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Summary

Kernel estimators of conditional expectations are adapted for use
in the analysis of stationary time series containing missing observations.
Estimators of conditional expectations at fixed points are shown to have
an asymptotic distribution with a relatively simple variance-covariance
structure. The kernel method is also used to interpolate missing ob-
servations, and is shown to converge in probability to the least squares
predictor. The results are established under the strong mixing condi-
tion and moment conditions, and the methods are applied to a real data
set.

1. Introduction

Time series data sometimes contain missing observations. Record-
ing of a discrete-time stochastic process {X,; ¢t=0, +1,---} commences
at time t=1 and ends at t{=1T, but this stretch of length T includes
gaps. Observations can be missed for a variety of reasons, such as
clerical error, malfunction of recording equipment, deletion of appar-
ently “bad” observations, and the inability to observe the process at
certain times, for example at night-time or on weekends. Most methods
of time series analysis are ideal only for Gaussian data, and even here
the presence of missing observations causes complications. There has
been little attempt to develop methods of analyzing non-Gaussian series
with missing values by explicitly non-Gaussian methods, and this paper
attempts to fill this gap.

We assume throughout that X, is strictly stationary and ergodie,
so any necessary detrending has been carried out in advance. The
method of trend estimation of Akaike and Ishiguro [2] seems particularly
convenient when missing values occur. Following Parzen [10], introduce
a sequence b, t=1, 2,..-, such that
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; 1, if X, is observed,
o 0, if X, is missed .

Throughout we assume b, is independent of X, for all ¢, s, so X, does
not go missing on account of the value it takes. Define

T T
b()=T"" ; bb._; , 0=JT-1; b=b(0)=T"'>0,.
t=j7+1 t=1
The best predictor, in the least squares sense, of X, given X, ,=x
(for j positive or negative) is the conditional expectation

(@) =E (X,| X,_,=®) .

For non-Gaussian processes, such as non-linear AR ones, v,(x) need not
be linear in z, and need not depend on only the second-order proper-
ties of the process. Therefore nonparametric estimation of v,(x) for
various j, « should provide detailed information on structure without
imposition of implicit assumptions of linearity or Gaussianity. In addi-
tion a missing X,,, can be interpolated by a nonparametric “estimate”
of v/(X,), which hopefully will capture any nonlinearity in the process.
Let K(x) be a real integrable function and

o(@)=(Th)™ 3} b (X, —2)h™)
/@) =(Th)™ 31 bb XK(Xey=ah™), >0,

where b is a positive “bandwidth” parameter regarded as decreasing
as T increases. We estimate v,(x) by

(1) b y(x) =c,(x) {b(5)f ()} ,
where
(2) Ff@)=c(@)/b

estimates the probability density function (pdf) of X,, f(x), which we
assume throughout exists but is unknown, and estimation of f(x) is
itself of interest particularly as v,(x) might be linear but X, non-
Gaussian (as in linear AR processes with non-Gaussian innovations).
Given that X, is observed, the formula (1) can be applied to interpo-
late a missing X,,, by »,X,). With no loss of generality we assume
throughout that

SR Kw)du=1.



KERNEL ESTIMATION AND INTERPOLATION FOR TIME SERIES 405

For example, we have the “Gaussian” kernel
(3) K(x)=(2r) "2 exp (—2%/2) , zeR.

The methods described here are in principle readily extendable to
estimation of higher-order conditional expectations such as

(4) EX| Xy r Xiop-y) »

as well as joint pdfs of X,,.--, X, , and conditional pdfs.

Masry [9] has recently studied probability density estimation for a
continuous process from random sampling. The references [1], [3], [11],
[13]-[16], [20], [21] are among those which are concerned with nonpa-
rametric kernel and other estimators from equally-spaced time series
data.

2. Asymptotic normality of conditional expectation estimator

In order to build up a comprehensive picture Qf the functions v ()
they will be estimated, for j=1,---,q, over a grid of distinct points

r=2xy,++, %,. Of interest, therefore, is the multivariate CLT for the
gr-dimensional vector {v(z,),---, &(z,)}, where
P(@)=(1(2:), + +) D))" s 1=1,.-0, 7.

