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Summary

A new type of random sample, called a generalized censored data
sample, is defined. An approach to finding criteria for the existence
of a maximum likelihood estimate from a finite generalized censored
data sample is presented. This approach, named the probability con-
tents boundary analysis, gives systematically a number of practical cri-
teria, each of which is effective for various kinds of typical distribution
families in statistical analysis.

1. Introduction

Let T' and T be given constants with —co<T'<T<o and X be
a random variable with values in [T, T]. Suppose that the distribu-
tion of X belongs to a family P={P,; 6 € 8} of probability measures
on [T, T] such that P,({T"})=0 and 0<P,({T})<1 for all § ¢, where
the parameter space @ is an arbitrary nonempty set. Let (Xj,---, X,)
be a random sample from the distribution of X. In this paper we shall
consider the situation where information available for X, is only that
its value lies in a subinterval C; of [T", T], whose extreme points are
random variables with values in [7",T], and where C,, 1<i<q, has
nonempty interior whenever C;#{T}. The collection C={C,,---,C;}
is called a generalized censored (g.c.) data sample of size (¢/, q) (with
respect to the family &), where ¢’=number of C,, 1<k=<gq, such that
TeC, and P(C,)=P,({T}) on 8. For example, if T'=0 and T=oc and
if X, is the survival time of an individual ¢ after an operation, then
Ci=(t, ] means that he is reported as alive at least time ¢, C;={oo}
means that he is judged completely cured by his doctor and P,({co})
is the probability of cure (cf. Boag [1]). A grouped data sample, dis-
cussed at the end of Section 4, and a binary response data sample, dis-
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cussed in Section 6 are g.c. data samples of size (0, q).
Maximum likelihood estimation from a g.c. data sample C of size
(¢, g) is the following maximizing problem:

(Problem I) Find sup ¢ ﬁ P(C); 0€b} ,
i=1

where ¢ is a positive constant independent of ¢ (see Moran [8] and
Nabeya [9] for the validity for solving this problem). An optimal solu-
tion of Problem I is called a maximum likelihood estimate (MLE) of
the unknown true parameter of the distribution of X.

The purpose of this paper is to present a new approach, named
the probability contents boundary (p.c.b.) analysis, to finding criteria
for the existence of an MLE. The p.c.b. analysis is to analyze the
inner boundary of the set of probability contents of intervals, and is
a unified and very general approach in comparison with the usual method
of utilizing likelihood equations.

Practical criteria for the existence of an MLE from a grouped data
sample (see (4.4) for its definition) are given in Kulldorff [7] where &
is the family of one-parameter exponential distributions, or the family
of normal distributions with location or scale parameter, or the family
of one-parameter or two-parameter truncated exponential distributions,
and in Carter et al. [3] where & is the family of Poisson distributions.
They obtained these criteria by solving likelihood equations.

Practical criteria for the existence of an MLE from a g.c. data sam-
ple of size (0, q) are given in Kariya and Nakamura [4] where & is the
family of two-parameter normal distributions, and in Kariya [5] where
P belongs to a class of families of one-parameter distributions on R,
the set of real numbers, satisfying some restrictions. These criteria are
based on a method developed in Nakamura and Kariya [10]. The p.c.b.
analysis proposed in this paper gives systematically criteria for the ex-
istence of an MLE which are effective for a good many families of
multiparameter distributions as well as the criteria in [3]-[5] and [7].

In the next section we give a general existence theorem of an MLE,
which is fundamental for the p.c.b. analysis. In Section 3 structure
of a set, called the probability contents inner boundary, is analyzed.
Sections 4-6 apply our approach to more specific structure of the prob-
ability contents inner boundary. Examples 4.1-4.7, 5.1-5.6 and 6.1-6.3
in these sections cover many typical families of distributions which of-
ten appear in statistical analysis.

2. A general existence theorem of an MLE

We begin with rewriting the likelihood 'ﬁ P,(C,) of the g.c. data
i=1
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sample C={Cy,---,C,} of size (¢’,q). It is assumed throughout this
paper that 0<¢'<q and that:

(2.1) For each C, with C,# {T}, there exist two points x,, and
xi of [T, T] such that P(CcN(T", T))=P/([2:, 1)) on 6.

(2.2) There exists no C, such that T ¢C, or P(C)z£P,{T})
on ® and that P,(C,)=0 or 1 on 6.

Put H@)=P,({T}) and F'(x, 0)=P([T', x))/(1—H(0)). The assumption

(2.1) enables us to express P,((C:), 1<k=gq, in terms of H(0), F(x, 0)

and F'(x,, 0) even if F(x, 6) is not continuous at z=wx,;, j=1,2. The

two points = and «' of [7", T'] are said to be equivalent (with respect

to the family ) if F(x, 0)=F(z', ) on 8. Because of (2.1), there exist

a nonnegative integer m and a set {x;} of (m+2) points of [T", T'] with

the following properties :

(i) 2=T"<+ - <%p1=T.

(ii) The points z, and x; are not equivalent if i+j.

(ili) Every extreme point of [z, %) is equivalent to some z,.

(iv) Each point x,, 1<i1<m, is equivalent to an extreme point of some
[xklv ka)'

In case m=0, our observation is restricted to two possible types (e.g.

an individual is not cured, or is cured). In the general case let h,(k)

(resp. hy(k)) denote the integer ¢ such that x, is equivalent to x,, (resp.

). Note that for each 6 €8 and for each C, with C,# (T},

P(C)=(1—HO)(F(nr 0)—F(@p 0 ) if T¢Cs,
P(CO=(1—HO)(A—F (o O)+HO)  if TeCs.

Because of (2.2), there is no C, such that T ¢ C, and h,(k)=hy(k) or that
TeCy PJ(Cy)#H(0) on 8 and (h(k), hy(k))=(0, m+1).

