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Summary

The robust slippage testing problems of k41 approximately known
simple hypotheses are formulated as the slippage testing problems of
k+1 composite hypotheses. It is shown that if there is a represent-
ative k+1-tuple (called a least favorable slippage tuple) of simple hy-
potheses, then maximin tests are given by the slippage analogues of the
Neyman-Pearson tests for this tuple. The k-sample case is treated
concerning this subject. In the general situations that there does not
exist any least favorable slippage tuple, a method for constructing tests
is proposed and applied to the case that composite hypotheses are de-
scribed in terms of certain capacities (e-contamination, total variation).
The variants of the derived tests are also suggested.

1. Introduction

In this paper, the robust slippage testing problems of an approxi-
mately known simple hypothesis against & approximately known simple
hypotheses are formulated as the slippage testing problems of a com-
posite hypothesis against & composite hypotheses. This type of prob-
lems was treated in a less general form from a different point of view
by Yao and Kudé [8], and Yeh and Kudé [9] (they considered the slip-
page problems of testing a composite hypothesis against k simple hy-
potheses without the stand point of robustness and discussed the least
favorable distributions). The present paper, however, inherits the spirit
of Huber ([2], [3]), Huber and Strassen [5], and Rieder [7]. They for-
mulated the robust testing problems between two approximately known
simple hypotheses as the minimax testing problems between two com-
posite hypotheses, and showed that if the composite hypotheses are
described in terms of some types of neighborhoods (such as e-contami-
nation, total variation and alternating capacities of order 2), there exists
a least favorable pair of simple hypotheses between two composite hy-
potheses and the Neyman-Pearson tests for the least favorable pair
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constitute a minimal essentially complete class of minimax tests. Their
results are indispensable for our discussions.

In Section 2, the robust slippage testing problems are formulated
and it is shown that if there is a representative k+1-tuple of simple
hypotheses (called a least favorable slippage tuple), then maximin tests
are given by the slippage analogues of the Neyman-Pearson tests for
this tuple (Proposition 1). However, there does not exist any least
favorable slippage tuple except for some special cases. This fact makes
the problem more complicated and more difficult. A general method
to construct tests is proposed in Section 3. Tne essence of this method
lies in extending the sample space, constructing tests on each partition-
ed subset of the extended sample space and then unifying these tests.
The derived tests, which are defined on the extended sample space,
satisfy the size condition (Proposition 8) and their powers are evaluated
(Proposition 4). The tests can also be expressed on the original sample
space (Theorem 1).

Section 4 is concerned with the case that composite hypotheses are
described in terms of the special capacities (a natural generalization of
e-contamination and total variation neighborhoods) introduced by Rieder
[7], and presents an explicit substance to the general framework in
Section 3. It is seen that the tests derived from our method are par-
tially truncated versions of the slippage analogues of the Neyman-
Pearson tests for the k+1 approximately known simple hypotheses. On
the basis of this fact, the (completely truncated) variants of the above
tests are suggested as the recommendable tests with excellent robust-
ness properties.

The final Section 5 treats k-sample robust slippage testing problems.
In this case, k+1 composite slippage hypotheses are formed by two
specified composite hypotheses. It is shown that if there exists a least
favorable pair between two specified composite hypotheses, then such
a pair produces a least favorable slippage tuple (Theorem 3) and hence
maximin tests. Some examples are exhibited to clarify our image of
the maximin tests.

2. The formulation of the problem

Let 2 be a sample space, B a o-field of subsets of X and ¥ the
set of all probability measures on (X, $). We assume that there is a
group G={g} of transformations on ¥ isomorphic to 7" which is the
symmetric group of all permutations on the set {1, 2,---, k} or its transi-
tive subgroup. Denote the permutation corresponding to g by z,, 7,
12, k)=(r,1, 742, -+, v k) and define 7,0=0 for all g€ G. Suppose

that we are given k+1 distinct probability measures P, P,,---, P, (e M)



ROBUST SLIPPAGE TESTS 253

such that
(2.1) Pg'=P,, i=0,---,k all g€@G,

where Pg~' (P € M) denotes the probability measure induced from P

by g, and consider the problem of testing P, against P, i=1,---, k based
on a random element X taking values in . We assume, however,

that the distribution _£(X) of X is only known to lie near one of P,
P,---,P,. Let @, P,---, P, be k+1 disjoint neighborhoods of P, P,
., P,, respectively, such that

(A.1) Py =P, 1=0,---,k all ge@G,
where P,g~'={P,g7!|P,e P,;}. Then we are interested in testing
(RSTP) H,: L(X)e€ P, against H,: L(X)eP, i=1,---,k.

We call (RSTP) a robust slippage testing problem. This is a robust
version of the slippage problem of testing H,: L(X)=P, against H,:
L(X)=P, i=1,---,k, which was formalized by Hall and Kudd [1].

A slippage test based on X is denoted by ¢(x)=(py(), 1(X), -+, :())
where ¢,(x) means the conditional probability that ¢ takes H, given
X=ux. A test ¢ is called of size « if it satisfies

(2.2) inf Ep [p(X)]21—a, 0<a<l,
Pye Py

where E, denotes the expectation under P. Let @, be the class of all
size a tests. A test ¢ (€@,) is called maximin if it satisfies

] x
(2.3) inf S Ep [¢(X)]=sup inf IEp [¢(X)]
(Pp,eee, Py i=1 9€0, (Py,e+e, Py) i=1

where (P,,---, P,) ranges over P, X -+ X P,.

In this set up, we might have a preference for maximin tests. The
concept of the least favorable distribution in slippage testing problems
as well as in ordinary testing problems plays an important role for the
purpose of finding maximin tests.