For an open set SCR we assume
f(x)>0, xeS,
(5) f(x)eLip(4,8), v, (x)eLip@, S), 0<i<l, j=1,---,q.

The joint pdf of X,, X,,, exists and is continuous and bounded on Sx S,
the bound being uniform in u. For some y>4>0,

(6) E|X,f*<o0 ,
(7) E(X.,}*|X,.,==) is bounded on S, j=1,---,q.
Moreover,

We assume X, is strongly mixing (e.g. Ibragimov and Linnik [8], pp.
305-306) with mixing coefficient «, satisfying

(8) 2o/ =0(n""), asmn—oo,
k=n

with 3 the same as in (6). For 0<j7<k=<q we define
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T
b4, )=T"* > bzbt—jbt—k ’
t=k+1

and impose an “asymptotic stationarity ” condition on b, (cf. [10]), as-
suming the fixed probability limits

(9) plimb(j, )24, k),  0=j<k=q,

exist. Note that b=b(0, 0), b(7)=b(0, 7), and assume

(10) BU)2BG, >0,  1=j=q,

(thus 8=5(0, 0)>0). As far as h=h, and K are concerned we require
(11) hT— o, A*%T—0, as T— oo,

(12) |K(x)|=CA+|2)™,

where 2 is as in (5), and C denotes a generic constant throughout the
paper. Finally define

p(@)= {1(®), - - -, ve(@)}*, K=SR K(o)yde .

THEOREM 1. Let the above conditions hold. Then for any distinct
x, € S the vectors

(Th)*{o(;) —v(2;)} , =107,

converge as T— oo to independent q-dimensional normal variables with
zero means and covariance matrices with (7, k)th elements (§<k)

(13) kf (@) {B(I) ' B) Bl — 5, B)wi- s, () — B~ (@ Iva(®,)} -

A consistent estimator of (13) is
(14) k(@) BB F ()} i) —b715 (2)5u(x))] »
where

Wiy, (x)=(Th)™* Zz"’ b.beyjib 1 X Xoy ;2 K(Xi_p—x)h7) .

Thus estimators at distinct points are independent though estima-
tors for different lags at the same point are correlated. The same is
true when there are no missing data, b,=1, when (13) reduces to «f(z;)!
Awi_ s (@) — v (x)vi(2;)}, so matters are not greatly complicated by the
missing of data. Of course this leads to imprecision, the extent of
which depends on the pattern of missing values.

Example 1. The simplest stochastic generator of b, is Bernoulli
sampling, the b, are independent and P (b,=1)=z. Then g==, B(j)=r
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(5>0), B4, k)==" (0<j<k) and (13) is
£ f (@) {r 2w () — 7 '3(2)} i=k,
k(@) 7' {wp g, (20) — v (2 )ve(,)} 5 i<k.

Variances, in particular, can therefore be seriously inflated.

(15)

Erxample 2. A simple deterministic pattern of missing data, con-
sidered in [10], [17], has repetitions of N observed values followed by
M missing ones, so 3=N(M+N)™'. It clearly suffices to evaluate 8(j, k)
for 1<j<k<M+N, and this is given by

B(7, k)=(M+ N)*{max (N—Fk, 0)+max (k—j— M, 0)+max (j—M, 0)} .
If ¢g=N then N>M is necessary for (10). For j=Fk (13) is

cf(x)"(M+ N)[{max (N—j, 0)+max (j—M, 0)} !
« @oy(%;) — N~'wi(=))]
(16) Sk f(x)7[2r—1)"wy(x) —n W} (x,)] , for N>M,

where #=(M+ N)'N to make comparison with (15). The majorant (16),
which is attained for M<j<N, is larger than (15).

We briefly comment on the conditions of the theorem. Under ap-
propriate smoothness conditions on the power spectrum, Gaussian pro-
cesses, and certain functionals of Gaussian processes, satisfy (8), as do
ARMA processes whose innovations admit a density, and certain Markov
processes. The ¢-mixing condition on the other hand, excludes some
of these cases. For further discussion see Deo [4]. If stronger smooth-
ness conditions are imposed on v, and f, and additional conditions im-
posed on K, then larger values of 2 may be chosen in (11), see [13].