In order to express the likelihood in terms of F(x,, 68),---, F(z,, 6)
and H(6), define nonnegative integers ¢,; (0<¢<j<m+1) and ¢; (1=
=m) by

¢;;=number of C,, 1=Sk=gq, such that T ¢ C, and (hi(k), hy(k))=(3, J),

¢;=number of C,, 1<k=gq, such that T € C,, P(C;)ZH(f) on 6 and

(h(k), ho(k))= (3, m+1).
Then the likelihood can be rewritten as

1T PACI=(1—H@O)-HO) T [F(z,, 6)—F(z, Ol

05i<jsm+1

AT 11— F(a., 0)+ ., 0)HO)*,

where ¢.= > gq,. Note that ¢g=g¢..4+q.4+¢ with q.=§}qi. This
i=1

0si<jsSm+1
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function or the log-likelihood log ]ﬁ P,(C,) is determined by “probability

contents” of the intervals [x;, x,), the intervals [x;, T'] and the set {T'}.

Let R (resp. S) denote the set of extended real numbers (resp. the
closure of a subset S of R’, Euclidean r-space), and put Z={(z," ",
Zmyt) € R™H; 0<2,< -+ <2, <1 and 0<2,,,<1}. We define the function

L:%—®R and the mapping Z:0—-Z by
23) Lz)= ) 0ylog(z—2)+3 Gimsilog (1—2)
0si<jsm i=1
+§ q.log (1—2,+22n41)+4.. 10g (1—2,.1)+q" 108 2nys

H(9) in case m=0,
Z(6)=
(F(xlv 0)7 tt F(xmy 0), H(0)) in case 'mgl ’

where z,=0 and the sum over the empty set ¢ is equal to 0. Note
that [0, 1]~*!, the (m+1)-fold cartesian product of [0, 1]. To relate

the function L(z) to the log-likelihood, we regard R as a metric space
with the distance:

dist (¢, t')=|arctan t—arctan t| , t,t'e R,

where arctan (—oo)=—=/2 and arctan (co)==/2. Since R is compact,

L(z) can be extended to a continuous function L(z) on Z to R by L(z)
=lim L(z,), where the symbol “lim” denotes “lim” and {z,} is a se-

n—00

quence in & with its limit z (cf. Bourbaki [2], Chapter 1). In comput-
ing these functions, the following rules are used: log 0=—oo, 0-log 0=
0, (—0)+(—o0)=—o00 and t.(—o0)=—oo for all ¢>0. The log-likeli-

hood is equal to the function L(Z(6)) up to a constant. Now, Problem
I is reformulated as follows:

(Problem 1II) Find M=sup{L(z); zc Z(6)} .

An optimal solution of Problem II is also called an MLE. Problems I
and II are equivalent in the sense that the existence of an MLE of
Problem I implies the existence of an MLE of Problem II, and vice
versa.

In relation to Problem II, we consider the following two maximiz-

ing problems with the objective function L(z):
(2.4) Find  M,=sup {L(2); z¢ Z(0)} .

(2.5) Find M,=sup {L(z); 2 9Z(6)} ,
where 9Z(0)=Z(6)—Z(6) .
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Supremum (resp. infimum) of a function over the empty set is defined
to be —oo (resp. o), and for subsets S; and S, of R, S;—S, denotes
the difference between S, and S,. The set 0Z(€) will be called the
probability contents inner boundary (p.c.i.b.) of the g.c. data sample
C for the family . Note that the p.c.i.b. 9Z(8) is not necessarily
the boundary of Z(8).

The values M, M, and M, satisfy the inequalities:

LEMMA 2.1. M,S<M=M..

ProOOF. Because of the relation max (M, M,)<M,, it suffices to
prove that M,<M in case M,>—oo. Let t<M, and let 2 be an optimal

solution of Problem (2.4). Since L(z) is continuous on Z(8), there exists

a neighborhood S of % such that L(z)>t for all ze S. Since zZO)NS
#¢, t<M. By letting t—M,, we have M, <M,

Now we show a general existence theorem of an MLE of Problem
II, which is equivalent to Problem I.

THEOREM 2.1. An MLE of Problem 11 exists if and only if there
exists z € Z(6) such that L(z)=M,.

ProoF. Lemma 2.1 proves the “only if ” part of the theorem. Let
z be that of the condition. If M=LIL(2), then z is an MLE of Problem
(2.4). Assume that L(z)<M and let % be the same as in the proof of
Lemma 2.1. By Lemma 2.1, L(3)=M,=M. From this and M,<L(z)<

M, the inequality M,<L(3) follows. Hence % € Z(B) and 2z is an MLE
of Problem II.

COROLLARY 2.1. If M,=—oo, then an MLE of Problem 1 exists.

If Z(0) is closed, then M,=—oco. The converse statement is not
always true.

3. Analysis of the structure of 4Z(8)

A criterion for the existence of an MLE is obtained by seeking a
sufficient condition for Theorem 2.1. For this reason, it is important
to find the value of M, determined by 0Z(6). The p.c.i.b. 0Z(6) de-
pends on the family . We can analyze, however, the structure of
0Z(0) under fairly general assumptions on . Now we assume that
the parameter space @ is a nonempty subset of the product of a Haus-
dorff space 6 and the interval [0, 1), and that F(x, 6) (8=(¢', y) € 6) is
independent of » and H(#)=5 for all 6=(¢",7)cH. We intentionally
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mix up F(x, 6) and F(x, §") to avoid an additional notation. Put F(¢')
=(F(2,, 0'), -+, F(2,, 0')) and 9F(8)=F(®)—F(@'). In order to state
above assumptions and results, define the point-to-set mappings 9((6')
(0’ € @) and h(z") (z' € F(@)) by

H(0)=1{n€l0,1); (¢',7) €6},
h(z)={7€[0,1]; (, 7)€ Z(6)} .