A k+1-tuple (Py, Py,---, P,), P, € P,, of probability measures satis-
fying (2.1) with P, replaced by P, is called a slippage tuple (with re-
spect to G). For any slippage tuple Q=(P, P,,---, P,), consider the
following tests ¢9=(¢, ¢?, -+, ¢f):
ed(x)=1, &(x), 0 if maxn(2)<,=,>2
(2.4) 1sjsk

02(x)=0, n(x) if ”‘(x)<’=¥2?sxk my(x), 1=1,---, k

where #;(x) is a version of the Radon-Nikodym derivative dP,/dP,,
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dP
€—J
U 3P1P)

dpt_{it_ , 4,20, 7=0,1, q+¢,>0¢ ,

dPo_ Qo

&(x) and 7,(x) are arbitrary, subject to the condition that ¢¢ is a test,
and 2 is a constant.

We notice that ¢¢ are the most powerful tests for the testing prob-
lem of P, against P,, P,,---, P, (see Theorem 1 of Hall and Kudé [1]).
A slippage tuple Q—_—(Po, P, P,,) is called the least favorable for (&,

P,,---, P, if any ¢ of (2.4) satisfies that for all P,e P, i=0,--- k

(2.5) B, [o8(OISEy, [of(X)]
(2.6) > B, (801 3 Er, [0 ()] -

ProPOSITION 1. If Q=(P, P,--.,P) is a least favorable slippage
tuple for (Po, Pi,---, P.), then for any a€(0,1) ¢ are maximin tests
for the problem (RSTP).

PROOF. We first note that ¢¢ € @, follows from (2.5) and Ejz [¢&(X)]
=1—a. Let ¢€®,. Then

k .
inf 31Ep, [2(X)]
(Pyyeee, Pp) i=1
k " k k
22 B, [P (X2 Ep, [eX)]2  inf S Ep [p(X)] .
i=1 i=1 (Pyyee, Pp) i=1
Hence

inf 3 E; [¢#(X)]zsup inf > Ep, [pdX)] . Q.E.D.
e Py =1 ped, (P Py i=1

(P RIS

According to this proposition, for the purpose of obtaining maximin tests
it is sufficient to find a least favorable slippage tuple. The proposition
will be used in Section 5.

Though digressing from main subjects we wish to present some
results here.

PROPOSITION 2. If ¢ is invariant under G (i.e. ¢i(x)=¢.,(gx)), then

(1) inf Ep [pdX)]= inf Ep [¢(X)]

P;e Py Pje Pj
(2) sup Ep [pX)]= sup Ep [pf(X)]

Pe; Pje P
(3) sup Ep [pX)]= sup Ep [¢,(X)].

Pye Py Pye Py
Furthermore, if T is 2-ply transitive, then
(4) sup Ep lp(X)]= sup Er,[p/(X)]

1 i i

for 4,7, 5, 5'=1,---, k, 1#35, V'#7".
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PROOF. As all the proofs are similar, we give only the proof of
(4). Because of 2-ply transitivity of T, there exists g such that r,i=
i and r,j=j" for any i#j, ©'#5'. Let P,e P, Then, since ¢ is in-
variant, we have

Ep, [0/ X)]=Ep, [¢:5(9 X)]1=Ep_; [¢:(X)]=Ep, [¢,(X)] .

Noting that by (A.l) the correspondence P,— P, from P; to P, is bi-
jective (i.e., one-one, onto), (4) follows immediately. Q.E.D.

3. A general method for constructing tests

Let &, i=1,---,k be k measurable subsets of ¥ such that ¢g¥,=
X, for i=1,---,k, all g€ @G, and fX’:f) X,. Here we do not assume

that X, are disjoint. In other words, {2} is a covering of X, but
may not be a partition of X. If {¥,} is not a partition of ¥, we
shall extend the sample space X to a new sample space X* and con-
struct a partition {X}} of X*. On the other hand, if {&¥,} is a parti-

tion of X, or if {2} satisfies P(X;NX,)=0 for j+#I and all Pe¢ CJ P,
1=0

then it is unnecessary to extend ¥ to X*. Therefore, in what fol-
lows, we can eliminate asterisk * from all notations.

Let S={S} be the family of all nonempty subsets of {1,2,---, k}
and let S(x)={i|x € X,}. For any S e S define Xy={x|S(x)=S}. Then
{Xs) is a partition of . We denote by |S| the number of elements
in a set S. Let x be any element of ¥ and suppose S(x)= {7, 13- -,
Yise}. Then « is contained in [S(z)| sets X, Xy, -+, Xygy,r We
consider |S(x)| copies i, X,- -, T 5, of «, and by putting asterisk *
on them we regard =¥, a¥,- - -, o}, as |S(2)| distinct points. Let 2}

k
={x¥|xe X,;} and 36’*=iu X¥. It is clear that {X}} is a partition of
=1

the extended sample space 2X*.
Let ¢ be the mapping from X* onto X which maps x* to its gen-
erator x, namely, ¢(x})=z for all 1€ S(x). Let B}=¢'BNX¥ and

let B* be the smallest o-field containing LkJ B¥. Note that ¢;, the re-
i=1

striction of ¢ to X¥, is a one-one mapping from X} onto X, and B¥
=¢;(BNX;). Thus we get a new extended measurable space (X*, B*)
and its measurable subspaces (XF, B¥). Let H* be the set of all prob-
ability measures on (X*, B*) and M}={P* ¢ M*|P*(X}¥)=1} be all
probability measures (concentrating) on (¥, B¥F). Also, let us define
transformations g* on X* by g*(z¥)=(g¢(x¥))%:. It is easily seen that
G*={g*|g € G} forms a transformation group on X* with the opera-
tion g¥ o g¥=(g, ° g,)* and isomorphic to T by the correspondence g*—
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T, (=17,).
Any probability measure P on (X, B) is transferred to the prob-
ability measure P* on (X*, $*) defined by

(3.1) P*(B*)= Z Z EP(gb(B*ﬂilE’*)ﬂ%s) , B*ePp*.