3. Proof of Theorem 1

A full proof is lengthly, so instead we emphasize certain aspects,
in particular how we cope with the presence of missing data, and in-
dicate how in other respects the theorem is similar to others in the
literature. Full details may be obtained from the author. The asymp-
totic distribution of the d(x,) follows from Rao ([12], pp. 387, 520) and
Slutzky’s theorem once we show that, for all constants ¢,;, i=1,..-, r,
j=0’ 1"°'rq7

an (TR 3 [Colelm)—bF @)}

=1

+ 31 e () —bi) () @)} |20, )
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where

o=k 2] < 205‘*‘% Ctj|:{ZCOJVj(xt)+C£/w01(xt)}.‘9(j)

+2 5 Cabll—3, Bor_a(2)] ) £(20)

It suffices to show that the statement holds true conditional on {b,}
(which may be stochastic), because the JI(0, o) distribution is fixed and
depends on {b;} only through the nonstochastic 5(j, k) (9), and is there-
fore the unconditional distribution also. We use the subseript b to in-
dicate operations conditional on {b,}. Then

|E, e(2)=bf (2)|=T™" 3 b|E (b K((X,—2)h™)} = f(=)]
sS|E (R K(X.—2)h ™)} = f(2)] ,
because 0<b,<1, and likewise
|Es ¢,(2) =) (2)f @) SIE (b~ (X)K(Xi—2)h )} —v @) f (@)] ,

and both these bias terms are seen to be O(A~'2T-'?), much as in [13].
Thus the LHS of (17) is replaced by

(TR 33 | Calo(@)—Es o} + 33 Cusle, @) —Eu 0@} | -

Now for some D, 0<D< oo, introduce
X/=XI(|X,|=sD), X/'=X—-X/,
Y/(2)=X!K((X,-;—2)h7) , Hx)=X'K(X,_;,—x)h™") ,
@)=(Th)™ 316b Yh@),  of(@)=c,)—cia) ,
vi(x)=E (X/|X,_;=2), oi®)=EX/X/;|X,_,=2).
Consider first, with argument x omitted.
Var, ¢/ (Thy™ SIbb., {Var Y/j+ 53 b, Cov (¥, Y;;)}
ST {E Y7 —(E Y0)+ 3| Cov (V) ¥4 )|
18) ST-07*{er(2, 2)+ ea(L, 1)+ 33 [Cov (Y2} Y14,

on defining
e, ¢)=E {| X"/ | K((X,_;,—2)h™")'} .
Using Holder’s inequality for s#t,
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(19)  |Cov (Y, Y!))|<Sen(1, 1) +en(2+9, 2V {E|K((X,—2)h™)
- K((X,—s)h7h) [},
but also, using inequality (2.1) in [4],
(20) |Cov (Y}, YIS Cen2+3, 2+ )/ i s1- 10> -
It is easily seen [13] that for <2+, ¢=1 and >0, (x—7, 2+79) €S,

ex(0, $)=h max (E ( X!\ X, =s+u)f @+u)} | | K@w)Pdu
+(sup, |K(u)f) BIX/
SCh{D'~" max B (XX, ;=w+u)+7" B|X!'}
lul <7

and the expression in curly brackets—0 as D—oco. Moreover the ex-
pression in curly brackets in (19) is O(h?), like in [15], [20], [13]. Com-
bining (18), (19) and (20) we have

Th Varb c.l/é 5(1 +h+nha/(2+d)+h—d/(2+a) i ai/(2+0)>

where ¢e—0 as D—oo. On choosing n~h~¥%*? we have lim Th Var, ¢/

D—oo

=0 uniformly in 7. Thus, as in [8], Theorem 18.5.3, (17) will follow
if, for fixed D

@) (Th)'" 3 [Cule(@)—By oz} + 33 Gy lei(e) — By e} 1290, ),

and ¢’—¢ as D—oo. Let us check that the LHS of (21) has Var,
that —»¢ as D—o. For j<k and with 4(-, -) the Kronecker delta
|Th Cov, {cj(®), ci(y)} —blk— 3, k)kwi_; () f (2)4(2, ¥)|
=(Th)™ 33 0bu-slbes s (| E AV (@)Y s sk, W)}
—hkwi_; (@) f(@)4(2, )|+ |E Yi@)|E Y, )]}
+.2':: by j-ibs—ix| Cov {Y (), Y sk, s(¥)}H]
(22) S|h EAY @)Y jor/(0)} — kwi s (%) S (2) 4 (2, Y)]
{ +h7E YA@)E Y o)
+(Th)™ 22 |Cov {Yi(®), Yiise, W)} -