The former depends only on @ and the latter on &P and C. We say
that 9((6") is upper semicontinuous on @' if, for every 6;¢ @’ and for
every open set © in R containing .%(;), there exists a neighborhood
CY of 0 such that H(6")c© for all 8’ € C)/. The upper semicontinuity
of 9((6") implies that, for every sequence {0,=(f,, ,)} in @ such that
lim 0,=6,¢ 8 and lim 5,=7, 75 € J(6}).

In order to study the structure of 9Z(8), define
B=U {{Z'} xh(2'); 2/ € 0F(6")} .

We use the convention that the union over the empty set is the empty
set. It should be noted that BC9Z(6).

THEOREM 3.1. Let the following condition on P be satisfied :
(H.1) H() (6’ € 8) is independent of 6" and I (6')N[0, 1)=9((6") for
all '€,
Then 0Z(0)C{1} in case m=0 and 0Z(0)C BU(F(0')x{1}) in case m=1.
PROOF. Let m=1 and {6,=(0., .)} be a sequence in @ such that
the sequence {Z(d,)} converges to 2=(2,- -+, Zn41) € 0Z(8), i.e., lim F(6;)
=2, 2s)=2 and lim 5,=2,,;. If 2/ €0F(0'), then z¢ B. Consider
the case 2’ € F(@') and assume z,,,;<1. Choose ¢’ € @ such that F(¢’)
=2z'. It follows from (H.1) that z,., € H(6)N[0, 1)=9((6"). Hence z¢

Z(®). This contradicts z€ 0Z(8). Thus z,,,=1 in case 2’ € F(6'). Sim-
ilarly we can prove our assertion in the case m=0.

Hereafter, unless otherwise stated, we assume m=1. In order to
discuss a weaker condition than (H.1), put

F\([u, w'])={60' €0 ; usF(x, 0)Su'}

for each x ¢ R and for each pair (u, ') with 0Su=<w%'<1, and let J(p)
denote the set of all p-tuples (%,---,1%,) of integers with 1<4,<---<
i,=m, where p is an integer with 1<p=m.

THEOREM 3.2. The relation 0Z(0)C BU(F(0')x {1}) holds if F(¢')
18 continuous on O and if there exists a positive integer p(<m) such
that the following three conditions are satisfied :
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(F.1), For every set of pairs (u; u}), 1=j=p, with 0<u,su;<u,;<1
and (iy,- -+, 1,) € I(p), the set f% F;ij‘([u,, u}]) 18 compact.
i=1

(F.2), For each 6' € @', there exists (iy,---,1,) € I(p) such that 0< F'(z,,
0)< - <F(x,;, 0)<1. L

(H.2) 9((6") is upper semicontinuous on 6 and I((6")N[0, 1)=I((6")
Jor all 0'€@'.

PROOF. Let {0,=(0., 7.)}, z and 2’ be the same as in the proof of
Theorem 3.1. If 2’ ¢ 9F(#’), then z¢ B. We show 2,,,=1 in case 2'¢€
F(®'). By (F.2),, we can find (iy,- -, %,) € J(p) such that 0<z, <---<
2, <1. Take >0 so that 23<min (2, 1—2,, min (2:,—2,_)))- Then

2sksp
0i¢ (1 F2((z,—9, 2,+2]) for infinitely many n, since lim F(¢;)=2. Be-

k
cause of (F.1),, the sequence {6;} has a cluster point 6 in 8. Without
loss of generality, we may assume that the sequence {f;} converges to
6;,. We have F(0;)=z' by the continuity of F. It follows from the
upper semicontinuity of 9((¢") that z,.,€ K (8). The rest of the proof
can be carried out by the same argument as in the proof of Theorem
3.1.

Remark 3.1. (i) The condition (F.1), (resp. (F.2),,,) implies the
condition (F.1),,, (resp. (F.2),). The converse is not always true.
(ii) It can be seen that the condition (H.1) implies the upper semi-
continuity of 4((6'). Hence the condition (H.1l) implies the condition
(H.2).

Suppose that 9Z(0)Cc BU(F(#')x {1}) and q..#0. Then M,=sup
{L(z); ze¢ B}. The set B is determined if the structure of dF(8') is
found. We shall be concerned with the set 0F(@’) to find the value
of M,. As we shall see in Sections 4 and 5, 0F(@’) can be easily de-
termined for many families. In general, however, it can not be deter-
mined so easily, since it depends on & and C. To proceed evaluation
of M,, we prepare a specification of the structure of 9F(6’).

THEOREM 3.3. Let the following condition be satisfied for a positive
integer p (S=m):
(F.1)} For any set of pairs (u,u)), 1=j=p, with 0<u,;=uj<u;;<1

and G-+, i) € I@), F| ( Fo[ug w)|cF@).
Then :

(8.1) For any (2,--, 2,) € 0F(0') the number of distinct 2,’s
(j=1,---, m) values such that 0<z;<1 18 at most equal
to p—1.
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PrOOF. Let 2'=(2,,:+-, 2,) € 0F(#’). Then 0=z=<-.-=2,<1. We
prove the following fact:

(8.2) There is no (jy,- -+, J,) € J(p) such that 0<z, <--- <z, <1.

Suppose that there is (jy,-- -, J,) € J(p) such that 0<z, <---<z, <.
Since 2’ € 0F(#'), there is a sequence {4;} in @ such that lim F(6;)=2".

. . p —
Take >0 so that 20 <min (z,, 1—2,, 212‘12’ (24,—#4,_,))- Then 6, ekrgl F’J;
-[2,,—9, 2, +3]) for infinitely many n and hence 2 e F(@) by (F.1)f.