We note here that P* is the probability measure with the probability
P(X)/IS| on ¢ (XE)NXF for all 1€ S. Let P¥={PF|P, e P} 1=0,

-, k. Clearly, ¥ 1=0,---, k are disjoint, and noting P}g*'=(P,g~')*
it follows that

3.2) Prgri=PE,  i=0,---,k, all g*eG*.

Now our original testing problem (RSTP) is expressed as the prob-
lem of testing

(RSTP)* Hj: .L(X*) e P¥ against H¥: L(X¥)ePr i=1,---,k.

Let P¥ (¢=0,---,k, j=1,--+, k) be the conditional probability meas-
ure of P* given X¥, namely,

1 __
PXXT)

and let P¥,={P}¥|PXe PF}. For any P*e M* we define

(3.3) PX(B*)= PXB*NX*)  Bxe B*,

5 1 -
P*= P*g*-t
IG*I g.%é. g
where |G*| means the number of elements of G*.
Suppose that we have subsets P, L% (i=1,---,k) of MF such
that

(A.2) Phg* =P i=1,---, k, all g*eG*,
(A.3) Phg*'=P¥ 0 i=1,---, k, all g*eG*,
(A.4) PENPE=¢ i=1,--+,k,
(A.5) PHNPhi+¢ i=1,--+,k,
(A.6) [P}|Pr e P¥ Pt i=1,---, k.

In addition, we assume that there are the least favorable pairs (QF, Q%)
for (P¥, P¥) i=1,---, k, namely, Qf € P, Qf ¢ P} satisfying that for
all ¢

(A.7T) % (nF >t)y=sup {P*(zF >t)| P* ¢ P§
(A.8) Q¥(x¥ >t)=inf {P*(z} >t)| P* € P¥} ,
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where =¥ is a version of dQ%/dQ¥. Note that we can take QFf, QF, =¥
so as to satisfy

(3.4) Q=@ i=1,.--,k, all g*€G*,
(3.5) Qfg*'= eg.io 1=1,---, k, all g* e G*,
(3.6) nf(a¥)=n¥.(g*z*) 1=1,.---, k, all g*¥eG*.

The reason is as follows. Let (Qm, QF) be a least favorable pair for
(g)fﬁ, P¥%). Define Qf)kiy i (1;=2, k) by QOrq.l—-ng* - Qr,.lo— og*_li
g*eG*. Then we can easily see that (3.4) and (3.5) hold Also, (3.6)
follows immediately from (3.4) and (8.5). To show (A.7) and (A.8)
notice first that by (3.6) we have g*{1r§">t}-—{7r,q,i>t} for all ¢, i=1,

-,k and all g* ¢ G*. Let g* be such that r,.i=1 (there exists such
g*, because G* is transitive). Then using (A.7) (for 1=1) and (3.2),
we have

Qar >t)=Qfg* " (g*(x¥ > 1)) =Qfi(n¥ > 1)
=sup {P*g*(g*~'(x¥ >1)) | P*g* € Pig*}
=sup {P*(=z¥>t)| P* ¢ P} .

Thus (A.7) is verified. Similarly, (A.8) is proved.
Now we are in a position to propose our tests. Let us consider
the following tests ¢*:

if x* € ¥ and n}(x*)<2
if o* e X} and nf(x*)=2

1
pr(@*)=9 &
0 if a* e XF and #}(x*)>2
1
1
0

3.7
if x* e X¥ and nf(x*)>2
e¥(@*)=<{ 1-¢ if x* e XF and nf(x*)=2

otherwise ,

where ¢ and 21 are constants determined Egx[¢f(X*)]=1—a.

Remark 1. It should be noted that since Qfz*! ¢=1,...,k are all
the same (independent of 7) and ¢f(x*)+oX(x*)=1 on X¥F, ¢* is identi-
cal to the test unifying ¥ maximin size a tests ¢, for the testing (P,
P¥) on ¥, that is, pf(@*)=¢f,(2*), 0 according as z* €, ¢ XF.

LEMMA 1. The test ¢* is tnvariant under G*.

ProOF. Noting that g*X¥=2C*,; and nf(x*)=x¥.(g*x*), this lemma
easily follows. Q.E.D.
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LEMMA 2. For any P* ¢ M*, P* is an invariant probability meas-
ure under G*.

PROOF. Let B*e¢ B* and g*¥e¢ G*. Then we have
1

|G*| o
1

IG*I 0y .gg.

=P*(B¥) . Q.E.D.

Pr(g*Br)=

5} P*(gr(g*B")

P*(gf™'B*)  (gf=g*"'9})

We note that by Lemma 2 P*})=1/k holds for i=1,---, k.
LEMMA 3. Es [of{(X*)]=Ep [p¥(X*)] for all P*e M*.

PROOF.

EP#

1 e (X™)]

Ilv

=

> Ep. [0 (g*X™)]

|G*| o*

G . B [
=Ep. [¢X(X)] . Q.E.D.

We have now the following proposition.
PROPOSITION 3. The test ¢* is of size a.
PrROOF. For any P e P¥

Epp [ (X*)]=Ez; [of(X*)]

. [eH(XHPHXY)

Il
Mar

Oli

o
Il
-

"M’"

(1 £) tm(7r <1)+EP0TL(” <l)]

?r'|r—‘ ?r-!r—* |~

[ —€)Q(r* <2)+EQi(xr < )]

é‘. ot [oF(X¥)]=1—a. Q.E.D.