By the boundedness of Y’, inequality (17.2.2) in [8], and arguments
rather similar to those used above, (23) is of order

(23)

D2<h+nh+h“ 5'3; a,,) <D {h-}—nh-}—(a?/‘“"/h) 3 a‘}/‘“”}

which —0 as T— oo on taking af/n~h for 0<¢<2/(2+9). For xz#y,
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(22) >0 much as in [14], [13]. As noted in [16], p. 1388, continuity of

o,(x) implies continuity of /i (x) and thus (22)—0 for x=y by Bochner’s

theorem [15]. Thus with (9) and w/(%)— w,;(x) we have established
lim p lim Th Cov, {c}(), ci(y)} =B(k—J, k)kw;—; (%) f(2) (2, ¥) ,

D—oo T —o0

for j<k. In the same way we have

lim p lim Th Cov, {¢j(x), ¢(y)} =B(5)kv,(2)f (®)4(2, ) ,

p lTigl Th Cov, {c(x), c(y)} =Br f(x)4(z, ¥) ,

so the asymptotic variance structure has been verified. The asymp-
totic normality part of the proof in (21) is omitted because it is lengthy
and almost identical to that of Theorem 5.3 in [13] (which uses the
method of Theorems 18.5.4 and 18.5.5 in [8] for the asymptotic nor-
mality of partial sums under a milder condition than (8)) except that
all expectations involved are conditional on {b,}, as above.

We describe only the most difficult part of the proof that (14) is
consistent for (13), namely that for j<k

p llef}o Wi g, %) =Bk —J, K)o y,1(2) f(2) .
Now
T Zt‘n b j-ibessibei| P EAX X,y ;o K((Xiok— @) 7} — 0y, (%) S ()| — 0
by Bochner’s theorem and in view of (9) it is only necessary to show

that plim 4=0, where 4=w,_, (x)—E, w,_,(x). Write Y/=XX,,, &

T —oo
I(X.X,,,:|£D), Y/=Y,—Y/ and correspondingly 4=4"4+4". Then by
arguments similar to those used previously we have

E, (A')zgpz{(Th)-*+nT-l+(Th2)-l > a,,}—-»O
as T— oo with n~h='. On the other hand

E, |4"|<2h7' D7 E{| XX il | K(X-x—2)h )} SCD™

because the expectation is O(k), and then let D—co.

4. Numerical example (1)

Dunsmuir and Robinson [6] analyzed, by ARMA models, a time
series of daily average carbon monoxide (CO) measurements. The series
contains 663 observations (in parts per million) and 135 missing values,
so T=T98, and the configuration of missing values (which is very irre-
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gular) is apparently “asymptotically stationary”. The observations
themselves are not stationary but were made approximately so in [6]
by linear detrending and extraction of a day-of-the week effect, and
for further details see [6].

The Gaussian kernel (3) was used throughout in the formulae for
F (x) and 5,(x), which were computed for j=1,.--, ¢=28 and an equally-
spaced grid of r=30 x-values which covered the range of the data.
In addition estimated asymptotic 28 X 28 covariance matrices of the »(x)
were computed by formula (14), and the diagonal elements used to esti-
mate 952 confidence intervals for the v, (), using the asymptotic nor-
mality. To estimate 959 confidence intervals for f(x) the consistent

estimator xf(2)/b of the asymptotic variance kf(x)/8 was used. A range
of bandwidth values was tried, h=0.001, 0.01, 0.1, 0.2, 0.4, 0.6 and
1.0, and separate graphs of ?,(z) against  produced for each (j,h)

combination, and of f(z) for each k. Smooth curves were plotted by
GINOGRAF and the CALCOMP plotter on the University of Surrey’s
PRIME Network.