This contradicts 2’ ¢ 9F(8'). It is easily verified that (3.2) implies (3.1).
This completes the proof.

Remark 3.2. (i) If F(6') is continuous on &, then the condition
(F.1), implies the condition (F.1)}.
(i) Theorems 3.1 and 3.3 remain valid if we assume that &’ is an arbi-
trary nonempty set.

We shall give a sufficient condition for which M,=—co in terms
of the ¢,’s in Section 2. We say that the pair (£, () is p-regular if
the statement (3.1) and the relation 9Z(6)C BU(F(8')x {1}) hold. For
each 2/=(2, -, 2,) € R™, define

NiZ')= P q;+ P Q;+ PN Qim+1 «
lst<J§m;zi=sj lsjgm:zj=0 l§i5m;zi=1

THEOREM 3.4. Assume that q..#0 and the pair (P, C) 8 p-regular
for a positive integer p(<m). If inf{N(2'); 2 € 0F(8')} >0, then M,

= — 00,
PROOF. Let z=(2,,* ) Zny1) € B and put z'=(2,- -+, 2,). Then 2'¢€

aF(®). From N(2)>0 it follows that L(z)=—oo. Hence M,=sup
{I(2); z€ B} =—oo.

THEOREM 3.5. Let m=0. If 0Z(O)c {1} and q.#0, or if 0Z(6)
c {0} and ¢'+#0, then M,=—oo.

ProOF. From (2.3) we have L(z)=q..log (1—2)+¢' logz. Our as-
sertion follows from this expression.

4. Practical criteria (part 1)

In this section we shall discuss a simple case where a stronger con-
dition than the 1l-regularity holds and which covers typical one-param-
eter families (see Examples 4.1-4.4). It is interesting to note that the
number of parameters is not essential as shown by Examples 4.5-4.7.
Throughout this section we assume that m =1 and the following:
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4.1) 0ZB)CBUF@)x{1}) .
(4.2) 0F(6)+¢ and oF(®)C{ay:--, a,}, .
where a,=(0,---,0,1,---,1).

Note that 0=(0,---,0)=a, and 1=(1,---,1)=a,. A general sufficient
condition for which the relation (4.2) holds will be published elsewhere.
We prove

THEOREM 4.1. An MLE exists if the following condition is satisfied:

h m
(43) @ ¢dF@) or Xa,+ 3 0.#0,  h=0.-m,

Jj-1 m+1
w’b@’re q.1=2 qU and q;.= 2 qij'
i=0 J=i+1
PrOOF. From (4.1) and (4.2), we see that the pair (2P, C) is 1-regular.
Since N(ay)=3 ¢+ 3 4., 0shsm, (43) vields that inf {N@); 2 ¢
j=1 =h+1

0F(#')} >0. Our assertion follows from Corollary 2.1 and Theorem 3.4.

The following theorem shows that under some restrictions, the con-
dition (4.3) is necessary for the existence of an MLE.

THEOREM 4.2. Let q.=0, M#—o0 and F(0')c(0,1)". Assume that

sup {g.. log 1—7)+q'log n; 7€ JH(6")} <sup{g..log(1—9)+q'log7; 7€
h(a)} for all 6' € @ and for all a c 0F(®). Then an MLE exists if and
only if the condition (4.3) is satisfied.

m+1

Proor. Consider the case 1 € 0F(6') and i‘, ¢.=0. Then q..=3) q,.
i=1 j=1
From m=1 and q.=0, }}q,#0. This and F(®)c(0,1)" yield that
j=1

i Qo log 2;<0 for all (2,---,2,) € F(#'). Take an arbitrary z,=(z,- -,
i=1 ~
Zmi1) € Z(0) such that L(z)>—o0 and z,=Z(0) with 6=(6’, 5). Since
Zmi1=7 € ‘%(0,)’

L(z)= g q;log z;4+q.. log (1—7)+q' log

<q..log(l—%)+q' log 5
<sup {L(z); z€e {1} xhRQ)} =M, .

In view of this and Theorem 2.1, an MLE does not exist. Similarly
we can prove, for the remaining cases, that an MLE does not exist.

We say that the g.c. data sample C={C,, -+, C,} of size (¢, q) is



384 TADASHI NAKAMURA

a grouped data sample of size q if

(4.4) ¢'=0 and each C,, 1<i<gq,is an element of the set {[,,
Y, s [Ur Y-41)}, Where 7 is a positive integer, y,=T"<
Y < <Y, <Y,u=T and r and the y’s are independent
of ¢ and 4.

The existence of an MLE from the grouped data sample C has been
studied by many statisticians. When & is the family of one-parameter
exponential distributions or the family of normal distributions with loca-
tion parameter, Kulldorff ([7]; Theorems 2.1 and 8.1) showed that an
MLE exists if and only if ¢;<q and gq,,,;<q. Carter et al. ([3]; Theo-
rem 5.1) obtained the same result when & is the family of Poisson dis-
tributions. They proved their results by solving the likelihood equation
whose form depends on the family . Since 0F(@')={0,1} for each
of the above families, their results immediately follow from Theorem
4.2 (see Examples 4.1-4.3).

We shall give seven examples of ¢ for which the conditions (4.1),
(4.2) and (F.1), (see Theorem 3.3) are satisfied. The proofs for the
structure of 0F (@) in the examples are not given here, since they can
be easily carried out (see, for example, Nakamura and Kariya [10]).
If no confusion can arise, we write P={P,([— oo, x)); 0 € 8} instead of
P={P,; 6cB). In the examples, we assume that F(z) is a distribu-
tion function (d.f.) on R such that F(x) is continuous on R and is
strictly increasing on the set F~%((0,1))={x e R; 0<F(x)<1}, and as-
sume that H(6")=9 for all ¢’ € @, where K =[0, 1) or {0}.