Our next aim is to evaluate the power of ¢*. Let Pr= {PX e P¥|
P e P%}. Then the following proposition can be obtained.

PROPOSITION 4. For any Pi*¢ P* i=1,--+,k, o* satisfies
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(3.8) 3\ By [oH(X*)] 2 By, [t (X*)] 33 PHEY) -

PROOF.

k

2 Epy [ (X¥)]

Il
Ma-

py, [pH (X PHXY)

i

-
Il
-

Il
M=

33 [6PA(er> )+ (L~ PR(r 2 )IPHE)

\Y

s [EQi(E > 2)+ (1 - )Qi(E Z )1 PHXY)

Eos, [p¥(X*)]PHXY)

IIM?« uMa-

Eefo [o(X*)] 33 PHEE) . QE.D.

COROLLARY 1. If P¥=P¥ (i=1,---,k) and if all P¥ec P* (=1,
-, k) satisfy PX(X¥)=1/k, then

k

5 Ep, [of(X]>a

that s, ¢* is unbiased.

PrROOF. We note that ¢f is the most powerful test for the testing
problem of Qf against Qf (Qf+#Q%Y) and hence Egx [¢f(X*)]>a. Then
this corollary immediately follows from Proposition 4. Q.E.D.

Now let us try to express ¢* of (38.7) on the original sample space
X¥. Define =, (1=1,-.-, k) by n(x)=r¥(¢:'(x)), any according as x € X,
or x¢ X;,. Let Si(x)={t|m(x)<2, 1€ 8S(x)}, Sux)={t|n(x)=2, © € S(x)}
and Sy(x)={¢|m(x)>24, © € S(x)}. Furthermore, let S,(x)={t}N Sy(x) and
Ss(x)={1} N Ss(x). Consider the test ¢ given by

_ IS@)+ElS@)]
) =" 5|

(1—8)|Su(x)|+]|Ss(x)| i=1.---. k.
1S@)] e

(3.9)

elx)=
We can establish the following theorem.

THEOREM 1. The test ¢ of (3.9) is equivalent to the test o* of (3.7).
In particular, ¢ 18 of size a and its power satisfies the imequality (3.8).

ProOF. The first statement of this theorem easily follows as a



260 MIYOSHI KIMURA

consequence of the comparison between ¢ and ¢*. The second and third
statements are the immediate conclusions of Proposition 3 and Proposi-
tion 4, respectively. Q.E.D.

4. The testing problem of special capacities

As before, assume that we are given a sample space X, a o-field

B, the set M of all probability measures, and a slippage tuple (P, P,,

.., P,). Let us consider the neighborhoods @, @,,--, P, of P, P,
..., P, defined by

Py={P e M|P(B)=(1—¢,)P(B)—3, for all Be B}

P.={Pe M|PB)=(1—e,)P(B)—3, for all Bec B}
i=1,---, k,

(4.1)

where 0<¢,, 3,<1, 0<e;+3,<1 (§=0,1). We assume P,NP,=¢ for
0<t¢+#j=<k (this is the situation for small ¢, and 3;). The neighbor-
hoods &, of (4.1) were introduced and called special capacity by Rieder
[7], and regarded as a natural generalization of e-contamination and
total variation neighborhoods.

Suppose that we are interested in the problem (RSTP) with neigh-
borhoods of (4.1). For the sake of applying the previous discussions
we first need to give a family {2¥,} of subsets of X such that ¢gX;=

X, and X =1LkJ X As easily seen, a method to produce such a family
=1
{2} is to define X ,={x¢€ fi’[fi(x)=mjaxfj(x)} where f; i=1,---,k are
1578k

some measurable functions satisfying fi(x)= f,gi(gx) for +=1,---,k and
all ge G. We can refer to Proposition 4 about how to take these f;
appropriately.

Let 4,(x) be a version of dP,/dP,. By (2.1) 4, can be chosen so as
to satisfy 4.(x)=4.,(gx). Define

4.2) %iz{xldi(x)zglja;i 4 (=)} 1=1,--, k.

Clearly, {&¥} is not disjoint. Hence the space X’ is extended to the
new space X* and our problem is written as the problem (RSTP)*.
Let

PF = {P¥| Py ¢ P¥ is invariant under G*}

Pi={Pdf| P* € P} i=1,-+,k
Pr={P¥|PHXF)zy, P*ec P¥} i=1,---,k
Pi={P}|P¥ € P} i=1,-0, k
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and define a}¥ (¢=1,---, k) by the infimum of a (>0) satisfying

(4.3) P C(P* e M| P*(B¥)=(1—ae)Pt(B*)—ad, for all B* ¢ $*} .
Similarly, define a¥* (i=1,---, k) by the infimum of a (>0) satisfying
(4.4) Pric {P* € M¥|PX(B*)=(1—ae)P}(B*)—ad, for all B*e B*} .

Note that a* and a*¥ are well-defined and independent of 7. We write
&4 —a*eo d¥=a*d,, ef'=a*e, and 0}*=a}d,, where a*=af and ay=a}"
(t=1,--+, k). Let

(4.5) Pi=(P* € HM¥| PXB¥)=(1—e¥)P(B*)—a% for all B* ¢ $¥)
(4.6) Plv={P* e M¥|P*B*)=(1—¢f Y)PX(B*)—a} for all B* ¢ B*} .
Also, define

yo=inf {PX(X¥)|P¥ ¢ P¥} and y,=sup {PHXF)|PXe P}}.

