our results have some applicability to the bias correction of
the least squares estimation method in the multivariate autoregressive
models.

Appendix: Proofs

We first establish a lemma which gives ABIAS (fi) in terms of the
matrices A, 2,, I'"! and the vector d.

LEMMA 2. The asymptotic bias of the least squares estimator (4) for
the multivariate first order autoregressive model with a constant term
3) s

(A1) ABIAS (d)=—n"'Q, [i} A*[- {d'r-ld+dd'1"-1+ (5’: A‘!),,A")
XA’k+lF—l+tr <Ak+l(§ AiQuAli.')I‘—l)}} _l_o(n—l) .
Proor. First, we expand A—A as
1 n

A2 ym(A—A)= <J——ﬁ Stuzl )P =W S (V) + W=V,
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where
W=(/y7m)Suz, ad V=D
Then we take k=2 and
(A.3) E|lv7(A—A)—WII-V)|SE[|W -V .

By the use of Lemma 1 and (A3) the right-hand side of (A.3) is in the
order of n~!. Ignoring the term of O(n~*%), ABIAS (A) is reduced to

(A.4) ABIAS ()= —n"' E {n" w2 - (2 z )r—l}
t=1
Using the expression of z,, we can express i‘, u,z,_, and nﬁ‘:z,z{ as
t=1 t=0

zE; u:zf—l_—_tng (gz+h¢) ’
(A.5)

S zai=3 @d'+ Fo+ G+ Gi+ HoA H),
where

g=ud,

h,= ii k.= i‘, uul_ A",

=?_;|) A'u,_u; A",

=G
i=0

||M8

du, ¢A”

oo

A= Bm A Syt 4

i=0
Noting that E {(u,2_,)(z.2))} =0 for s>t, the expectation for given
s is
(A6) E {u 2" (z, z )1’-1}
=E {u.zé-xl’“(z mi) I’"} —E {u.z:_ll’ “(i‘. z¢z$>1’“‘} )
e t=n
s=1,2,---,n

We first evaluate the first term of the above. Since the expectation
exists only when the time indices of u,’s are equal or pairwise equal,
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it can be expressed by (A.5) as
(A7) E iu,zﬁ_J’“(é ztz{>l’“}
_E {g,r*(j; G,>r-1+ g,r-l@ G;)r—l
+h I (3 B+ RIS H)
t=s8 t=s
The first term of the above can be reduced to

B (5 6)r) =5 or(§ £

=E [ud'T 3 dua"T- .
Since d'I''d is a sealar, we get
(A.8) E {g,['"<;§ G,)I‘-l} =52“<§ A”‘)F“(d’l’“d) .
Similarly, the second term of (A.6) is reduced to
5o {56} - o5
=E {u,d'r-l | Aku,d'r-l} :

Since d'I'! i A*u, is a scalar, first transposing it and then taking the
k=0

expectation, we get
E {g,r-l(g G;)r-l} =szu( 3 AM\Idd T
The third term of (A.7) can be written as
L
D) A ol
,u,_iA"“I"lA"u,u;_iA”‘+‘I’“E .

Since u|_ A"'I" “A"u, is a scalar, first transposing it and then taking
the expectation, we get

E{ r-l(i >r-1} -0, {z A'kr-l@o A‘Q,,A”)A”‘“}I’“.
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The fourth term of (A.7) can be similarly written as
E {hI (3 B)Y
B {31 5 L)

-E [

Since u)_,A""'I'"'A*"'u,_, is a scalar, we use the trace operation and
take the expectation, we get

‘u‘ ‘Ali 111_1Ak+iu3_ IAIkI"—l}

IIMS ||
uM& i

(A9) E {h,I"“(é Hg)I‘-*} =.9,,[g AT tr {A"“ (i A‘.Q,,A">I‘“” .

Thus, the first term of (A.7) is

(A.10) E { r-l(i‘, )1’-1}
=2, AT @7 d+dd T+ (3 AQ4") 4™ T
+tr (A"“(éo A‘.Q,A”)I‘“)H , s=1,2,---,n.