Example 4.1. Location parameter. Let P={(1—»n)F(x—8"); (¢, n)
€0’ x 4}, where @ =(—o0, o) and F((0, 1))=R. In this case, 9F(&’)
={0, 1}.

Example 4.2. Scale parameter. Let P={(1—17)F(6'x); (¢', 7) €O'X
9}, where 6'=(0, o) and F~Y((0,1))=(0, o0). In this case, 9F (€)=
{0, 1}.

Example 4.3. Power series distribution. Let @ ={(1—7)F(z, 0');
(@', 3) € @ X9}, where 8=(0, a) (0<a=<x), F(x, 0)= > a,0'/f(0') and
f(0’)=§‘, a,0" with a,20 and %at>0. Here we assxolsr;z that at least
two ofl_:,he a;’s are positive, i;n f(0)=oc0 and f(¢') is finite on 6. In
this case, OF(8)=1{0,1}.

Example 4.4. Gamma distribution with shape parameter. Let &

={1—n)F(x, 8"); (0, 7)€@ x I}, where '=(0, ) and F(x, ¢') is the
gamma d.f., that is, F(z, #')=0 if <0 and
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F(x, 0")= Sz r@y"w-exp (—v)dv if £>0.
0

Here I'(¢') is the gamma function. In this case, 0F(6")= {0, 1}.

The parameter space & does not need to be an interval of R as
shown by the following examples.

Example 4.5. Hypergeometric distribution. Let P={(1—»)F(x,
0'); (0',9) €O x4}, where ={(h,k); h and k are integers such that
0<h<k, r<k and h<h,} with fixed positive integers » and h,, and
F(@, 0) (¢'=(00) € @) is defined by F(@, 0)=_5) <’;:’;> (’;) / (’;) if o<
a <z
min (r, k), where a=max (0, r—k+h), and by F(x, §')=1 if #>min (r,
k). In this case, F(6')={1}.

Ezxample 4.6. Location and scale parameters. Let P={(1—75)F((x
—mlo); (0, 7) €O'XI), where 6'={p, -+, i} X(0,a] (0<a< 00),
the u’s are real numbers such that g <2< <pp<@,<ptmys and
F-'((0,1))=R. In this case, 0F(0)={ay, -, a,}.

Example 4.7. Polynomial distribution. Let P= {(1——1;)F (é (a,x)’);
i=1

(@ n)e@'xﬂf}, where 0’={(ax,---,a,)e[0, o0)"; ga,qeo} and
F-((0,1))=(0, o). In this case, IF(8")= {0, 1}.

Remark 4.1. The p.c.b. analysis gives a version of Cramer’s the-
orem (cf. [6]; p. 37) which states that the probability of the existence
of an MLE from the grouped data sample C tends to unity as q— oo.
Kulldorft ([6]; p. 87) proved, by utilizing the likelihood equation, this
theorem under some regularity conditions. We can prove this theorem
under the conditions (4.1)-(4.3) (no likelihood equation is needed). This
is illustrated by

Example 4.8. Let & be the family in Example 4.1 with 4= {0}
and C be a grouped data sample of size q. By the strong law of large

numbers, we see that lim Pr<r71 {q“+1¢0}>=1. Note that frl {q:1:170}
i=0 i=0

g—oo

#¢ implies m=r. Thus Cramér’s theorem follows from Theorem 4.1.

5. Practical criteria (part Il)

The condition (4.2) is not satisfied for typical two-parameter fam-
ilies. In this section we shall discuss, as did in Section 4, a case where
a stronger condition than the 2-regularity holds. Typical two-parameter
families satisfy this strong condition (see Examples 5.1-56.4). The num-
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ber of parameters is, again, not essential as shown by Examples 5.5
and 5.6. Throughout this section we assume that m=2, the condition
(H.1) and the following:

(5.1) 0oF(®)+¢ and oF(@)C{ay -+, a} UAU <C)I Jli>, where
i-1 m—i
A={21; 0<2<1} and A;={(,--+,0,2,1,--+,1); 0<2<1}.
A general sufficient condition for which the relation (5.1) holds will be
published elsewhere. From (H.l), (5.1) and Theorem 3.1, it follows
that the pair (&, C) is 2-regular.
With the aid of Corollary 2.1 and Theorem 3.4 we have

THEOREM 5.1. Let q..#0. Then an MLE exists if the following
conditions are satisfied :

(5.2) oF@)NA=¢ or > 4y#0.

1Si<jsm

h—1 m
(6.3) F@)NA=9 or Zq,+ 3 ¢:#0, k=l m.

h m
(5.4) IFO)N{a,}=¢ or jZ‘,dq.,-l—i:%rlq,.qeO, h=0,---,m.

We shall give three examples of F={F(x,0'); 6’ €@’} for which
(5.1) is satisfied. Details of the computation are not given here, since
they can be easily carried out (see, for example, Nakamura and Kariya

[10]).

Example 5.1. Uniform distribution with two parameters. Let &
={F(x, 0'); 0’ €0}, where @=RX(0, c0) and F(z, ¢') (0'=(a, B)€8’) is
defined by F(z, 6)=0 if x<a—B, by F(z, 0)=(28)"(x—a+p) if a—B=<
z<a+p and by F(z, 0)=1 if >a+p. In this case, 0F(8')=.

Example 5.2. Beta distribution with two parameters. Let $'=
{F(x, 0"); 0 €'}, where 6 =(0, c0)x(0, ) and F(x, 8') (0'=(e, ) € 6")
is defined by F(z, 6')=0 if <0, by F(z, )=1 if =1 and by

F(z, 6')= So Bla, B v i(1—v)y'dv  if 0<a<1.