It is clear that y, and y, are the same for all ¢=1,---,k. We assume
that y is a real number on [y, ¥;) and
(A.4) PENPH =

Let us check (A.1) through (A.8). It should be understood that
P P¥ for ye (¥, y) whereas P}=PF and that the arguments in
here are concerned with P} instead of P¥. Since Pyg™'=P,; for 1=
0,---,k, all g€ G, we have by the definition (4.1) of &, that if Pe P,
then Pg~'€ P, ;. This implies (A 1). Similarly, (A.2) and (A.3) follows
from the facts that Plg*'= ofegre AN Prg*t= P,g,”,ﬂ,i for i=1,.--,k,
all g*ecG*. It is obvious that (A.4) holds by (A.4’). Also, (A. 5) fol-
lows from (4.6) and the definitions of e} and d¥*. To show (A.6), we
shall verify that Py e Py implies Px e @*, because by this fact and
Lemma 2 we have (A.6). Let Pre P¥ (i.e., Pye P). Then for all
B* ¢ B*

4.7 P°*(B*)—W 3y Pig*- 1(B*)--@ 2 (Pog™'y*(B¥)=(Po)*(B*) .
Moreover P ¢ P, holds, because for all Be B

PO(B)—IEI- 2 PO(g_lB)ZI_(;}T Z [(l—eo)Po(g 'B)—d]= (1—50)PO(B) do -

Hence P* e P follows from (4.7). Thus (A.6) is proved.

According to Theorem 5.2 and the discussions in Section 6 of Rieder
[7], there exist the least favorable pairs (@, Q%) between P§ and P’
(1=1,.--, k) and a version =} of dQ%'/dQ}’ is given by
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(4.8) n?‘v:ll_—i'(cggvd;ﬁi/\a-’{) B+ Pt ae.
0

where 4}, ¢ dP}/dPs, a\VbAc=max (a, min (b, c)), and C% and CY are
constants determined by the following two equations:

(4.9) CiPI (4%, < CH—PH(4%,<CH=v}"+ w}CY,
(4.10) P(4%,>CH)—CEP(4%,>CH=viCH + o},

vi=(ef+8)/(1—ed), wF=03F/(1—¢f),
vV =(e}+01)/(1—el), wf'=01/(1—ef).

Thus (A.7) and (A.8) hold. Notice that we can take QFY, QX, =}¥ i=
1,---,k so that (3.4), (3.5) and (3.6) are satisfied. In addition, it is
readily observed that 4%, C§, C% i=1,.--, k satisfy

(4.11) Affx*)=A¥ . lg*2*)  1=1,--+, k, all g¥eG*
(412) C%:Cl’/o ’ Cil{=c1'{ =1, Y k.

We consider the test ¢* presented by (3.7) (equivalently, (3.9))
with =¥ replaced by =} i=1,-.., k. Of course ¢*¥ satisfies Proposition
3 and Proposition 4. For this case, the following corollary holds.

COROLLARY 2. If PXe P} i1=1,---,k, then
k
(4.13) by Epx [pF(X*)]2kyB(y) ,

where B(y)=Eqxv [} (X*)].

PrOOF. This follows immediately from the definition of %#¥ and
Proposition 4. Q.E.D.

We note that g(y)>a (because of QX'+Q¥') and A(y) is nondecreas-
ing in y and that if y=y,>1/k, then ¢*' is unbiased. Let us express
¢* in terms of x instead of x*. Let ¢ be defined (on X) by

(@)=1,4,,0 if max 4Yx)<,=,>4,
1sjsk
oH(x)=0, 1—g(x))/m(x) if 4w)<,=max 4,(x),
i=1,---,k,

(4.14)

where m(x) (=|S(x)|) is the number of times max 4,(x) is attained, 2,
1sjsk

and ¢, are constants determined by Eg [¢§(X)]=1—a, Q=Q*¢™" and
4Y=C%V 4;\C! is a truncated version of 4;, Cy=((1—¢¥*)/(1—e¥))(C4/a),
Ci=(1—¢})/(1—e}))(Cl/a), a=kb, b=P}(X¥). Then we can have the
following theorem.
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THEOREM 2. The test ¢*¥ is equivalent to the test .

PROOF. Let 4¥ (i=1,---,k) be a version of dP*/dP¥ such that
AF(x*)=4¥.(g*x*) hold for ¢=1,---, k and all g* € G*. Then it is easily
seen that

(4.15) d¥=ad}, a.e. (P}+Pr).
Also we have
(4.16) A¥ @) =d(p(x*)  a.e. (Pr+Pr).

To show (4.16), let 4¥=q¥/q¥% and 4,=q../q,, Where g¥ € dP;|d(P}+ Py¥),
g} € dP¥|d(Py + P¥), qy € dP)Jd(P,+P,) and g, € dP,/d(P,+P,). Then for
all B¥ ¢ B}

~ ~ k 1 ~
1d(Py+Pr)= P (p(Br N X}
|y AP+ PR=33 5 P @BINENNL )

_ _1_8
5 TST JeBnn,

(Iﬁd((Po‘i‘Pt)/]Sl)

Qiid(P v+ P, 2)

i
S ¢(BY)
S

B Qti(‘/’)d(Po*‘*‘Pi*) .

This implies

@ =al¢@*)  ae. (Bh+Ph).
Similarly,

@@ =ap(@)  ae. (Pht+PA).

Thus (4.16) is verified. Therefore, taking 4¥, 4, so as to satisfy (4.15)
and (4.16) for all z* € XF, it follows from (4.8) that ¢* can be written
as (4.14). Q.E.D.