It is easily seen that the second term of (A.6) is O(B"*) for s=1,2,

-+, m, because Au,=[(B'v,)’,0]'. Since O(B"*)=0(p""*) where 0<p<1
by the assumption on the characteristic roots, we have i‘, O(B"*)=
0O(1). Thus,

E {n-* S, ,_11‘-1@ z,z{)l’"} —E {u,zLJ'"(ti:(}) z,z{)l’“} +Om™Y) .

From (A.2) and (A.10), we obtain (A.1) in Lemma 2. Q.E.D.

PrOOF oF THEOREM. We now reduce (A.l) into a simpler formula.
We note three basic relations. First, we have

; Ci B")bo
0 1

(A.11) A= , 1=1,2,.--

Second, using the above relation, we have

(A.12) gA‘.Q,,A“z[g g] ,

where D=§_. B'Q2,B". Finally, I''! is expressed as
i=0
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[ D —D-d,
(A.13) r —[—d{D“ 1+d{D"d,]’

since I' is given by
_[D+dd; d,
P“[ d; 1] ’

where d,=(I,—B)™'b.
Noting that d'I'"'d=1 by (A.13), the first term of (A.1) is given by

(A.14) —n-1Q, ) AT d' T d= —n"'R, 3 AT
k=0 k=0

For the second term of (A.1), we have, by (A.11) and the fact that
F_1d=[0y 07' * %y O’ 1]’1

- 2, 7B* 01[0 0
(A.15) —n“..Qu(Z‘, A”‘I’“dd’l""):-—n'{ i [ }:0.
o ollo 1

Thus, the second term of (A.1) vanishes. By (A.1l), (A.12) and (A.13),
it is easily verified that

gu i AIkF—l(E AtQuAli>Alk+l= gu ké AIZk+l .

=0

Thus, the third term of (A.l) is reduced to

=

(A.16) —n'Q, i A”‘F"<E At‘guAli>Alk+11"—1= —n"'Q, i Anep-t
k=0 k=0

=0

By (A.11), (A.12) and (A.13), we have
k[ < Ai n\ -1 B! _
A (EOA.QuA )r _[ A ][1,,, d].

Then

tr {Ak“(i A‘.Q,,A”)I’“} —tr (B*") .

i=0

Thus, the fourth term of (A.1) is given by

(A.17) —n"'Q, éoArk['—l tr {A’H-l(ii A’QuA”)I'—x}

=0

=—n7Q, 31 AT tr (B} .

Combining (A.14), (A.15), (A.16) and (A.17), and noting that 1+4tr (B**!)
=tr (A4**"), we get the desired result. Q.E.D.
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Sketch of the Proof of Corollaries 1 and 3. We illustrate the deri-
vations of bias formulas in Corollaries 1 and 3 by (16) for p=2. Let
A, (1=1,2) be the distinct characteristic roots of B. Then by the use

of decomposition B=HAH' where A=<’Il O> and H= 1 <Z‘ 22), F
0 2, A—A\1 1

in (9) is reduced to

1 -1
- 1-2 1—4,4
(A.18) F=H[§__.LA"< i)(l, —1)A"]H’=H 1‘ 112 e
1—22 1-2 )
and hence
1 1
A.19) HF-H=1="A1-H)1-4n) =4 1-24 |
(A—2) 1 1

1-22, 1-2

where we used the relation H'e=(1, —1) in (A.18). Then the first
component of (14) becomes

(A.20) CH 3 [Ak(é zgﬂ) +A2~+I}H'F-le
k=0 i=1
_A-RA-BA=2E) )
(21— 4y)
(22 25 0
I—Xf + 1‘—'2112
X 2 22
0 1 2
1—1122 + 1_23
1 1
X =1—84,2, .
1 1 <—1 e
(1—22, 1-2

Since A4,=—8, and A,+4,=8,, we obtain ABIAS (éz)z —n~'(1+38,). For
ABIAS (8,) in (16), we use (0, 1) instead of e in the last term of (A.20)
and the remaining calculations are exactly the same. If two roots 2,
and 1, are equal, the Jordan canonical form should be used in the de-
composition of B=HAH' where H= (i 2—;—1>, A=<3 i) and 1=4,=4,.
The resulting formulas for ABIAS (/§1) and ABIAS (,§2) are the same in
the above. Similarly, this method can be used to derive (10)-(12) and
(15)-(17) with minor modifications. Q.E.D.
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