Here B(a, B) is the beta function. In this case, IF(8')={a, -, a,} U
A (0 A,
Example 5.3. Gamma distribution with three parameters. Let &F

={F(z, ¢); 6'c @'}, where @' =(0, 0)X (0, 00)X[4, 2], —o00<H=2,<%,
and F(x, 0') (6'=(a, B, A) € @) is defined by F(z, §")=0 if =<2 and by
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F(z, a')=gj(r(a)ﬁa)-l(v—z)«-l exp (—(v—2)/f)dv  if z>2.

In this case, 9F(6') is the same as in Example 5.2.

To find a necessary and sufficient condition for the existence of an
MLE, we consider the following condition :
(P.1) For each h, 1Sh<m, with 0F(@' )N A.#¢ and for each 4’ c @,
there exist w € (0,1), a positive number ¢, and a mapping p(t)
from (0, t,) into 6 such that:

(6.5) 0" € {p(t); t (0, )} CFN([w, u)).

(5.6) For every sequence {t,} in (0,%) with limit 0, the se-
quence {F(p(t,))} has no cluster point in F(&').

(6.7) For every pair (1, 5), 1=i<h<j=m, F(z, p(t)) (resp.
F(z,, p(t))) is strictly increasing (resp. strictly decreasing)
on (0, t,).

THEOREM 5.2. Let the condition (P.1) be satisfied, let aF(G’)n<hL"J

=1

Jln>¢¢ and let AF(O')NAr#¢ for each h, 1<h<m, with a,<dF(@).
Suppose that M+ —oo, q.=0 and > ¢;;#0. Then an MLE exists

1si<jsm

if and only if for every h, 1<h=<m, with 0F(@)N A+,
h-1 m
24¢4+ 3 ¢.#0.
=1 i=h+1

Proor. The “if ” part of the theorem follows from Theorem 5.1.
In order to prove the “only if” part of the theorem, assume that

Sa,+ 3 ¢.=0 for some k, 1<h<m, with aF(®)n,#¢. Choose
j=1 i=h+1

an arbitrary point z € Z(8) with L(z)> —co, and let 6,=(6}, 5) € & with
Z(0,)=2z,. Because of (P.1), there exist w € (0, 1), a positive number ¢,
and a mapping p(t) from (0, t,) into 6 which satisfy the conditions (5.5)
-(5.7) with ¢’ replaced by 6. Put z(f)=(F(o(?)), 5). We show lim z(t)
t—0
c(OFO)YNA)XI(6). In view of (5.6) and (5.7), lim F(p(t))=(2,-- -,
t—0
2,) € 0F(#'). Since the pair (&, C) is 2-regular, it follows from (5.7)
that 2z, ,=0 and 2/,,=1. Hence ltim 2(t) e OF@)NA)XI(0)). We
—0

finally show that L(z(t)) is strictly decreasing on (0, %). Since q.,=0
for all j<h—1 and ¢,,=0 for all 1=h+1,

Laty=_ = . a,log (Flw; p(t)—F(z, o)

1si<jsm;ishs

+ 3 aylog F@,, o(0)
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h-1
+ i2=1 Qime1 log (1—F(z,, p(t)))
+4q..log (1—7)+¢'log 5 .

This, together with (5.7), yields that L(z(t)) is strictly decreasing on
(0, t,). Because of (5.5), L(z)<lim L(2(t))=L(lim z(t))<M,. The proof
t—0 t—0

is completed because of Theorem 2.1.

Remark 5.1. Let (P.1) denote the condition (P.1) with (5.6) re-
placed by

(5.6) For any sequence {t,} in (0, ¢,) with limit 0, the sequence {o(t,)}
has no cluster point in &'.

It can be seen that the conditions (F.1),, (F.2), and (P.1) imply the
condition (P.1).

We shall give three examples of = {F(x, ¢'); 6’ €6’} for which
the condition (P.1)’ is satisfied. It can be easily shown that o0F(0')=

{ay,- -+, @} UJAU <G JL) in these examples.
i=1

Example 5.4. Location and scale parameters. Let &={F((x— p)/o);
(¢, 0) € @'}, where 8 =R X (0, ) and F(x) is a continuously differentiable
d.f. on R with the positive density function. Take p(t)=(x,—(®,—p)-
7't,t) (t>0) for each h, 1<h<m, and for each (g, o)€@

Example 5.5. Scale, power and location parameters. Let & ={F(x,
0"); 6' €@}, where & =(0, c0) X (0, 00)X[4y, 23], —o0 <4 =4,<x; and F(x,
0") (0'=(a, B, 2) € 0') is defined by F(x, §)=0 if x<2 and F(x, 0')=F(a-
(x—2)"?) if x>2. Here F(x) is a continuously differentiable d.f. on
(0, o0) with the positive density function. Take po(t)=(a(x,— 1)~V ¢,
2) (t>0) for each h, 1<h<m, and for each (a, 8, A) €6’

Example 5.6. Trinomial distribution. Let F={F(z,0'); ¢’ €'},
where 60’ = {(ay, @z, ;) € (0, 1)*; ay;+ay,+a;=1} and F(x, 6') (0'=(ay, as, a;) €
@) is defined by F(x, 0)=0 if <y, by F(z, 6)=1 if x>y, and by
F(x, 0)=a,+---+a; if y;<x<Z¥:1; 1=1, 2, where the y,’s are numbers
such that —oo<y, <y, <ys<oo. In this case, m=2. Take p(t)=(ey, 1—
a,—t,t) (t<l—a,) for each (e, a;, o;) €@ in case h=1 and p(t)=(¢, a;+a;,
—t, ay) (t<ay;+a;) for each (e, a;, a;) €0’ in case h=2.