We can observe from (4.9), (4.10) and Lemma 4 of Rieder [7] that
Cy (CY) is strictly increasing (strictly decreasing) in e¥, 8%, &}, 3},
and that C4—0 and CY— oo hold as e¥—0, 3*—0, ¢¥*—0, 3*—0.
This fact implies that if y<b (i.e., P} ¢ P¥!) and if ¢,—0 and 3,—0
(7=0,1), then Ct—0 and CY— oo, and hence 4Y— 4,. That is, ¢¥ con-
verges to the test ¢ of (4.14) with 4Y replaced by 4,, which is one of
the most powerful size a tests for the testing problem of P, against
P, B,---, P, (see (2.4)). We also notice that ¢ is a partially truncated
version of ¢¥.

Now, by changing 4, in (4.14) to 4,, we can obtain various robust
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tests ¢¥, that is,

Px)=1,¢,0 if max LYx)<,=,>12,
(4.17) 1s/sk 3 _
PU(@)=0, 1—Y@))/m()  if 4(z)<,=max 4,(z)

'i:l, LICIUIN k ’
where 2, and £, are the same constants as in (4.14), and m(x) is the
number of times max 4,(x) is attained.
1sjsk

In order to achieve the tests with good robustness property, we can
take

(4.18) d,=d,v 4, ANd,  i=1,---,k,
(4.19) =T (dgf\/<_:’£>/\d§f> i=1,- k,
j=1

J

where d,, d,, di/ and d¥/ are some constants such that d,—0, d,— oo,
diy—0, d’— oo as g—0, 3,—0.
k
We note that 4,=max 4, if and only if T[(Ai):maxﬁ(ﬂ).
1sjsk 1=1 : 1sjski=1\ 4,

Hence ¢¥ with 4; of (4.18) and (4.19) converge to ¢ as ¢;—0, 3,—0.
Thus when all the neighborhoods &, shrink to P, ¢=0,---,k, these
tests ¢ also converge to ¢¥. As for di’ and di/, we especially recom-
mend the ones determined by the following two equations:

diP(4,,<di)—P(4,;<d¥)=v,+odi ,

Pi(Ai/>d}.j)_dfjpi(dt!>dfj) =y d’+tw,,
vi=(es+3)/(L—vy), 0,=3,/(1—¢), 4., €dP[dP,.

(4.20)

The reason is that ¥ with di’ and di’ of (4.20) uses the least favorable
pairs for (P, P,;) 1<i#j<k. However, needless to say, ¢ is less

powerful than ¢ near (P,---, P,).

Of course we are particularly interested in the case of y=y, (i.e.
Pr=P¥ 1=1,---, k). In this case, the test ¢ (=g¢* with di’ and d¥
of (4.20)) is just the one that was conjectured at the first stage as a
test with good robustness property.

Next let us consider the situation that we have m mutually inde-
pendent random elements X, X;,---, X, taking values in XX. Let X"
=(X;, X;,+ -+, X,) and denote by (X", B") the n-fold product measurable
space of (X, B). Also let P1=P; X - XP, (n-fold product of P;) 1=
0,---,k. Suppose that we wish to test

(RSTP)* Hy: L(X™) e Py against H: L(X") e P} 1=1,--, k.
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For this problem we can use the following test &:

(2™ =1,¢,,0 if max 44,(x"<,=,>12,
1sjsk

(4.21) _ _
@u(x") =0, A—l(x")/m(z")  if 4,(a")<,=max 4%,(x")
1sjsk
i=1,--+,k,
where

a@) =11 2),  Fe@)=1] M),

m(z") is the number of times max 4%(x") is attained, i, and &, are
1sjsk

constants such that

Q;,‘[ﬁ max Ag(xl)<z,,} +&, :[ﬁ max Ag(xl)zx,,] =l—a,
l=115jsk

l=11s7sk

Q, is the probability measure (on (2, B)) defined by

(4.22) QB)=3> L s quBnx,) Bes,
Ses | S] ies
Q=Q%¢™" i=1,--+, k and Q; is the n-fold product of Q,.

For defining @, by (4.22), we have to require the condition that T
is k-fold transitive, that is, T' is the symmetric group (in this case, we
have QU(Xs)=Qi(Xs) for all 4,5¢ S and all S€S). It can be easily
seen that the test ¢! is of size a.

5. The k-sample testing problem

Let X° be a sample space, B° a o-field on X°, H° the set of all
probability measures on (X°, $°). Let Pe, P denote two distinet ele-

ments of H°, and P3, P2 two disjoint neighborhoods of Pg, Py, re-
spectively. Also let X; i=1,---,k be mutually independent random
elements taking values in X°. Then we are interested in testing

H: LX)e®P;  j=1,---,k.
(RSTP), against
-H;: -E(Xi)eg)?’ —C(Xj)eg)g j=1,"',k, ji"/, i=1!"'yk-

Let us show below that this problem (RSTP), is a special case of the
robust slippage testing problem (RSTP) formulated in Section 2. Denote
X=Xy, -+, Xp), X=2°X---xX° (k-fold product of X°), B=B° X ---
X B° (k-fold product of B°), Py=PX---XP; (k-fold product of P3)
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and P,=P3X +++ XPIX+++ X Py (P in ith place, P in other places)
t=1,---, k.

Let T be the symmetric group of all permutations on {1,2,-:-, k}
and define transformations g. on ¥ by g.:x;,— 2.1, i=1,---, k, where
(1, -, k)=(c1,---,7k), € T. It is easily seen that G={g.|r € T} is
a transformation group with the operation g. ° g, =g .., (r1, 72 € T) and
isomorphic to T by the correspondence g.—z. Denote such pairs (g., )
by (g, z,) and define r,0=0 for all ge G. Noting that if P=P?X---X
P?, then Pg~'=P2,X---XP2:, we can readily observe that (A.1) holds.
It follows immediately that the present problem (RSTP), is written as
the problem (RSTP).