The value =0.001 is much too small for sensible estimates to be
achieved, and the instability of the estimators for other small & values
frequently produced very steep gradients which caused plotting diffi-
culties. On the other hand the curves for h=1.0 were apparently too

smooth. Graphs of f(x) and the d,(x), j=1,---,7 only are presented
for h=0.4 only, in Figure I, the broken line representing 95% -confi-
dence limits. The graph in the top left hand corner of the figure is
of f(x) while the legend “lag j” on the remaining graphs refers to
().

The broad message of Figure I is suggestive of a unimodal, posi-
tively skewed pdf, and v,(x) which are quite linear (offering some justi-
fication for the modelling in [6]) and which tend to approach the hori-
zontal as j increases, although not monotonically. - Noticeable departures
from linearity do appear in the P,(x), particularly for extreme values
of z. For large positive 2 they are well-behaved for some j but other-
wise sharply rising or falling. These phenomena may in large part be
spurious, in view of the small probability density for x>4, as expressed
in the large confidence intervals for such x. For j=7 (and also j=8§,
9, not shown) there is a rather marked downturn from x=3.8 on; in
[6] it was found that the removal of day-of-the-week means did not
altogether dispose of a weekly periodic effect, and perhaps the graphs
are indicative of a weekly nonlinear effect. As far as the covariance
estimates of the ,(x) for different x are concerned, these generally
gave fairly small correlations, and the correlation between »,(x) and
?,,(x) falls off quite rapidly as k increases.
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X102 /

51 5 -
4 4
31 P 31
24, lag 6 2 lag 7

Figure I

5. Convergence of interpolator of missing values

Theorem 1 implies that »,(z)=v,(x)+0,(h"*T"'?) for fixed x-values.
A variety of other consistency results can be established, including uni-
form convergence over a bounded subset of z-values. For the problem
of interpolating a missing X,,, on the basis of an observed X,, it is
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of more relevance to study the convergence of »,(X,) to the random
variable v,(X,), which is the least squares interpolator.

We continue to assume X, has a pdf and is strongly mixing but
now, for some 4>0,

(24) E|X,|["<oo
(25) S < oo >0, r+1=4.
k=1

We assume B(7)=p lim b(j) exists and is positive. With regard to K
T —c0

we require (12) and also that K(x) has representation
(26) K(x):S Rw)edu ,
R

where the integral converges absolutely. Finally

(27) Th2(1+6)(1+7)/d(2+r)_)oo , h_»O as T-—-)OO .

THEOREM 2. Under the above conditions
p lim 9 (X)) = (X..)
T —oco
for fixed 7, m.

The requirements on K now exclude, for example, the uniform
kernel K(x)=(1/2)I(x|<1). The mildest version of the first part of
(27) is Th*— oo, attained when d=y+1. However, the moment and
mixing conditions (24), (25) are weaker than in Section 2, including
cases where X, has infinite variance. We now make no continuity as-
sumptions on f or v, (cf. [3], [5]), and this is achieved by application
of a theorem of Stein [19], which employs the denseness in L, of all
continuous functions with bounded support. A similar result for pre-
diction is available.

6. Proof of Theorem 2
Define
Fa=h | K(@-ohf@ds,  g@)=h" | K(@—y)h) @)/ @)ds

and express 9 ,(X,)—v/(X,) as
DA Xn) =0 (Xp)= F(X)HB() s+ Gy — v (X, (b7'0s 0}

where



414 P. M. ROBINSON

a,=(Th)™ jﬁ‘.ﬂ bebe— ; XK(X,-;— Xn)h ™) —b(5)§(Xa) »

=(Xn) v (X f(Xn) s 6=b{F(X)} —F(X)},
a=F(Xn)— F(Xn) -
We shall show that plima,=0, i=1,---,4; this implies plim Ff(X)=
T —oo —00

f(X,) which is positive a.s. because f is the pdf of X,. The conver-
gence i.p. of b and b(j) to nonzero limits completes the proof.
On using (26) we may write a, as

28) a=T" SR K(uh) exp (—iuX,) g bb.,{H(X,)—E H(X,)}du ,
where H(X,)=X, exp (tuX,_,), reference to X,_, and u being suppressed.
Introduce
X!=XI(X,|<Dhr™"") , X'=X,—X!,
for some D, 1<D<o. By ([4], equn. (2.1))
|E {H(X!)—E HX)HHX)—-E HX)}|
SC(E| X! agZi-a- 1.0
where
E| X/ <(Dh~1P) 2 E X[
On the other hand
E|H(X!)-E H(X!)|=2E|H(X!)|s2D"h E|X,[*.
Thus from (28)