6. Practical criteria (part i)

In case 0F(@)N A+¢ and 3>} ¢;;=0, Theorem 5.1 does not as-
1Si<jsm

sure the existence of an MLE even if the conditions (5.3) and (5.4) are
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satisfied. This is shown by

Example 6.1. Let &F be the family in Example 5.4, m=2, ¢'=q.=
0 and 4(6")={0} for all ¢’ €@. Choose {q;;} so that g,+#0, ¢u+#0, gu
#0 and ¢,;,=0 for any other pair (¢, j). Let z,=(2,, 2, 2;) € Z(6). From
(2.3), L(z))=4qu log 2,+qy; log z,+qy log (1—2;). Hence L(z)<q,.log2:+¢.,
Jog (1—z)<sup {L(z); ze @QF@)NA)x {0}}<M,. We see, from Theo-
rem 2.1, that an MLE does not exist.

In this section we shall give some practical criteria for the exist-
ence of an MLE in such a case. The equality >} ¢,;=0 holds when
1g5i<jsm

our observation is restricted two possible types (e.g. an individual is
living at time ¢, or was dead before time t). The sample C in this
case is called a binary response data sample. Throughout this section
we assume that m=2, oF(@' )N A+#¢, q..#0, lSKEjsm ¢;;=0 and the con-
ditions (H.1) and (5.1)-(5.4) except for (5.2) are satisfied. In this case,
J((6") is independent of 6’ and M,=sup {L(z); z€ QF@)NA)X I},
where 4 denotes the set .#(6") (¢ € @). For simplicity we put L(z, 1)

=I(2) (z=(2,"++, 2 1) € @FO)NA) X H).
To find a sufficient condition for the existence of an MLE, put _{*
={z; 21€ 0F(@')N A} and consider the following condition:
(P.2) For each ze€ J*, there exist a positive number ¢, a mapping
o(t) from (0, t,) into & and a positive function w(t) defined on
(0, t,) such that:

(6.1) For each 1, 1=i=<m, F(x,, p(t))—2z as t—0.

(6.2) For each ¢, 1=<i=<m, F(x, p(t)) is differentiable on (0, ¢,),
and W(x,; z)=lim w(t)dF(z;, p(t))/dt exists and is finite.
t—0

Hereafter the symbol 37 denotes the summation from ¢=1 to m.

LEMMA 6.1. Assume that the condition (P.2) is satisfied. Let (2, )
€ A*X I such that L(2, 7)=max {L(2); z€ @QF@)NA)XH}. Then an
MLE exists 1f
(6.3) 1-2)A—24+279) > quW,

>E1—2+29) 2 @imuWi+21-2(1—7) X oW, ,

where W, =W (x,; 2), 1=i<m.
PrROOF. Because of (P.2), there exist a positive number £,, a map-

ping o(t) from (0, ¢,) into # and a positive function w(t) defined on (0, t)
such that (6.1) and (6.2) with z replaced by % are satisfied. Put z(f)=
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(F(o(t)), 7), L'(t)=dL(z(t))/dt and F/(t)=dF(; p(t))/dt, 1Si<m. It is
easy to see that 1;]_1.? 2=, -+, 2, 7)€ OF@)NA)X ¥ and

L(t)=3) quF{@)F (s p(£)) "' — 2 Qi murFL () 1 — F (s, p(t))™
—(1-7) 2 @.F/(t)Q—F(x;, p(&))+F(z:, o))"
Multiplying the above equality by w(t) and letting {—0, we have
lim wt)L/(t)=4" 2 quWi—(1—2)" 2 qunuW,
—(1—-2+29)"' Q-7 2 oW,
=[21-23)(1—-2+27)]'[(1—2)(1—2+29)Q,
+29Q,—2(1—2+27)(Q:1+ @)1 ,
where W,=W(x,; é), 1=ism, Q=3 quW, Q=2 q¢W,; and Q=3 qin:
.W,. From the inequality (6.3), it follows that L/(t)>0 for sufficiently

small ¢. Thus there exists ze€ Z(#) such that L(z)> L3, 7)=M,, and
our assertion follows from Theorem 2.1.

THEOREM 6.1. Let the condition (P.2) be satisfied. Assume that
0 3 (@ mr+2)#0, ¢=0, A*=(0,1) and I ={0} or [0,1). Then an
MLE exists if

(6.4) 2 Wi 0> 2 (@t F WD (@imes+00) »
where 2=3 ¢u/> (Gt Qims1+a:) and W,=W(x;; 2), 1=i=m.

PROOF. Since the proof for the case /= {0} is similar to that for
the case 4 =[0,1), we prove the theorem for the latter case. We

show L(2, 0)=max {L(z, 7); (2,7) €[0,1]1%x[0,1]}. It is easy to see that
(6.5) OL(z, 7)/on=[(1—n) (L —2+27)]'[(@..+q.)2(1—7)—q.] .
Put 2'=q../(q..4+4q.) and define V(2) by V(2)=0 if 0<z<z' and by V(z)
=(—2)/z if 2<2<1. By (6.5), L(z, V(2))=max {L(z, 7); n€[0, 1]} and
alog z+(b+q.) log (1—2) if 052572,
Lz, V(z)= q.. log 2'+q.log (1—2')+blog (1—2)
—(0+qomy1) logz if 2/<2<1,
where a=3] ¢, and b=3>)¢q;pn,;- Note that q.=a+b+qyn,;. Since 2=
7, L(%, 0)=max {L(z, V(z)); 0<2<2’}. On the other hand, blog(1—z)
—(b+Qoms1) log z is decreasing on (0,1). Hence max {L(z, V(?)); #<z=<

1} =L, V(2))<L(2,0). Thus L(, 0)=max {L(z, 7); (2, ) € [0, 1]x[0, 1]}.
Put W,=W(x,; 2), 1=i<m, and 7=0. From (6.4), the left-hand side
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of (6.3)=(b+4q.)(a+b+q.)* 32 qu.W.>a(b+¢)(@+b+q) " 2 (Gim+a)W.=
the right-hand side of (6.3). Now our assertion follows from Lemma
6.1.