Our main aim in this section is to establish a theorem which yields
a least favorable slippage tuple for (P, &P;,---, P,) from a least favor-
able pair for (3, P3). To begin with, we give the following lemma.

LEMMmA 4. If (Po, 15,,- .., Pk), f’, € P,, is a slippage tuple such that
for all P,e P, ©=0,---,k and all t,

(5.1) Pa>t)<P#>t) i=1,---,k,

(5.2) P>tz Pa>t)  i=1,---,k,

(5.3) P(#,>0)<P#,>t) i, 4=1,-+-,k i#],
(5.4) 7, t=1,. .-, k are mutually independent ,

then (130, pP,..., P,) is the least favorable for (P, Pi,- -+, Py), where #,
is a version of dP,/dP,.

Proor. Let Q:(Po, P,..., Pk), and take &(x)=¢ (a constant) and
n:@)=(1—¢$(x))/m(x) in (2.4), where m(x) is the number of times

Iﬁlﬁ)}i 7,(x) is attained. It is obviously sufficient to show that ¢? satis-
1

fies (2.5) and (2.6). First, to show (2.5) note that for any P, e &, Pait

is stochastically larger than Pe;! by (5.1), and that ¢¢ is nonincreasing
in #,. Then, using (5.4) and Theorem 1 of Lehmann [6] we have (2.5).
Secondly, to show (2.6) we note that (5.2) ((5.3)) implies that for

any P, e P, Part (15i1‘r;‘) is stochastically smaller (larger) than Pﬂ‘r;‘

(13,-1‘:;1). Moreover notice that ¢¢ is nondecreasing (nonincreasing) in z,
(z,) 1, 5=1,---,k, i+j. Hence by (5.4) and Theorem 1 of Lehmann [6]

we have E, [¢#(X)]ZE; [¢%(X)] i=1,---, k. This implies (2.6). Thus
the proof of this lemma is completed. Q.E.D.

THEOREM 3. If (P?, P?) is a least favorable pair for (23, P3), then
(B, B,,---, B,) is a least favorable slippage tuple for (Po, Py -+, Do),
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where P0=Po°x NG & (k-fold product of 150°) and Pi= Pox + - X PP X
oo X B¢ (PP in ith place, P? in other places) i=1,---, k.

Proor. It is obvious that (Po, 151,- .o P,,) is a slippage tuple. We
show that (5.1) through (5.4) hold for all P,e ¢, 1=0,---, k. Since

(P¢, Pp) is the least favorable for (P3, &P3), it is satisfied by the defi-
nition that for all ¢

(5.5) Bo(#° >t)=sup {P2(r° >t)| P¢ € P3}
(5.6) Pe#° >t)=inf {P2(#° >t)| PP € P3},

where #° is a version of dP°/dP?. Define #; (i=1,- - -, k) by #(z)=#°(.),
where x=(xy,---, ;). Then we can see that z, is a version of dP,./dPO.
Let P; ¢ &; be denoted by P,=P35X --- X P, where P3 e P and Py, € P35
for 4#j. Then from (5.5) it follows that for ¢=0,---,k, j=1,---,k,
1#7 and all ¢

Py(it;,>t)=Pg(i° >t) S Po(i° >t)=Py(z,>1) .
Thus (5.1) and (5.3) hold. Similarly, by (5.6) we have
Pz, >t)=Pa° >t) 2 Pr(#° >t)=Py(#,>1) .

This is (5.2). It is clear from the definition of #; that (5.4) holds.
Therefore, applying Lemma 4 completes the proof of this theorem.
Q.E.D.

Next let us consider the situation that all the sizes of %k samples
are equal to n. Suppose that we have mutually independent random
elements X, i=1,---,k, l=1,--.,n taking values in ¥°. We now
wish to test

Hon: .f(Xﬂ)Egg j:]-r"'ykv l—:l,"',n

(RSTP); against

H: L(X,) e Ps, L(X,)e P j#s, 1=1,---,m, 1=1,---, k.
We note here that the 7th sample X, I=1,..-,n need not be identi-
cally distributed. This (RSTP); is a robust version of the k sample
slippage problem of testing H,: .[’(Xﬂ)=130°, j=1,---k, 1l=1,---,mn
against H,: L(X)=P¢, L(X,)=PBs j#i, 1=1,---,n; i=1,---, k.

Let Xz=()(1u ley tty Xkl) l=1,---,n and X"=(X1, XZ!' * Xn)- We
denote by (X", B") the n-fold product measurable space of (¥, B) and

let Pr1=P,;X---xX P, (n-fold product of P;) i=0,.--, k. Then the prob-
lem (RSTP); is written in a simple form:
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Hp: L(X™) e P against H: L(X™) e &P 1=1,--+, k.

Let transformations g, on X* be defined by g.(x")=(gx:, 925,- -+, 9%,).
Clearly, G,={g.|9 € G} is a group with the operation g, g,=(g ° g')..
Then the following result can be obtained.

COROLLARY 3. If there exists a least favorable pair (130", 131°) for
(P53, P3), then for any sample size n and any size a € (0, 1) marimin
tests ¢, for the problem (RSTP); are given by

Pu(2m=1,§,0 if maxﬁfc°(xﬁ)<,=,>zn

1S/8k 1=1
(5.7)
Pul(@7) =0, A—=u(@"))/m(z)  if T]#°(@a)<, =max T #°(250)
'i:l’ ceey k ,

where #° is a version of dPP/dP?, m(x") is the mumber of times max
1s5jsk

f[#(w,,) is attained, and 1, and &, are constants determined by Esp [¢n
(X"]=1—a, Pp=Pyx---xP, (n-fold product of P,).