Ela|=T™ SR K(uh)| E ([E, |33 0b, {H(X)—E H(X)}T”
+E, |3 b, {H(X!)—E H(X!)} du

<CT-! S |K(uh)|{<TD’ -2 HT =D/ 2 ar/(2+r)) 2+ TD"’h} du
éC(DIl/ZT l/Zh (l+6)(1+r)/d(2+r)+D—a) ,
where D'=D¥'+-2/¢+>_ (On letting T— oo and then D— oo we establish
a,—%0. By a simpler proof, a;—-0 also.
To deal with a, and a, we may apply Theorem 2, part (b) of [19],

pp. 62, 63. Notice that v,(x) and f(x) are integrable, K integrates to
1, and

sup |K(z)|=CQA+|y)',
B4RV
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which is integrable. Thus f(y)— f(¥), §(¥)—9(¥) a.e. y, and so a,—0,
a,—0 a.s., completing the proof.

7. Numerical example (2)

The sequence of 5 consecutive missing values at t=367,---, 381 in
the CO data set was interpolated. As well as the basic interpolator
discussed in §5, a weighted average based on several of these was em-
ployed, along with backward interpolators and arithmetic means of back-
ward and forward interpolators, all of which share the same consistency
properties but may be more efficient than the one of §5. A still more
efficient, though computationally more onerous, method is possible, which
estimates (4). We report only results for the “forward” interpolator
of Xy s

A T 1 J+n—1 N
X =n g.‘j Vi(Xsgo-r+ 5)

for j=1,-.-,5 and n=1,8. Thus Xaﬁ,&,:fa,(Xm) whereas A;,‘.’,’H is the
arithmetic mean of interpolators based on Xj, -, Xy all of which

were observed, the case n=8 selected to incorporate a possible weekly
effect (see §4 and [6]). Again the kernel (3) was used.

2 2
14 xx 1 xx
XX XX
x o X
04x x Xx o 09x x xx %o
S o©® X
< X 00 X x % x X X
-1 T X Ty x -1 % X X
x X x X
—2 X -2 X
—34 X -3J X
L T T T T T 1 1) T T T L} T 1
355 360 365 370 375 380 385 355 360 365 370 375 380 385
Figure II. »n=1, £=0.2. Figure III. n=3, £=0.01.

Only results for a single bandwidth are presented in each case,
h=0.2 in Fig. II, when n=1, and h=0.01 in Fig. III, n=8. The aster-
isks represent observed values for ¢=355,---, 366, 372,..., 383, while
circles are. interpolations. Interpolation methods would not normally
bridge the considerable discrepancy in level at t=366 and t=372, though

X does so quite impressively in Fig. III. Increasing n or decreasing h
moves interpolations towards the series mean.
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8. Choice of bandwidth

In the applied work we reported above we tried several choices of
h, and in practice this seems a wise, if possibly expensive precaution,
to avoid over- or under-smoothing. Other information is available to
guide the choice of h. The asymptotic theory provides upper and (in
the central limit theorem) lower bounds for the decay of h with T.
In addition it may be desirable to use an & in ,(x) which varies over
x, inversely with respect to supposed probability mass. There is also
evidence that the stronger the serial dependence the smaller & should
be chosen, in order to avoid imprecision (though at risk of increased
bias). In simulations we have examined the performance of bandwidth
selection procedures which incorporate these features. More automatic
procedures are possible. Silverman [18] suggests one, for density esti-
mation from independent observations. The method of cross-validation
has been considered by various authors, though again its performance
in the presence of serial dependence has not been investigated. For
example, Hall [7] shows that a cross-validated choice can minimize, as-
ymptotically, mean integrated squared error (MISE) for nonparametric
estimators using independent observations. Note, however, that band-
widths which aim for a small MISE will not necessarily produce a good
approximation to our central limit result, or good interpolators.

This research was supported by the Social Science Research Council.
I am grateful to Martin Dransfield for carrying out the computations
described in the paper and preparing the figures.
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