This theorem gives an answer to the problem raised by Moran ([8];
p. 5): Does an MLE from a binary response data sample exist when
P is the family of two-parameter normal distributions?

Similaly we have

THEOREM 6.2. Let the condition (P.2) be satisfied. Assume that
N 2 Gmr 0, ¢.=0, A*=(0, 1) and I ={0} or [0,1). Then an MLE
exists if the inequality (6.4) with q.=0 holds.

Finally we consider the case where _{* consists of only one point.
We easily obtain

LEMMA 6.2. Assume that q#q', A*={2} and H=[0,1). Let 3 be
the greater solution of the quadratic equation: (1—24279)(qgn—q')=q.n.
Then %€ I and L(2, 3)=max {L(z); ze @QF@)NA)XIH}.

By Lemmas 6.1 and 6.2 and by the same argument as in the proof
of Theorem 6.1, we have

THEOREM 6.3. Let the condition (P.2) be satisfied. Assume that
N 2 Qi F0, A*={2} and I =[0,1). Put W,=W(x,;2), 1<i=m.
Then the following assertions hold :

(i) In case q.=0, an MLE exists if

(6.6) 1-2) 2 W >2 3 @i W,

(ii) In case q.#0, ¢'=0 and 2=q../]q, an MLE exists if
(6.7) (1-2) 2 @W:>2 2 (Gim+2)W, .

(ili) In case q.#0, ¢'=0 and 2>q../]q, an MLE exists if
(6.8) ¢-1(1-2) 3 quWi—2 2 QuneW1> ¢ 1—2) S q W, .

THEOREM 6.4. Let the condition (P.2) be satisfied. Assume that
Dy Dim1 F0, A*={2} and H={0}. Put W,=W(x;;2), 1=i<m.
Then an MLE exists if the inequality (6.7) holds.

We give an example of F={F(x, ¢'); '€ 8} for which _{* consists
of only one point.

Example 6.2. Scale parameter. Let = {F((x—p)/0’); 0’ €'},
where '=(0, ), p€ R and F(x) is a continuously differentiable d.f.
on R such that dF'(z)/dz>0 for all x € R. Put F(0)=z2. It is easy to
see that 0F(6')={1, 21} if p,<z,; OF(0)={a., 21} if 2, <pe<xpyy, 1SkS
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k-—-l
m—1; 0F(#)={0, 21} if x,<p,; 0F(O)={z1, (0 ,0,2,1,--+, 1)} if g
=u,, 1=k<m. In each case, A*={z}.

Remark 6.1. In order to prove that all families in Examples 5.1-
5.6 and 6.2 satisfy the condition (P.2), we may take p(t) as follows
(results in Examples 5.2 and 5.3 are given by the referee):

In Example 5.1, p(t)=((1—22)/t,1/t), t>0; z€(0,1). In this case,
W(x;, z2)=x, and hence the inequality (6.4) becomes

(6.9) E Cm1+2) " 2 (@ +2)2:.< (2 @)™ 2 qoas -

In Example 5.2, p(t)=((1—2)t, 2t) t>0; z€ (0,1). In this case, W(z;;
z)=log (x,/(1—w;)) and hence the inequality (6.4) becomes (6.9) with =,
replaced by log (x,/(1—=,)).

In Example 5.3, o(t)=(t, 27V, ), t>0; z€(0,1), where 2 is an arbi-
trary number with 4 € [4,, 4,]. In this case, W(x,;; 2)=C+log (x;— 1) with
Euler’s constant C and hence the inequality (6.4) becomes (6.9) with «;
replaced by log (x;—A).

In Example 5.4, o(t)=(x—F"'(2)/t, 1]t), t>0; z€(0,1), where z is
an arbitrary number and F-!(z) is the inverse function of F(x). In
this case, W(x,;; z)=x,—2 and hence the inequality (6.4) becomes (6.9).

In Example 5.5, p(t)=((x—A)"*F~(2), 1/t, 2), t>0; 2z € (0, 1), where
A and z are arbitrary numbers with 2 €[4, 4,] and 2<z. In this case,
W(x,;; 2)=log ((x;— A)/(x— 1)) and hence the inequality (6.4) becomes (6.9)
with x; replaced by log (x;,— ).

In Example 5.6, p(t)=(z, t, 1—2—t), t<1—=z; z€(0,1). In this case,
W(x,; 2)=0 and W(x,; 2)=1, and hence the inequality (6.4) becomes

(2 qua+4) 7 (@u+2) < 200) 002 -

In Example 6.2 with pg=2, for some k, 1=k<m, p(t)=1/t, t{>0.
Put z=F(0). In this case, W(x,; 2)=x;,—x, and hence the inequality
(6.6) becomes

Z((1—2) 2 qu—2 2 Gme1) <(1—2) 2 Qi —2 > @imp 1@y «
Remark 6.2. With the aid of Remark 6.1, we see that the p.c.b.

analysis gives a version of Cramer’s theorem (see Remark 4.1). This
is illustrated by

Example 6.3. Let & be the family in Example 5.4 and let C=
U C® be a binary response data sample such that each C® is a grouped

data sample of size n; defined by (4.4) with r=1 and y,=t,, where —oo
<, <--+<t,<oco. In this case, ¢'=¢.=0 and ¢,;,=0 for each pair (¢, j),
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1i<jsm. If S=0 {gu#0 and g, #0} £4, then k=m and (5.4) is
i=1

satisfied. By the strong law of large numbers, we see that Pr(S+#¢)

—1 as minn;—o. Using Corollary 1 of Nakamura and Kariya [10],
15isk

we can show that the probability that the inequality (6.9) holds tends

to unity as min n,— oo.
1s5isk
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