PrOOF. Let ﬁ?edﬁi”/dlf’g", where P} is the n-fold product of P,
Note that we can take ﬁ.-';(cv"):f[1 n-t(acl)=f[1 7°(xy), where r‘riedﬁi/dlso.
Since 7(X,) i=1,---, k, I=1,--., n are mutually independent and satisfy
(56.1) through (5.4) for each I, we have (5.1) through (5.4) with P,
15“ #; replaced by W, (€ 7, Pp, 72, respectively. Also it easily fol-
lows that (150", ) I3k") is a slippage tuple with respect to G,. These

facts and Lemma 4 imply that (130", 151",. .., A,:‘) is a least favorable slip-
page tuple for (Pz, P%,---, Pi). Therefore this corollary is an immedi-
ate consequence of Theorem 3 and Proposition 1. Q.E.D.

Remark 2. The test ¢, is invariant under G,.

Examples. We consider Huber’s ([3], [4]) results. Let 2’° be the
real line, B° the Borel o-field on X° and H° the set of all probability

measures on (X°, $°). Let P2 and P¢ be two distinct probability meas-
ures on (X¥°, B°) with their densities ; and p; with respect to some
measure g. We assume that the likelihood ratio $;(x)/p;(x) is mono-

tone in x a.e. p. Let

o= {P° € M°|P°(X<t)=(1—e))P(X<t)—3, for all t},
(5.8) .

o= {P° € HM°|P°(X>t)=(1—e)PP(X >t)—0, for all t},

where 0=<¢,, ¢,, 8y, 3,<1 are some given numbers. We assume that &5
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and &% are disjoint (i.e., that ¢, and 8, are sufficiently small). Then
there exists a least favorable pair (f’.,", 13,") for (&5, &3). Hence, ac-
cording to Corollary 3 the maximin tests for the problem (RSTP); are
given by (5.7) with

(5.9) @)=V 2@ Ac,
Do ()

where C, and C, are constants determined by the equations:
CPPL(B? ()55 () < Col — Pe[(Br ()5 () < Col =1+ o Cy

Pel(# ()95 (%)) > Ci] — CP[(B2 (@) /5 () > Cll=viCi+ o
ekl o b o1,

Y,=
)
1—6.’ 1—€j

We note that P$ contains each of neighborhoods of P¢ in terms
of e-contamination, total variation, Prohorov distance, Kolmogorov dis-
tance and Lévy distance, and that P¢ is contained in each of them.
These facts imply that the maximin tests (5.7) with z° of (5.9) are also
maximin for the above five types of neighborhoods. Moreover it is
emphasized that if {P,|6 ¢ R} is a monotone likelihood ratio family,
then the maximin tests (5.7) constructed for neighborhoods &5 of 13;;
(7=0,1) are maximin for the problem (RSTP); not only of 15,,‘; and P;’l
but also of {P?|6<6,} and {P?|0=6,} where 6,<0,.

In particular, consider the case that Py (=0, 1) are normal distri-
butions N(6,,1) where 6,<6,. Suppose that e,=e;=¢ and 3,=0,=3.
As easily seen, letting Y=X—(6,+6,)/2, the problem (RSTP); is re-
duced to the case of N(—4, 1) and N(4, 1), where 4=(6,—6,)/2. From
symmetry C,=1/C, follows. Write C,=¢™***. Then (5.10) reduces to

—24b
e~ P(4 —b)—O(— 4—b)= e+3d+de? ,
1—e
where @ denotes the distribution function of N(0,1). Let b be a solu-
tion of this equation. Then the maximin tests ¢, of (5.7) are equiv-
alent to

on(x™)=1,¢,,0 if maxi}¢<x1,—m><,:,>2n

1sjsk 1=1 2
@ai(2") =0, (1—pn(z"))/m(a")
if é ¢<xu—M> <,=max >} ‘/’(x,u"‘

2 1sjsk i=1

00+01>
2 ’

'i=1" * ",k ’
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where
o(x)=(—=b)VaAD.

This is a robust version of a primitive form of tests for outliers. Of
course these tests are also maximin for the problem (RSTP); of {N(4,
1)|6<6,} and {N(6,1)[6=6:}.

The other examples of (P3, &3) for which there exists a least favor-
able pair are found in Huber [4], Huber and Strassen [5] and Rieder [7].

Acknowledgements

Part of this work was done while the author was visiting the
Department of Statistics, Stanford University. He would like to thank
Professor A. Kudd for his helpful comments.

NANZAN UNIVERSITY

REFERENCES

[1] Hall, I J. and Kudd, A. (1968). On slippage tests—(I), A generalization of Neyman-
Pearson’s lemma, Ann. Math. Statist., 39, 1693-1699.

[2] Huber, P. J. (1965). Robust version of the probability ratio test, Ann. Math. Statist.,
36, 1753-1758.

[3] Huber, P. J. (1968). Robust confidence limits, Zeit. Wahrscheinlichkeitsth., 10, 269-278.

[4] Huber, P. J. (1981). Robust Statistics, Wiley, New York.

[5] Huber, P. J. and Strassen, V. (1973). Minimax tests and the Neyman-Pearson lemma
for capacities, Ann. Statist., 1, 251-263. )

[6] Lehmann, E. L. (1955). Ordered families of distributions, Ann. Math. Statist., 26,
399-419.

[7] Rieder, H. (1977). Least favorable pairs for special capacities, Ann. Statist., 5, 909-
921.

[8] Yao, J. S. and Kudd, A. (1972). On slippage tests—(IV), The invariance of the least
favorable distributions, Mem. of the Facu. of Sci. Kyushu Univ., A, 26, 323-331.

[9] Yeh, N. C. and Kudé, A. (1970). On slippage tests—(III), The least favorable distri-
bution, Tamkang Journal of Mathematics, 1, 57-64.



